dect
/
linux-2.6
Archived
13
0
Fork 0

Merge branch 'drivers/rtc-sa1100' into next/drivers

* drivers/rtc-sa1100:
  ARM: sa1100: clean up of the clock support
  ARM: pxa: add dummy clock for sa1100-rtc
  RTC: sa1100: support sa1100, pxa and mmp soc families
  RTC: sa1100: remove redundant code of setting alarm
  RTC: sa1100: Clean out ost register

Conflicts:
	arch/arm/mach-pxa/pxa25x.c
	arch/arm/mach-pxa/pxa27x.c
This commit is contained in:
Arnd Bergmann 2011-12-28 10:46:03 +00:00
commit 15db3e823c
12 changed files with 293 additions and 140 deletions

View File

@ -741,7 +741,7 @@ config ARCH_SA1100
select ARCH_HAS_CPUFREQ
select CPU_FREQ
select GENERIC_CLOCKEVENTS
select HAVE_CLK
select CLKDEV_LOOKUP
select HAVE_SCHED_CLOCK
select TICK_ONESHOT
select ARCH_REQUIRE_GPIOLIB

View File

@ -415,9 +415,29 @@ static struct resource pxa_rtc_resources[] = {
},
};
static struct resource sa1100_rtc_resources[] = {
[0] = {
.start = 0x40900000,
.end = 0x409000ff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_RTC1Hz,
.end = IRQ_RTC1Hz,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_RTCAlrm,
.end = IRQ_RTCAlrm,
.flags = IORESOURCE_IRQ,
},
};
struct platform_device sa1100_device_rtc = {
.name = "sa1100-rtc",
.id = -1,
.num_resources = ARRAY_SIZE(sa1100_rtc_resources),
.resource = sa1100_rtc_resources,
};
struct platform_device pxa_device_rtc = {

View File

@ -210,6 +210,7 @@ static struct clk_lookup pxa25x_clkregs[] = {
INIT_CLKREG(&clk_pxa25x_gpio12, NULL, "GPIO12_CLK"),
INIT_CLKREG(&clk_pxa25x_mem, "pxa2xx-pcmcia", NULL),
INIT_CLKREG(&clk_dummy, "pxa-gpio", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
};
static struct clk_lookup pxa25x_hwuart_clkreg =

View File

@ -231,6 +231,7 @@ static struct clk_lookup pxa27x_clkregs[] = {
INIT_CLKREG(&clk_pxa27x_memc, NULL, "MEMCLK"),
INIT_CLKREG(&clk_pxa27x_mem, "pxa2xx-pcmcia", NULL),
INIT_CLKREG(&clk_dummy, "pxa-gpio", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
};
#ifdef CONFIG_PM

View File

@ -89,6 +89,7 @@ static DEFINE_PXA3_CKEN(gcu, PXA300_GCU, 0, 0);
static struct clk_lookup common_clkregs[] = {
INIT_CLKREG(&clk_common_nand, "pxa3xx-nand", NULL),
INIT_CLKREG(&clk_gcu, "pxa3xx-gcu", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
};
static DEFINE_PXA3_CKEN(pxa310_mmc3, MMC3, 19500000, 0);

View File

@ -83,6 +83,7 @@ static DEFINE_PXA3_CKEN(gcu, PXA320_GCU, 0, 0);
static struct clk_lookup pxa320_clkregs[] = {
INIT_CLKREG(&clk_pxa320_nand, "pxa3xx-nand", NULL),
INIT_CLKREG(&clk_gcu, "pxa3xx-gcu", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
};
static int __init pxa320_init(void)

View File

@ -67,6 +67,7 @@ static struct clk_lookup pxa3xx_clkregs[] = {
INIT_CLKREG(&clk_pxa3xx_pout, NULL, "CLK_POUT"),
/* Power I2C clock is always on */
INIT_CLKREG(&clk_dummy, "pxa3xx-pwri2c.1", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
INIT_CLKREG(&clk_pxa3xx_lcd, "pxa2xx-fb", NULL),
INIT_CLKREG(&clk_pxa3xx_camera, NULL, "CAMCLK"),
INIT_CLKREG(&clk_pxa3xx_ac97, NULL, "AC97CLK"),

