dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/net/ipv4/netfilter/arp_tables.c

1915 lines
46 KiB
C
Raw Normal View History

/*
* Packet matching code for ARP packets.
*
* Based heavily, if not almost entirely, upon ip_tables.c framework.
*
* Some ARP specific bits are:
*
* Copyright (C) 2002 David S. Miller (davem@redhat.com)
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/capability.h>
#include <linux/if_arp.h>
#include <linux/kmod.h>
#include <linux/vmalloc.h>
#include <linux/proc_fs.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <net/compat.h>
#include <net/sock.h>
#include <asm/uaccess.h>
#include <linux/netfilter/x_tables.h>
#include <linux/netfilter_arp/arp_tables.h>
#include "../../netfilter/xt_repldata.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
MODULE_DESCRIPTION("arptables core");
/*#define DEBUG_ARP_TABLES*/
/*#define DEBUG_ARP_TABLES_USER*/
#ifdef DEBUG_ARP_TABLES
#define dprintf(format, args...) printk(format , ## args)
#else
#define dprintf(format, args...)
#endif
#ifdef DEBUG_ARP_TABLES_USER
#define duprintf(format, args...) printk(format , ## args)
#else
#define duprintf(format, args...)
#endif
#ifdef CONFIG_NETFILTER_DEBUG
#define ARP_NF_ASSERT(x) WARN_ON(!(x))
#else
#define ARP_NF_ASSERT(x)
#endif
void *arpt_alloc_initial_table(const struct xt_table *info)
{
return xt_alloc_initial_table(arpt, ARPT);
}
EXPORT_SYMBOL_GPL(arpt_alloc_initial_table);
static inline int arp_devaddr_compare(const struct arpt_devaddr_info *ap,
const char *hdr_addr, int len)
{
int i, ret;
if (len > ARPT_DEV_ADDR_LEN_MAX)
len = ARPT_DEV_ADDR_LEN_MAX;
ret = 0;
for (i = 0; i < len; i++)
ret |= (hdr_addr[i] ^ ap->addr[i]) & ap->mask[i];
return ret != 0;
}
/*
* Unfortunately, _b and _mask are not aligned to an int (or long int)
* Some arches dont care, unrolling the loop is a win on them.
* For other arches, we only have a 16bit alignement.
*/
static unsigned long ifname_compare(const char *_a, const char *_b, const char *_mask)
{
#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
unsigned long ret = ifname_compare_aligned(_a, _b, _mask);
#else
unsigned long ret = 0;
const u16 *a = (const u16 *)_a;
const u16 *b = (const u16 *)_b;
const u16 *mask = (const u16 *)_mask;
int i;
for (i = 0; i < IFNAMSIZ/sizeof(u16); i++)
ret |= (a[i] ^ b[i]) & mask[i];
#endif
return ret;
}
/* Returns whether packet matches rule or not. */
static inline int arp_packet_match(const struct arphdr *arphdr,
struct net_device *dev,
const char *indev,
const char *outdev,
const struct arpt_arp *arpinfo)
{
const char *arpptr = (char *)(arphdr + 1);
const char *src_devaddr, *tgt_devaddr;
__be32 src_ipaddr, tgt_ipaddr;
long ret;
#define FWINV(bool, invflg) ((bool) ^ !!(arpinfo->invflags & (invflg)))
if (FWINV((arphdr->ar_op & arpinfo->arpop_mask) != arpinfo->arpop,
ARPT_INV_ARPOP)) {
dprintf("ARP operation field mismatch.\n");
dprintf("ar_op: %04x info->arpop: %04x info->arpop_mask: %04x\n",
arphdr->ar_op, arpinfo->arpop, arpinfo->arpop_mask);
return 0;
}
if (FWINV((arphdr->ar_hrd & arpinfo->arhrd_mask) != arpinfo->arhrd,
ARPT_INV_ARPHRD)) {
dprintf("ARP hardware address format mismatch.\n");
dprintf("ar_hrd: %04x info->arhrd: %04x info->arhrd_mask: %04x\n",
arphdr->ar_hrd, arpinfo->arhrd, arpinfo->arhrd_mask);
return 0;
}
if (FWINV((arphdr->ar_pro & arpinfo->arpro_mask) != arpinfo->arpro,
ARPT_INV_ARPPRO)) {
dprintf("ARP protocol address format mismatch.\n");
dprintf("ar_pro: %04x info->arpro: %04x info->arpro_mask: %04x\n",
arphdr->ar_pro, arpinfo->arpro, arpinfo->arpro_mask);
return 0;
}
if (FWINV((arphdr->ar_hln & arpinfo->arhln_mask) != arpinfo->arhln,
ARPT_INV_ARPHLN)) {
dprintf("ARP hardware address length mismatch.\n");
dprintf("ar_hln: %02x info->arhln: %02x info->arhln_mask: %02x\n",
arphdr->ar_hln, arpinfo->arhln, arpinfo->arhln_mask);
return 0;
}
src_devaddr = arpptr;
arpptr += dev->addr_len;
memcpy(&src_ipaddr, arpptr, sizeof(u32));
arpptr += sizeof(u32);
tgt_devaddr = arpptr;
arpptr += dev->addr_len;
memcpy(&tgt_ipaddr, arpptr, sizeof(u32));
if (FWINV(arp_devaddr_compare(&arpinfo->src_devaddr, src_devaddr, dev->addr_len),
ARPT_INV_SRCDEVADDR) ||
FWINV(arp_devaddr_compare(&arpinfo->tgt_devaddr, tgt_devaddr, dev->addr_len),
ARPT_INV_TGTDEVADDR)) {
dprintf("Source or target device address mismatch.\n");
return 0;
}
if (FWINV((src_ipaddr & arpinfo->smsk.s_addr) != arpinfo->src.s_addr,
ARPT_INV_SRCIP) ||
FWINV(((tgt_ipaddr & arpinfo->tmsk.s_addr) != arpinfo->tgt.s_addr),
ARPT_INV_TGTIP)) {
dprintf("Source or target IP address mismatch.\n");
dprintf("SRC: %pI4. Mask: %pI4. Target: %pI4.%s\n",
&src_ipaddr,
&arpinfo->smsk.s_addr,
&arpinfo->src.s_addr,
arpinfo->invflags & ARPT_INV_SRCIP ? " (INV)" : "");
dprintf("TGT: %pI4 Mask: %pI4 Target: %pI4.%s\n",
&tgt_ipaddr,
&arpinfo->tmsk.s_addr,
&arpinfo->tgt.s_addr,
arpinfo->invflags & ARPT_INV_TGTIP ? " (INV)" : "");
return 0;
}
/* Look for ifname matches. */
ret = ifname_compare(indev, arpinfo->iniface, arpinfo->iniface_mask);
if (FWINV(ret != 0, ARPT_INV_VIA_IN)) {
dprintf("VIA in mismatch (%s vs %s).%s\n",
indev, arpinfo->iniface,
arpinfo->invflags&ARPT_INV_VIA_IN ?" (INV)":"");
return 0;
}
ret = ifname_compare(outdev, arpinfo->outiface, arpinfo->outiface_mask);
if (FWINV(ret != 0, ARPT_INV_VIA_OUT)) {
dprintf("VIA out mismatch (%s vs %s).%s\n",
outdev, arpinfo->outiface,
arpinfo->invflags&ARPT_INV_VIA_OUT ?" (INV)":"");
return 0;
}
return 1;
#undef FWINV
}
static inline int arp_checkentry(const struct arpt_arp *arp)
{
if (arp->flags & ~ARPT_F_MASK) {
duprintf("Unknown flag bits set: %08X\n",
arp->flags & ~ARPT_F_MASK);
return 0;
}
if (arp->invflags & ~ARPT_INV_MASK) {
duprintf("Unknown invflag bits set: %08X\n",
arp->invflags & ~ARPT_INV_MASK);
return 0;
}
return 1;
}
static unsigned int
arpt_error(struct sk_buff *skb, const struct xt_action_param *par)
{
if (net_ratelimit())
pr_err("arp_tables: error: '%s'\n",
(const char *)par->targinfo);
return NF_DROP;
}
static inline const struct xt_entry_target *
arpt_get_target_c(const struct arpt_entry *e)
{
return arpt_get_target((struct arpt_entry *)e);
}
static inline struct arpt_entry *
get_entry(const void *base, unsigned int offset)
{
return (struct arpt_entry *)(base + offset);
}
static inline __pure
struct arpt_entry *arpt_next_entry(const struct arpt_entry *entry)
{
return (void *)entry + entry->next_offset;
}
unsigned int arpt_do_table(struct sk_buff *skb,
unsigned int hook,
const struct net_device *in,
const struct net_device *out,
struct xt_table *table)
{
static const char nulldevname[IFNAMSIZ] __attribute__((aligned(sizeof(long))));
unsigned int verdict = NF_DROP;
const struct arphdr *arp;
struct arpt_entry *e, *back;
const char *indev, *outdev;
void *table_base;
const struct xt_table_info *private;
struct xt_action_param acpar;
unsigned int addend;
if (!pskb_may_pull(skb, arp_hdr_len(skb->dev)))
return NF_DROP;
indev = in ? in->name : nulldevname;
outdev = out ? out->name : nulldevname;
local_bh_disable();
addend = xt_write_recseq_begin();
private = table->private;
table_base = private->entries[smp_processor_id()];
e = get_entry(table_base, private->hook_entry[hook]);
back = get_entry(table_base, private->underflow[hook]);
acpar.in = in;
acpar.out = out;
acpar.hooknum = hook;
acpar.family = NFPROTO_ARP;
acpar.hotdrop = false;
arp = arp_hdr(skb);
do {
const struct xt_entry_target *t;
if (!arp_packet_match(arp, skb->dev, indev, outdev, &e->arp)) {
e = arpt_next_entry(e);
continue;
}
ADD_COUNTER(e->counters, arp_hdr_len(skb->dev), 1);
t = arpt_get_target_c(e);
/* Standard target? */
if (!t->u.kernel.target->target) {
int v;
v = ((struct xt_standard_target *)t)->verdict;
if (v < 0) {
/* Pop from stack? */
if (v != XT_RETURN) {
verdict = (unsigned int)(-v) - 1;
break;
}
e = back;
back = get_entry(table_base, back->comefrom);
continue;
}
if (table_base + v
!= arpt_next_entry(e)) {
/* Save old back ptr in next entry */
struct arpt_entry *next = arpt_next_entry(e);
next->comefrom = (void *)back - table_base;
/* set back pointer to next entry */
back = next;
}
e = get_entry(table_base, v);
continue;
}
/* Targets which reenter must return
* abs. verdicts
*/
acpar.target = t->u.kernel.target;
acpar.targinfo = t->data;
verdict = t->u.kernel.target->target(skb, &acpar);
/* Target might have changed stuff. */
arp = arp_hdr(skb);
if (verdict == XT_CONTINUE)
e = arpt_next_entry(e);
else
/* Verdict */
break;
} while (!acpar.hotdrop);
xt_write_recseq_end(addend);
local_bh_enable();
if (acpar.hotdrop)
return NF_DROP;
else
return verdict;
}
/* All zeroes == unconditional rule. */
static inline bool unconditional(const struct arpt_arp *arp)
{
static const struct arpt_arp uncond;
return memcmp(arp, &uncond, sizeof(uncond)) == 0;
}
/* Figures out from what hook each rule can be called: returns 0 if
* there are loops. Puts hook bitmask in comefrom.