View File

@ -217,6 +217,7 @@ static struct clk_lookup pxa95x_clkregs[] = {
INIT_CLKREG(&clk_pxa95x_pout, NULL, "CLK_POUT"),
/* Power I2C clock is always on */
INIT_CLKREG(&clk_dummy, "pxa3xx-pwri2c.1", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
INIT_CLKREG(&clk_pxa95x_lcd, "pxa2xx-fb", NULL),
INIT_CLKREG(&clk_pxa95x_ffuart, "pxa2xx-uart.0", NULL),
INIT_CLKREG(&clk_pxa95x_btuart, "pxa2xx-uart.1", NULL),

View File

@ -11,17 +11,39 @@
#include <linux/clk.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/io.h>
#include <linux/clkdev.h>
#include <mach/hardware.h>
/*
* Very simple clock implementation - we only have one clock to deal with.
*/
struct clkops {
void (*enable)(struct clk *);
void (*disable)(struct clk *);
unsigned long (*getrate)(struct clk *);
};
struct clk {
const struct clkops *ops;
unsigned long rate;
unsigned int enabled;
};
static void clk_gpio27_enable(void)
#define INIT_CLKREG(_clk, _devname, _conname) \
{ \
.clk = _clk, \
.dev_id = _devname, \
.con_id = _conname, \
}
#define DEFINE_CLK(_name, _ops, _rate) \
struct clk clk_##_name = { \
.ops = _ops, \
.rate = _rate, \
}
static DEFINE_SPINLOCK(clocks_lock);
static void clk_gpio27_enable(struct clk *clk)
{
/*
* First, set up the 3.6864MHz clock on GPIO 27 for the SA-1111:
@ -32,38 +54,22 @@ static void clk_gpio27_enable(void)
TUCR = TUCR_3_6864MHz;
}
static void clk_gpio27_disable(void)
static void clk_gpio27_disable(struct clk *clk)
{
TUCR = 0;
GPDR &= ~GPIO_32_768kHz;
GAFR &= ~GPIO_32_768kHz;
}
static struct clk clk_gpio27;
static DEFINE_SPINLOCK(clocks_lock);
struct clk *clk_get(struct device *dev, const char *id)
{
const char *devname = dev_name(dev);
return strcmp(devname, "sa1111.0") ? ERR_PTR(-ENOENT) : &clk_gpio27;
}
EXPORT_SYMBOL(clk_get);
void clk_put(struct clk *clk)
{
}
EXPORT_SYMBOL(clk_put);
int clk_enable(struct clk *clk)
{
unsigned long flags;
spin_lock_irqsave(&clocks_lock, flags);
if (clk->enabled++ == 0)
clk_gpio27_enable();
clk->ops->enable(clk);
spin_unlock_irqrestore(&clocks_lock, flags);
return 0;
}
EXPORT_SYMBOL(clk_enable);
@ -76,13 +82,48 @@ void clk_disable(struct clk *clk)
spin_lock_irqsave(&clocks_lock, flags);
if (--clk->enabled == 0)
clk_gpio27_disable();
clk->ops->disable(clk);
spin_unlock_irqrestore(&clocks_lock, flags);
}
EXPORT_SYMBOL(clk_disable);
unsigned long clk_get_rate(struct clk *clk)
{
return 3686400;
unsigned long rate;
rate = clk->rate;
if (clk->ops->getrate)
rate = clk->ops->getrate(clk);
return rate;
}
EXPORT_SYMBOL(clk_get_rate);
const struct clkops clk_gpio27_ops = {
.enable = clk_gpio27_enable,
.disable = clk_gpio27_disable,
};
static void clk_dummy_enable(struct clk *clk) { }
static void clk_dummy_disable(struct clk *clk) { }
const struct clkops clk_dummy_ops = {
.enable = clk_dummy_enable,
.disable = clk_dummy_disable,
};
static DEFINE_CLK(gpio27, &clk_gpio27_ops, 3686400);
static DEFINE_CLK(dummy, &clk_dummy_ops, 0);
static struct clk_lookup sa11xx_clkregs[] = {
INIT_CLKREG(&clk_gpio27, "sa1111.0", NULL),
INIT_CLKREG(&clk_dummy, "sa1100-rtc", NULL),
};
static int __init sa11xx_clk_init(void)
{
clkdev_add_table(sa11xx_clkregs, ARRAY_SIZE(sa11xx_clkregs));
return 0;
}
postcore_initcall(sa11xx_clk_init);

View File

@ -334,9 +334,29 @@ void sa11x0_register_irda(struct irda_platform_data *irda)
sa11x0_register_device(&sa11x0ir_device, irda);
}
static struct resource sa11x0rtc_resources[] = {
[0] = {
.start = 0x90010000,
.end = 0x900100ff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_RTC1Hz,
.end = IRQ_RTC1Hz,
.flags = IORESOURCE_IRQ,
},
[2] = {
.start = IRQ_RTCAlrm,
.end = IRQ_RTCAlrm,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device sa11x0rtc_device = {
.name = "sa1100-rtc",
.id = -1,
.resource = sa11x0rtc_resources,
.num_resources = ARRAY_SIZE(sa11x0rtc_resources),
};
static struct platform_device *sa11x0_devices[] __initdata = {

View File

@ -774,7 +774,7 @@ config RTC_DRV_EP93XX
config RTC_DRV_SA1100
tristate "SA11x0/PXA2xx"
depends on ARCH_SA1100 || ARCH_PXA
depends on ARCH_SA1100 || ARCH_PXA || ARCH_MMP
help
If you say Y here you will get access to the real time clock
built into your SA11x0 or PXA2xx CPU.

View File

@ -27,35 +27,42 @@
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pm.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <mach/hardware.h>
#include <asm/irq.h>
#ifdef CONFIG_ARCH_PXA
#include <mach/regs-rtc.h>
#include <mach/regs-ost.h>
#endif
#define RTC_DEF_DIVIDER (32768 - 1)
#define RTC_DEF_TRIM 0
#define RTC_FREQ 1024
static const unsigned long RTC_FREQ = 1024;
static struct rtc_time rtc_alarm;
static DEFINE_SPINLOCK(sa1100_rtc_lock);
#define RCNR 0x00 /* RTC Count Register */
#define RTAR 0x04 /* RTC Alarm Register */
#define RTSR 0x08 /* RTC Status Register */
#define RTTR 0x0c /* RTC Timer Trim Register */
static inline int rtc_periodic_alarm(struct rtc_time *tm)
{
return (tm->tm_year == -1) ||
((unsigned)tm->tm_mon >= 12) ||
((unsigned)(tm->tm_mday - 1) >= 31) ||
((unsigned)tm->tm_hour > 23) ||
((unsigned)tm->tm_min > 59) ||
((unsigned)tm->tm_sec > 59);
}
#define RTSR_HZE (1 << 3) /* HZ interrupt enable */
#define RTSR_ALE (1 << 2) /* RTC alarm interrupt enable */
#define RTSR_HZ (1 << 1) /* HZ rising-edge detected */
#define RTSR_AL (1 << 0) /* RTC alarm detected */
#define rtc_readl(sa1100_rtc, reg) \
readl_relaxed((sa1100_rtc)->base + (reg))
#define rtc_writel(sa1100_rtc, reg, value) \
writel_relaxed((value), (sa1100_rtc)->base + (reg))
struct sa1100_rtc {
struct resource *ress;
void __iomem *base;
struct clk *clk;
int irq_1Hz;
int irq_Alrm;
struct rtc_device *rtc;
spinlock_t lock; /* Protects this structure */
};
/*
* Calculate the next alarm time given the requested alarm time mask
* and the current time.
@ -83,46 +90,26 @@ static void rtc_next_alarm_time(struct rtc_time *next, struct rtc_time *now,
}
}
static int rtc_update_alarm(struct rtc_time *alrm)
{
struct rtc_time alarm_tm, now_tm;
unsigned long now, time;
int ret;
do {
now = RCNR;
rtc_time_to_tm(now, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, alrm);
ret = rtc_tm_to_time(&alarm_tm, &time);
if (ret != 0)
break;
RTSR = RTSR & (RTSR_HZE|RTSR_ALE|RTSR_AL);
RTAR = time;
} while (now != RCNR);
return ret;
}
static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = to_platform_device(dev_id);
struct rtc_device *rtc = platform_get_drvdata(pdev);
struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