*/
static int mark_source_chains(const struct xt_table_info *newinfo,
unsigned int valid_hooks, void *entry0)
{
unsigned int hook;
/* No recursion; use packet counter to save back ptrs (reset
* to 0 as we leave), and comefrom to save source hook bitmask.
*/
for (hook = 0; hook < NF_ARP_NUMHOOKS; hook++) {
unsigned int pos = newinfo->hook_entry[hook];
struct arpt_entry *e
= (struct arpt_entry *)(entry0 + pos);
if (!(valid_hooks & (1 << hook)))
continue;
/* Set initial back pointer. */
e->counters.pcnt = pos;
for (;;) {
const struct xt_standard_target *t
= (void *)arpt_get_target_c(e);
int visited = e->comefrom & (1 << hook);
if (e->comefrom & (1 << NF_ARP_NUMHOOKS)) {
pr_notice("arptables: loop hook %u pos %u %08X.\n",
hook, pos, e->comefrom);
return 0;
}
e->comefrom
|= ((1 << hook) | (1 << NF_ARP_NUMHOOKS));
/* Unconditional return/END. */
if ((e->target_offset == sizeof(struct arpt_entry) &&
(strcmp(t->target.u.user.name,
XT_STANDARD_TARGET) == 0) &&
t->verdict < 0 && unconditional(&e->arp)) ||
visited) {
unsigned int oldpos, size;
if ((strcmp(t->target.u.user.name,
XT_STANDARD_TARGET) == 0) &&
t->verdict < -NF_MAX_VERDICT - 1) {
duprintf("mark_source_chains: bad "
"negative verdict (%i)\n",
t->verdict);
return 0;
}
/* Return: backtrack through the last
* big jump.
*/
do {
e->comefrom ^= (1<<NF_ARP_NUMHOOKS);
oldpos = pos;
pos = e->counters.pcnt;
e->counters.pcnt = 0;
/* We're at the start. */
if (pos == oldpos)
goto next;
e = (struct arpt_entry *)
(entry0 + pos);
} while (oldpos == pos + e->next_offset);
/* Move along one */
size = e->next_offset;
e = (struct arpt_entry *)
(entry0 + pos + size);
e->counters.pcnt = pos;
pos += size;
} else {
int newpos = t->verdict;
if (strcmp(t->target.u.user.name,
XT_STANDARD_TARGET) == 0 &&
newpos >= 0) {
if (newpos > newinfo->size -
sizeof(struct arpt_entry)) {
duprintf("mark_source_chains: "
"bad verdict (%i)\n",
newpos);
return 0;
}
/* This a jump; chase it. */
duprintf("Jump rule %u -> %u\n",
pos, newpos);
} else {
/* ... this is a fallthru */
newpos = pos + e->next_offset;
}
e = (struct arpt_entry *)
(entry0 + newpos);
e->counters.pcnt = pos;
pos = newpos;
}
}
next:
duprintf("Finished chain %u\n", hook);
}
return 1;
}
static inline int check_entry(const struct arpt_entry *e, const char *name)
{
const struct xt_entry_target *t;
if (!arp_checkentry(&e->arp)) {
duprintf("arp_tables: arp check failed %p %s.\n", e, name);
return -EINVAL;
}
if (e->target_offset + sizeof(struct xt_entry_target) > e->next_offset)
return -EINVAL;
t = arpt_get_target_c(e);
if (e->target_offset + t->u.target_size > e->next_offset)
return -EINVAL;
return 0;
}
static inline int check_target(struct arpt_entry *e, const char *name)
{
struct xt_entry_target *t = arpt_get_target(e);
int ret;
struct xt_tgchk_param par = {
.table = name,
.entryinfo = e,
.target = t->u.kernel.target,
.targinfo = t->data,
.hook_mask = e->comefrom,
.family = NFPROTO_ARP,
};
ret = xt_check_target(&par, t->u.target_size - sizeof(*t), 0, false);
if (ret < 0) {
duprintf("arp_tables: check failed for `%s'.\n",
t->u.kernel.target->name);
return ret;
}
return 0;
}
static inline int
find_check_entry(struct arpt_entry *e, const char *name, unsigned int size)
{
struct xt_entry_target *t;
struct xt_target *target;
int ret;
ret = check_entry(e, name);
if (ret)
return ret;
t = arpt_get_target(e);
target = xt_request_find_target(NFPROTO_ARP, t->u.user.name,
t->u.user.revision);
if (IS_ERR(target)) {
duprintf("find_check_entry: `%s' not found\n", t->u.user.name);
ret = PTR_ERR(target);
goto out;
}
t->u.kernel.target = target;
ret = check_target(e, name);
if (ret)
goto err;
return 0;
err:
module_put(t->u.kernel.target->me);
out:
return ret;
}
static bool check_underflow(const struct arpt_entry *e)
{
const struct xt_entry_target *t;
unsigned int verdict;
if (!unconditional(&e->arp))
return false;
t = arpt_get_target_c(e);
if (strcmp(t->u.user.name, XT_STANDARD_TARGET) != 0)
return false;
verdict = ((struct xt_standard_target *)t)->verdict;
verdict = -verdict - 1;
return verdict == NF_DROP || verdict == NF_ACCEPT;
}
static inline int check_entry_size_and_hooks(struct arpt_entry *e,
struct xt_table_info *newinfo,
const unsigned char *base,
const unsigned char *limit,
const unsigned int *hook_entries,
const unsigned int *underflows,
unsigned int valid_hooks)
{
unsigned int h;
if ((unsigned long)e % __alignof__(struct arpt_entry) != 0 ||
(unsigned char *)e + sizeof(struct arpt_entry) >= limit) {
duprintf("Bad offset %p\n", e);
return -EINVAL;
}
if (e->next_offset
< sizeof(struct arpt_entry) + sizeof(struct xt_entry_target)) {
duprintf("checking: element %p size %u\n",
e, e->next_offset);
return -EINVAL;
}
/* Check hooks & underflows */
for (h = 0; h < NF_ARP_NUMHOOKS; h++) {
if (!(valid_hooks & (1 << h)))
continue;
if ((unsigned char *)e - base == hook_entries[h])
newinfo->hook_entry[h] = hook_entries[h];
if ((unsigned char *)e - base == underflows[h]) {
if (!check_underflow(e)) {
pr_err("Underflows must be unconditional and "
"use the STANDARD target with "
"ACCEPT/DROP\n");
return -EINVAL;
}
newinfo->underflow[h] = underflows[h];
}
}
/* Clear counters and comefrom */
e->counters = ((struct xt_counters) { 0, 0 });
e->comefrom = 0;
return 0;
}
static inline void cleanup_entry(struct arpt_entry *e)
{
struct xt_tgdtor_param par;
struct xt_entry_target *t;
t = arpt_get_target(e);
par.target = t->u.kernel.target;
par.targinfo = t->data;
par.family = NFPROTO_ARP;
if (par.target->destroy != NULL)
par.target->destroy(&par);
module_put(par.target->me);
}
/* Checks and translates the user-supplied table segment (held in
* newinfo).