unsigned int rtsr;
unsigned long events = 0;
spin_lock(&sa1100_rtc_lock);
spin_lock(&sa1100_rtc->lock);
rtsr = RTSR;
/* clear interrupt sources */
RTSR = 0;
rtsr = rtc_readl(sa1100_rtc, RTSR);
rtc_writel(sa1100_rtc, RTSR, 0);
/* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_probe(). */
if (rtsr & (RTSR_ALE | RTSR_HZE)) {
/* This is the original code, before there was the if test
* above. This code does not clear interrupts that were not
* enabled. */
RTSR = (RTSR_AL | RTSR_HZ) & (rtsr >> 2);
rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ) & (rtsr >> 2));
} else {
/* For some reason, it is possible to enter this routine
* without interruptions enabled, it has been tested with
@ -131,13 +118,13 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
* This situation leads to an infinite "loop" of interrupt
* routine calling and as a result the processor seems to
* lock on its first call to open(). */
RTSR = RTSR_AL | RTSR_HZ;
rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
}
/* clear alarm interrupt if it has occurred */
if (rtsr & RTSR_AL)
rtsr &= ~RTSR_ALE;
RTSR = rtsr & (RTSR_ALE | RTSR_HZE);
rtc_writel(sa1100_rtc, RTSR, rtsr & (RTSR_ALE | RTSR_HZE));
/* update irq data & counter */
if (rtsr & RTSR_AL)
@ -145,91 +132,100 @@ static irqreturn_t sa1100_rtc_interrupt(int irq, void *dev_id)
if (rtsr & RTSR_HZ)
events |= RTC_UF | RTC_IRQF;
rtc_update_irq(rtc, 1, events);
rtc_update_irq(sa1100_rtc->rtc, 1, events);
if (rtsr & RTSR_AL && rtc_periodic_alarm(&rtc_alarm))
rtc_update_alarm(&rtc_alarm);
spin_unlock(&sa1100_rtc_lock);
spin_unlock(&sa1100_rtc->lock);
return IRQ_HANDLED;
}
static int sa1100_rtc_open(struct device *dev)
{
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
int ret;
struct platform_device *plat_dev = to_platform_device(dev);
struct rtc_device *rtc = platform_get_drvdata(plat_dev);
ret = request_irq(IRQ_RTC1Hz, sa1100_rtc_interrupt, IRQF_DISABLED,
"rtc 1Hz", dev);
ret = request_irq(sa1100_rtc->irq_1Hz, sa1100_rtc_interrupt,
IRQF_DISABLED, "rtc 1Hz", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTC1Hz);
dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_1Hz);
goto fail_ui;
}
ret = request_irq(IRQ_RTCAlrm, sa1100_rtc_interrupt, IRQF_DISABLED,
"rtc Alrm", dev);
ret = request_irq(sa1100_rtc->irq_Alrm, sa1100_rtc_interrupt,
IRQF_DISABLED, "rtc Alrm", dev);
if (ret) {
dev_err(dev, "IRQ %d already in use.\n", IRQ_RTCAlrm);
dev_err(dev, "IRQ %d already in use.\n", sa1100_rtc->irq_Alrm);
goto fail_ai;
}
rtc->max_user_freq = RTC_FREQ;
rtc_irq_set_freq(rtc, NULL, RTC_FREQ);
sa1100_rtc->rtc->max_user_freq = RTC_FREQ;
rtc_irq_set_freq(sa1100_rtc->rtc, NULL, RTC_FREQ);
return 0;
fail_ai:
free_irq(IRQ_RTC1Hz, dev);
free_irq(sa1100_rtc->irq_1Hz, dev);
fail_ui:
return ret;
}
static void sa1100_rtc_release(struct device *dev)
{
spin_lock_irq(&sa1100_rtc_lock);
RTSR = 0;
OIER &= ~OIER_E1;
OSSR = OSSR_M1;
spin_unlock_irq(&sa1100_rtc_lock);
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
free_irq(IRQ_RTCAlrm, dev);
free_irq(IRQ_RTC1Hz, dev);
spin_lock_irq(&sa1100_rtc->lock);
rtc_writel(sa1100_rtc, RTSR, 0);
spin_unlock_irq(&sa1100_rtc->lock);
free_irq(sa1100_rtc->irq_Alrm, dev);
free_irq(sa1100_rtc->irq_1Hz, dev);
}
static int sa1100_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
spin_lock_irq(&sa1100_rtc_lock);
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned int rtsr;
spin_lock_irq(&sa1100_rtc->lock);
rtsr = rtc_readl(sa1100_rtc, RTSR);
if (enabled)
RTSR |= RTSR_ALE;
rtsr |= RTSR_ALE;
else
RTSR &= ~RTSR_ALE;
spin_unlock_irq(&sa1100_rtc_lock);
rtsr &= ~RTSR_ALE;
rtc_writel(sa1100_rtc, RTSR, rtsr);
spin_unlock_irq(&sa1100_rtc->lock);
return 0;
}
static int sa1100_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
rtc_time_to_tm(RCNR, tm);
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
rtc_time_to_tm(rtc_readl(sa1100_rtc, RCNR), tm);
return 0;
}
static int sa1100_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned long time;
int ret;
ret = rtc_tm_to_time(tm, &time);
if (ret == 0)
RCNR = time;
rtc_writel(sa1100_rtc, RCNR, time);
return ret;
}
static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
u32 rtsr;
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
unsigned long time;
unsigned int rtsr;
memcpy(&alrm->time, &rtc_alarm, sizeof(struct rtc_time));
rtsr = RTSR;
time = rtc_readl(sa1100_rtc, RCNR);
rtc_time_to_tm(time, &alrm->time);
rtsr = rtc_readl(sa1100_rtc, RTSR);
alrm->enabled = (rtsr & RTSR_ALE) ? 1 : 0;
alrm->pending = (rtsr & RTSR_AL) ? 1 : 0;
return 0;
@ -237,26 +233,39 @@ static int sa1100_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int sa1100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
int ret;
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
struct rtc_time now_tm, alarm_tm;
unsigned long time, alarm;
unsigned int rtsr;
spin_lock_irq(&sa1100_rtc_lock);
ret = rtc_update_alarm(&alrm->time);
if (ret == 0) {
if (alrm->enabled)
RTSR |= RTSR_ALE;
else
RTSR &= ~RTSR_ALE;
}
spin_unlock_irq(&sa1100_rtc_lock);
spin_lock_irq(&sa1100_rtc->lock);
return ret;
time = rtc_readl(sa1100_rtc, RCNR);
rtc_time_to_tm(time, &now_tm);
rtc_next_alarm_time(&alarm_tm, &now_tm, &alrm->time);
rtc_tm_to_time(&alarm_tm, &alarm);
rtc_writel(sa1100_rtc, RTAR, alarm);
rtsr = rtc_readl(sa1100_rtc, RTSR);
if (alrm->enabled)
rtsr |= RTSR_ALE;
else
rtsr &= ~RTSR_ALE;
rtc_writel(sa1100_rtc, RTSR, rtsr);
spin_unlock_irq(&sa1100_rtc->lock);
return 0;
}
static int sa1100_rtc_proc(struct device *dev, struct seq_file *seq)
{
seq_printf(seq, "trim/divider\t\t: 0x%08x\n", (u32) RTTR);
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n", (u32)RTSR);
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
seq_printf(seq, "trim/divider\t\t: 0x%08x\n",
rtc_readl(sa1100_rtc, RTTR));
seq_printf(seq, "RTSR\t\t\t: 0x%08x\n",
rtc_readl(sa1100_rtc, RTSR));
return 0;
}
@ -273,7 +282,51 @@ static const struct rtc_class_ops sa1100_rtc_ops = {
static int sa1100_rtc_probe(struct platform_device *pdev)
{
struct rtc_device *rtc;
struct sa1100_rtc *sa1100_rtc;
unsigned int rttr;
int ret;
sa1100_rtc = kzalloc(sizeof(struct sa1100_rtc), GFP_KERNEL);
if (!sa1100_rtc)
return -ENOMEM;
spin_lock_init(&sa1100_rtc->lock);
platform_set_drvdata(pdev, sa1100_rtc);
ret = -ENXIO;
sa1100_rtc->ress = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!sa1100_rtc->ress) {