*/
static int translate_table(struct xt_table_info *newinfo, void *entry0,
const struct arpt_replace *repl)
{
struct arpt_entry *iter;
unsigned int i;
int ret = 0;
newinfo->size = repl->size;
newinfo->number = repl->num_entries;
/* Init all hooks to impossible value. */
for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
newinfo->hook_entry[i] = 0xFFFFFFFF;
newinfo->underflow[i] = 0xFFFFFFFF;
}
duprintf("translate_table: size %u\n", newinfo->size);
i = 0;
/* Walk through entries, checking offsets. */
xt_entry_foreach(iter, entry0, newinfo->size) {
ret = check_entry_size_and_hooks(iter, newinfo, entry0,
entry0 + repl->size,
repl->hook_entry,
repl->underflow,
repl->valid_hooks);
if (ret != 0)
break;
++i;
if (strcmp(arpt_get_target(iter)->u.user.name,
XT_ERROR_TARGET) == 0)
++newinfo->stacksize;
}
duprintf("translate_table: ARPT_ENTRY_ITERATE gives %d\n", ret);
if (ret != 0)
return ret;
if (i != repl->num_entries) {
duprintf("translate_table: %u not %u entries\n",
i, repl->num_entries);
return -EINVAL;
}
/* Check hooks all assigned */
for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
/* Only hooks which are valid */
if (!(repl->valid_hooks & (1 << i)))
continue;
if (newinfo->hook_entry[i] == 0xFFFFFFFF) {
duprintf("Invalid hook entry %u %u\n",
i, repl->hook_entry[i]);
return -EINVAL;
}
if (newinfo->underflow[i] == 0xFFFFFFFF) {
duprintf("Invalid underflow %u %u\n",
i, repl->underflow[i]);
return -EINVAL;
}
}
if (!mark_source_chains(newinfo, repl->valid_hooks, entry0)) {
duprintf("Looping hook\n");
return -ELOOP;
}
/* Finally, each sanity check must pass */
i = 0;
xt_entry_foreach(iter, entry0, newinfo->size) {
ret = find_check_entry(iter, repl->name, repl->size);
if (ret != 0)
break;
++i;
}
if (ret != 0) {
xt_entry_foreach(iter, entry0, newinfo->size) {
if (i-- == 0)
break;
cleanup_entry(iter);
}
return ret;
}
/* And one copy for every other CPU */
for_each_possible_cpu(i) {
if (newinfo->entries[i] && newinfo->entries[i] != entry0)
memcpy(newinfo->entries[i], entry0, newinfo->size);
}
return ret;
}
static void get_counters(const struct xt_table_info *t,
struct xt_counters counters[])
{
struct arpt_entry *iter;
unsigned int cpu;
unsigned int i;
for_each_possible_cpu(cpu) {
seqcount_t *s = &per_cpu(xt_recseq, cpu);
i = 0;
xt_entry_foreach(iter, t->entries[cpu], t->size) {
u64 bcnt, pcnt;
unsigned int start;
do {
start = read_seqcount_begin(s);
bcnt = iter->counters.bcnt;
pcnt = iter->counters.pcnt;
} while (read_seqcount_retry(s, start));
ADD_COUNTER(counters[i], bcnt, pcnt);
++i;
}
}
}
static struct xt_counters *alloc_counters(const struct xt_table *table)
{
unsigned int countersize;
struct xt_counters *counters;
const struct xt_table_info *private = table->private;
/* We need atomic snapshot of counters: rest doesn't change
* (other than comefrom, which userspace doesn't care
* about).
*/
countersize = sizeof(struct xt_counters) * private->number;
counters = vzalloc(countersize);
if (counters == NULL)
return ERR_PTR(-ENOMEM);
get_counters(private, counters);
return counters;
}
static int copy_entries_to_user(unsigned int total_size,
const struct xt_table *table,
void __user *userptr)
{
unsigned int off, num;
const struct arpt_entry *e;
struct xt_counters *counters;
struct xt_table_info *private = table->private;
int ret = 0;
void *loc_cpu_entry;
counters = alloc_counters(table);
if (IS_ERR(counters))
return PTR_ERR(counters);
loc_cpu_entry = private->entries[raw_smp_processor_id()];
/* ... then copy entire thing ... */
if (copy_to_user(userptr, loc_cpu_entry, total_size) != 0) {
ret = -EFAULT;
goto free_counters;
}
/* FIXME: use iterator macros --RR */
/* ... then go back and fix counters and names */
for (off = 0, num = 0; off < total_size; off += e->next_offset, num++){
const struct xt_entry_target *t;
e = (struct arpt_entry *)(loc_cpu_entry + off);
if (copy_to_user(userptr + off
+ offsetof(struct arpt_entry, counters),
&counters[num],
sizeof(counters[num])) != 0) {
ret = -EFAULT;
goto free_counters;
}
t = arpt_get_target_c(e);
if (copy_to_user(userptr + off + e->target_offset
+ offsetof(struct xt_entry_target,
u.user.name),
t->u.kernel.target->name,
strlen(t->u.kernel.target->name)+1) != 0) {
ret = -EFAULT;
goto free_counters;
}
}
free_counters:
vfree(counters);
return ret;
}
#ifdef CONFIG_COMPAT
static void compat_standard_from_user(void *dst, const void *src)
{
int v = *(compat_int_t *)src;
if (v > 0)
v += xt_compat_calc_jump(NFPROTO_ARP, v);
memcpy(dst, &v, sizeof(v));
}
static int compat_standard_to_user(void __user *dst, const void *src)
{
compat_int_t cv = *(int *)src;
if (cv > 0)
cv -= xt_compat_calc_jump(NFPROTO_ARP, cv);
return copy_to_user(dst, &cv, sizeof(cv)) ? -EFAULT : 0;
}
static int compat_calc_entry(const struct arpt_entry *e,
const struct xt_table_info *info,
const void *base, struct xt_table_info *newinfo)
{
const struct xt_entry_target *t;
unsigned int entry_offset;
int off, i, ret;
off = sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);
entry_offset = (void *)e - base;
t = arpt_get_target_c(e);
off += xt_compat_target_offset(t->u.kernel.target);
newinfo->size -= off;
ret = xt_compat_add_offset(NFPROTO_ARP, entry_offset, off);
if (ret)
return ret;
for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
if (info->hook_entry[i] &&
(e < (struct arpt_entry *)(base + info->hook_entry[i])))
newinfo->hook_entry[i] -= off;
if (info->underflow[i] &&
(e < (struct arpt_entry *)(base + info->underflow[i])))
newinfo->underflow[i] -= off;
}
return 0;
}
static int compat_table_info(const struct xt_table_info *info,
struct xt_table_info *newinfo)
{
struct arpt_entry *iter;
void *loc_cpu_entry;
int ret;
if (!newinfo || !info)
return -EINVAL;
/* we dont care about newinfo->entries[] */
memcpy(newinfo, info, offsetof(struct xt_table_info, entries));
newinfo->initial_entries = 0;
loc_cpu_entry = info->entries[raw_smp_processor_id()];
xt_compat_init_offsets(NFPROTO_ARP, info->number);
xt_entry_foreach(iter, loc_cpu_entry, info->size) {
ret = compat_calc_entry(iter, info, loc_cpu_entry, newinfo);
if (ret != 0)
return ret;
}
return 0;
}
#endif
static int get_info(struct net *net, void __user *user,
const int *len, int compat)
{
char name[XT_TABLE_MAXNAMELEN];
struct xt_table *t;
int ret;
if (*len != sizeof(struct arpt_getinfo)) {
duprintf("length %u != %Zu\n", *len,
sizeof(struct arpt_getinfo));
return -EINVAL;
}
if (copy_from_user(name, user, sizeof(name)) != 0)
return -EFAULT;
name[XT_TABLE_MAXNAMELEN-1] = '\0';
#ifdef CONFIG_COMPAT
if (compat)
xt_compat_lock(NFPROTO_ARP);
#endif
t = try_then_request_module(xt_find_table_lock(net, NFPROTO_ARP, name),
"arptable_%s", name);
if (t && !IS_ERR(t)) {
struct arpt_getinfo info;
const struct xt_table_info *private = t->private;
#ifdef CONFIG_COMPAT
struct xt_table_info tmp;
if (compat) {
ret = compat_table_info(private, &tmp);
xt_compat_flush_offsets(NFPROTO_ARP);
private = &tmp;
}
#endif
memset(&info, 0, sizeof(info));
info.valid_hooks = t->valid_hooks;
memcpy(info.hook_entry, private->hook_entry,
sizeof(info.hook_entry));
memcpy(info.underflow, private->underflow,
sizeof(info.underflow));
info.num_entries = private->number;
info.size = private->size;
strcpy(info.name, name);
if (copy_to_user(user, &info, *len) != 0)
ret = -EFAULT;
else
ret = 0;
xt_table_unlock(t);
module_put(t->me);
} else
ret = t ? PTR_ERR(t) : -ENOENT;
#ifdef CONFIG_COMPAT
if (compat)
xt_compat_unlock(NFPROTO_ARP);
#endif
return ret;
}
static int get_entries(struct net *net, struct arpt_get_entries __user *uptr,
const int *len)
{
int ret;
struct arpt_get_entries get;
struct xt_table *t;
if (*len < sizeof(get)) {