dev_err(&pdev->dev, "No I/O memory resource defined\n");
goto err_ress;
}
sa1100_rtc->irq_1Hz = platform_get_irq(pdev, 0);
if (sa1100_rtc->irq_1Hz < 0) {
dev_err(&pdev->dev, "No 1Hz IRQ resource defined\n");
goto err_ress;
}
sa1100_rtc->irq_Alrm = platform_get_irq(pdev, 1);
if (sa1100_rtc->irq_Alrm < 0) {
dev_err(&pdev->dev, "No alarm IRQ resource defined\n");
goto err_ress;
}
ret = -ENOMEM;
sa1100_rtc->base = ioremap(sa1100_rtc->ress->start,
resource_size(sa1100_rtc->ress));
if (!sa1100_rtc->base) {
dev_err(&pdev->dev, "Unable to map pxa RTC I/O memory\n");
goto err_map;
}
sa1100_rtc->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sa1100_rtc->clk)) {
dev_err(&pdev->dev, "failed to find rtc clock source\n");
ret = PTR_ERR(sa1100_rtc->clk);
goto err_clk;
}
clk_prepare(sa1100_rtc->clk);
clk_enable(sa1100_rtc->clk);
/*
* According to the manual we should be able to let RTTR be zero
@ -282,24 +335,24 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
* If the clock divider is uninitialized then reset it to the
* default value to get the 1Hz clock.
*/
if (RTTR == 0) {
RTTR = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
dev_warn(&pdev->dev, "warning: "
"initializing default clock divider/trim value\n");
if (rtc_readl(sa1100_rtc, RTTR) == 0) {
rttr = RTC_DEF_DIVIDER + (RTC_DEF_TRIM << 16);
rtc_writel(sa1100_rtc, RTTR, rttr);
dev_warn(&pdev->dev, "warning: initializing default clock"
" divider/trim value\n");
/* The current RTC value probably doesn't make sense either */
RCNR = 0;
rtc_writel(sa1100_rtc, RCNR, 0);
}
device_init_wakeup(&pdev->dev, 1);
rtc = rtc_device_register(pdev->name, &pdev->dev, &sa1100_rtc_ops,
THIS_MODULE);
if (IS_ERR(rtc))
return PTR_ERR(rtc);
platform_set_drvdata(pdev, rtc);
sa1100_rtc->rtc = rtc_device_register(pdev->name, &pdev->dev,
&sa1100_rtc_ops, THIS_MODULE);
if (IS_ERR(sa1100_rtc->rtc)) {
dev_err(&pdev->dev, "Failed to register RTC device -> %d\n",
ret);
goto err_rtc_reg;
}
/* Fix for a nasty initialization problem the in SA11xx RTSR register.
* See also the comments in sa1100_rtc_interrupt().
*
@ -322,33 +375,46 @@ static int sa1100_rtc_probe(struct platform_device *pdev)
*
* Notice that clearing bit 1 and 0 is accomplished by writting ONES to
* the corresponding bits in RTSR. */
RTSR = RTSR_AL | RTSR_HZ;
rtc_writel(sa1100_rtc, RTSR, (RTSR_AL | RTSR_HZ));
return 0;
err_rtc_reg:
err_clk:
iounmap(sa1100_rtc->base);
err_ress:
err_map:
kfree(sa1100_rtc);
return ret;
}
static int sa1100_rtc_remove(struct platform_device *pdev)
{
struct rtc_device *rtc = platform_get_drvdata(pdev);
if (rtc)
rtc_device_unregister(rtc);
struct sa1100_rtc *sa1100_rtc = platform_get_drvdata(pdev);
rtc_device_unregister(sa1100_rtc->rtc);
clk_disable(sa1100_rtc->clk);
clk_unprepare(sa1100_rtc->clk);
iounmap(sa1100_rtc->base);
return 0;
}
#ifdef CONFIG_PM
static int sa1100_rtc_suspend(struct device *dev)
{
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(IRQ_RTCAlrm);
enable_irq_wake(sa1100_rtc->irq_Alrm);
return 0;
}
static int sa1100_rtc_resume(struct device *dev)
{
struct sa1100_rtc *sa1100_rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(IRQ_RTCAlrm);
disable_irq_wake(sa1100_rtc->irq_Alrm);
return 0;
}