duprintf("get_entries: %u < %Zu\n", *len, sizeof(get));
return -EINVAL;
}
if (copy_from_user(&get, uptr, sizeof(get)) != 0)
return -EFAULT;
if (*len != sizeof(struct arpt_get_entries) + get.size) {
duprintf("get_entries: %u != %Zu\n", *len,
sizeof(struct arpt_get_entries) + get.size);
return -EINVAL;
}
t = xt_find_table_lock(net, NFPROTO_ARP, get.name);
if (t && !IS_ERR(t)) {
const struct xt_table_info *private = t->private;
duprintf("t->private->number = %u\n",
private->number);
if (get.size == private->size)
ret = copy_entries_to_user(private->size,
t, uptr->entrytable);
else {
duprintf("get_entries: I've got %u not %u!\n",
private->size, get.size);
ret = -EAGAIN;
}
module_put(t->me);
xt_table_unlock(t);
} else
ret = t ? PTR_ERR(t) : -ENOENT;
return ret;
}
static int __do_replace(struct net *net, const char *name,
unsigned int valid_hooks,
struct xt_table_info *newinfo,
unsigned int num_counters,
void __user *counters_ptr)
{
int ret;
struct xt_table *t;
struct xt_table_info *oldinfo;
struct xt_counters *counters;
void *loc_cpu_old_entry;
struct arpt_entry *iter;
ret = 0;
counters = vzalloc(num_counters * sizeof(struct xt_counters));
if (!counters) {
ret = -ENOMEM;
goto out;
}
t = try_then_request_module(xt_find_table_lock(net, NFPROTO_ARP, name),
"arptable_%s", name);
if (!t || IS_ERR(t)) {
ret = t ? PTR_ERR(t) : -ENOENT;
goto free_newinfo_counters_untrans;
}
/* You lied! */
if (valid_hooks != t->valid_hooks) {
duprintf("Valid hook crap: %08X vs %08X\n",
valid_hooks, t->valid_hooks);
ret = -EINVAL;
goto put_module;
}
oldinfo = xt_replace_table(t, num_counters, newinfo, &ret);
if (!oldinfo)
goto put_module;
/* Update module usage count based on number of rules */
duprintf("do_replace: oldnum=%u, initnum=%u, newnum=%u\n",
oldinfo->number, oldinfo->initial_entries, newinfo->number);
if ((oldinfo->number > oldinfo->initial_entries) ||
(newinfo->number <= oldinfo->initial_entries))
module_put(t->me);
if ((oldinfo->number > oldinfo->initial_entries) &&
(newinfo->number <= oldinfo->initial_entries))
module_put(t->me);
/* Get the old counters, and synchronize with replace */
get_counters(oldinfo, counters);
/* Decrease module usage counts and free resource */
loc_cpu_old_entry = oldinfo->entries[raw_smp_processor_id()];
xt_entry_foreach(iter, loc_cpu_old_entry, oldinfo->size)
cleanup_entry(iter);
xt_free_table_info(oldinfo);
if (copy_to_user(counters_ptr, counters,
sizeof(struct xt_counters) * num_counters) != 0)
ret = -EFAULT;
vfree(counters);
xt_table_unlock(t);
return ret;
put_module:
module_put(t->me);
xt_table_unlock(t);
free_newinfo_counters_untrans:
vfree(counters);
out:
return ret;
}
static int do_replace(struct net *net, const void __user *user,
unsigned int len)
{
int ret;
struct arpt_replace tmp;
struct xt_table_info *newinfo;
void *loc_cpu_entry;
struct arpt_entry *iter;
if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
return -EFAULT;
/* overflow check */
if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters))
return -ENOMEM;
tmp.name[sizeof(tmp.name)-1] = 0;
newinfo = xt_alloc_table_info(tmp.size);
if (!newinfo)
return -ENOMEM;
/* choose the copy that is on our node/cpu */
loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
if (copy_from_user(loc_cpu_entry, user + sizeof(tmp),
tmp.size) != 0) {
ret = -EFAULT;
goto free_newinfo;
}
ret = translate_table(newinfo, loc_cpu_entry, &tmp);
if (ret != 0)
goto free_newinfo;
duprintf("arp_tables: Translated table\n");
ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo,
tmp.num_counters, tmp.counters);
if (ret)
goto free_newinfo_untrans;
return 0;
free_newinfo_untrans:
xt_entry_foreach(iter, loc_cpu_entry, newinfo->size)
cleanup_entry(iter);
free_newinfo:
xt_free_table_info(newinfo);
return ret;
}
static int do_add_counters(struct net *net, const void __user *user,
unsigned int len, int compat)
{
unsigned int i, curcpu;
struct xt_counters_info tmp;
struct xt_counters *paddc;
unsigned int num_counters;
const char *name;
int size;
void *ptmp;
struct xt_table *t;
const struct xt_table_info *private;
int ret = 0;
void *loc_cpu_entry;
struct arpt_entry *iter;
unsigned int addend;
#ifdef CONFIG_COMPAT
struct compat_xt_counters_info compat_tmp;
if (compat) {
ptmp = &compat_tmp;
size = sizeof(struct compat_xt_counters_info);
} else
#endif
{
ptmp = &tmp;
size = sizeof(struct xt_counters_info);
}
if (copy_from_user(ptmp, user, size) != 0)
return -EFAULT;
#ifdef CONFIG_COMPAT
if (compat) {
num_counters = compat_tmp.num_counters;
name = compat_tmp.name;
} else
#endif
{
num_counters = tmp.num_counters;
name = tmp.name;
}
if (len != size + num_counters * sizeof(struct xt_counters))
return -EINVAL;
paddc = vmalloc(len - size);
if (!paddc)
return -ENOMEM;
if (copy_from_user(paddc, user + size, len - size) != 0) {
ret = -EFAULT;
goto free;
}
t = xt_find_table_lock(net, NFPROTO_ARP, name);
if (!t || IS_ERR(t)) {
ret = t ? PTR_ERR(t) : -ENOENT;
goto free;
}
local_bh_disable();
private = t->private;
if (private->number != num_counters) {
ret = -EINVAL;
goto unlock_up_free;
}
i = 0;
/* Choose the copy that is on our node */
curcpu = smp_processor_id();
loc_cpu_entry = private->entries[curcpu];
addend = xt_write_recseq_begin();
xt_entry_foreach(iter, loc_cpu_entry, private->size) {
ADD_COUNTER(iter->counters, paddc[i].bcnt, paddc[i].pcnt);
++i;
}
xt_write_recseq_end(addend);
unlock_up_free:
local_bh_enable();
xt_table_unlock(t);
module_put(t->me);
free:
vfree(paddc);
return ret;
}
#ifdef CONFIG_COMPAT
static inline void compat_release_entry(struct compat_arpt_entry *e)
{
struct xt_entry_target *t;
t = compat_arpt_get_target(e);
module_put(t->u.kernel.target->me);
}
static inline int
check_compat_entry_size_and_hooks(struct compat_arpt_entry *e,
struct xt_table_info *newinfo,
unsigned int *size,
const unsigned char *base,
const unsigned char *limit,
const unsigned int *hook_entries,
const unsigned int *underflows,
const char *name)
{
struct xt_entry_target *t;
struct xt_target *target;
unsigned int entry_offset;
int ret, off, h;
duprintf("check_compat_entry_size_and_hooks %p\n", e);
if ((unsigned long)e % __alignof__(struct compat_arpt_entry) != 0 ||
(unsigned char *)e + sizeof(struct compat_arpt_entry) >= limit) {
duprintf("Bad offset %p, limit = %p\n", e, limit);
return -EINVAL;
}
if (e->next_offset < sizeof(struct compat_arpt_entry) +
sizeof(struct compat_xt_entry_target)) {
duprintf("checking: element %p size %u\n",
e, e->next_offset);
return -EINVAL;
}
/* For purposes of check_entry casting the compat entry is fine */
ret = check_entry((struct arpt_entry *)e, name);
if (ret)
return ret;
off = sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);
entry_offset = (void *)e - (void *)base;
t = compat_arpt_get_target(e);
target = xt_request_find_target(NFPROTO_ARP, t->u.user.name,
t->u.user.revision);
if (IS_ERR(target)) {
duprintf("check_compat_entry_size_and_hooks: `%s' not found\n",
t->u.user.name);
ret = PTR_ERR(target);
goto out;
}
t->u.kernel.target = target;
off += xt_compat_target_offset(target);
*size += off;
ret = xt_compat_add_offset(NFPROTO_ARP, entry_offset, off);
if (ret)
goto release_target;
/* Check hooks & underflows */
for (h = 0; h < NF_ARP_NUMHOOKS; h++) {
if ((unsigned char *)e - base == hook_entries[h])
newinfo->hook_entry[h] = hook_entries[h];
if ((unsigned char *)e - base == underflows[h])
newinfo->underflow[h] = underflows[h];
}
/* Clear counters and comefrom */
memset(&e->counters, 0, sizeof(e->counters));
e->comefrom = 0;
return 0;
release_target:
module_put(t->u.kernel.target->me);
out:
return ret;
}
static int
compat_copy_entry_from_user(struct compat_arpt_entry *e, void **dstptr,
unsigned int *size, const char *name,
struct xt_table_info *newinfo, unsigned char *base)
{
struct xt_entry_target *t;
struct xt_target *target;
struct arpt_entry *de;
unsigned int origsize;
int ret, h;
ret = 0;
origsize = *size;
de = (struct arpt_entry *)*dstptr;
memcpy(de, e, sizeof(struct arpt_entry));
memcpy(&de->counters, &e->counters, sizeof(e->counters));
*dstptr += sizeof(struct arpt_entry);
*size += sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);
de->target_offset = e->target_offset - (origsize - *size);
t = compat_arpt_get_target(e);
target = t->u.kernel.target;
xt_compat_target_from_user(t, dstptr, size);
de->next_offset = e->next_offset - (origsize - *size);
for (h = 0; h < NF_ARP_NUMHOOKS; h++) {
if ((unsigned char *)de - base < newinfo->hook_entry[h])
newinfo->hook_entry[h] -= origsize - *size;
if ((unsigned char *)de - base < newinfo->underflow[h])
newinfo->underflow[h] -= origsize - *size;
}
return ret;
}
static int translate_compat_table(const char *name,
unsigned int valid_hooks,
struct xt_table_info **pinfo,
void **pentry0,
unsigned int total_size,
unsigned int number,
unsigned int *hook_entries,
unsigned int *underflows)
{
unsigned int i, j;
struct xt_table_info *newinfo, *info;
void *pos, *entry0, *entry1;
struct compat_arpt_entry *iter0;
struct arpt_entry *iter1;
unsigned int size;
int ret = 0;
info = *pinfo;
entry0 = *pentry0;
size = total_size;
info->number = number;
/* Init all hooks to impossible value. */
for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
info->hook_entry[i] = 0xFFFFFFFF;
info->underflow[i] = 0xFFFFFFFF;
}
duprintf("translate_compat_table: size %u\n", info->size);
j = 0;
xt_compat_lock(NFPROTO_ARP);
xt_compat_init_offsets(NFPROTO_ARP, number);
/* Walk through entries, checking offsets. */
xt_entry_foreach(iter0, entry0, total_size) {
ret = check_compat_entry_size_and_hooks(iter0, info, &size,
entry0,
entry0 + total_size,
hook_entries,
underflows,
name);
if (ret != 0)
goto out_unlock;
++j;
}
ret = -EINVAL;
if (j != number) {
duprintf("translate_compat_table: %u not %u entries\n",
j, number);
goto out_unlock;
}
/* Check hooks all assigned */
for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
/* Only hooks which are valid */
if (!(valid_hooks & (1 << i)))
continue;
if (info->hook_entry[i] == 0xFFFFFFFF) {
duprintf("Invalid hook entry %u %u\n",
i, hook_entries[i]);
goto out_unlock;
}
if (info->underflow[i] == 0xFFFFFFFF) {
duprintf("Invalid underflow %u %u\n",
i, underflows[i]);
goto out_unlock;
}
}
ret = -ENOMEM;
newinfo = xt_alloc_table_info(size);
if (!newinfo)
goto out_unlock;
newinfo->number = number;
for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
newinfo->hook_entry[i] = info->hook_entry[i];
newinfo->underflow[i] = info->underflow[i];
}
entry1 = newinfo->entries[raw_smp_processor_id()];
pos = entry1;
size = total_size;
xt_entry_foreach(iter0, entry0, total_size) {
ret = compat_copy_entry_from_user(iter0, &pos, &size,
name, newinfo, entry1);
if (ret != 0)
break;
}
xt_compat_flush_offsets(NFPROTO_ARP);
xt_compat_unlock(NFPROTO_ARP);
if (ret)
goto free_newinfo;
ret = -ELOOP;
if (!mark_source_chains(newinfo, valid_hooks, entry1))
goto free_newinfo;
i = 0;
xt_entry_foreach(iter1, entry1, newinfo->size) {
ret = check_target(iter1, name);
if (ret != 0)
break;
++i;
if (strcmp(arpt_get_target(iter1)->u.user.name,
XT_ERROR_TARGET) == 0)
++newinfo->stacksize;
}
if (ret) {
/*
* The first i matches need cleanup_entry (calls ->destroy)
* because they had called ->check already. The other j-i
* entries need only release.
*/
int skip = i;
j -= i;
xt_entry_foreach(iter0, entry0, newinfo->size) {
if (skip-- > 0)
continue;
if (j-- == 0)
break;
compat_release_entry(iter0);
}
xt_entry_foreach(iter1, entry1, newinfo->size) {
if (i-- == 0)
break;
cleanup_entry(iter1);
}
xt_free_table_info(newinfo);
return ret;
}
/* And one copy for every other CPU */
for_each_possible_cpu(i)
if (newinfo->entries[i] && newinfo->entries[i] != entry1)
memcpy(newinfo->entries[i], entry1, newinfo->size);
*pinfo = newinfo;
*pentry0 = entry1;
xt_free_table_info(info);
return 0;
free_newinfo:
xt_free_table_info(newinfo);
out:
xt_entry_foreach(iter0, entry0, total_size) {
if (j-- == 0)
break;
compat_release_entry(iter0);
}
return ret;
out_unlock:
xt_compat_flush_offsets(NFPROTO_ARP);
xt_compat_unlock(NFPROTO_ARP);
goto out;
}
struct compat_arpt_replace {
char name[XT_TABLE_MAXNAMELEN];
u32 valid_hooks;
u32 num_entries;
u32 size;
u32 hook_entry[NF_ARP_NUMHOOKS];
u32 underflow[NF_ARP_NUMHOOKS];
u32 num_counters;
compat_uptr_t counters;
struct compat_arpt_entry entries[0];
};
static int compat_do_replace(struct net *net, void __user *user,
unsigned int len)
{
int ret;
struct compat_arpt_replace tmp;
struct xt_table_info *newinfo;
void *loc_cpu_entry;
struct arpt_entry *iter;
if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
return -EFAULT;
/* overflow check */
if (tmp.size >= INT_MAX / num_possible_cpus())
return -ENOMEM;
if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters))
return -ENOMEM;
tmp.name[sizeof(tmp.name)-1] = 0;
newinfo = xt_alloc_table_info(tmp.size);
if (!newinfo)
return -ENOMEM;
/* choose the copy that is on our node/cpu */
loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
if (copy_from_user(loc_cpu_entry, user + sizeof(tmp), tmp.size) != 0) {
ret = -EFAULT;
goto free_newinfo;
}
ret = translate_compat_table(tmp.name, tmp.valid_hooks,
&newinfo, &loc_cpu_entry, tmp.size,
tmp.num_entries, tmp.hook_entry,
tmp.underflow);
if (ret != 0)
goto free_newinfo;
duprintf("compat_do_replace: Translated table\n");
ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo,
tmp.num_counters, compat_ptr(tmp.counters));
if (ret)
goto free_newinfo_untrans;
return 0;
free_newinfo_untrans:
xt_entry_foreach(iter, loc_cpu_entry, newinfo->size)
cleanup_entry(iter);
free_newinfo:
xt_free_table_info(newinfo);
return ret;
}
static int compat_do_arpt_set_ctl(struct sock *sk, int cmd, void __user *user,
unsigned int len)
{
int ret;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case ARPT_SO_SET_REPLACE:
ret = compat_do_replace(sock_net(sk), user, len);
break;
case ARPT_SO_SET_ADD_COUNTERS:
ret = do_add_counters(sock_net(sk), user, len, 1);
break;
default:
duprintf("do_arpt_set_ctl: unknown request %i\n", cmd);
ret = -EINVAL;
}
return ret;
}
static int compat_copy_entry_to_user(struct arpt_entry *e, void __user **dstptr,
compat_uint_t *size,
struct xt_counters *counters,
unsigned int i)
{
struct xt_entry_target *t;
struct compat_arpt_entry __user *ce;
u_int16_t target_offset, next_offset;
compat_uint_t origsize;
int ret;
origsize = *size;
ce = (struct compat_arpt_entry __user *)*dstptr;
if (copy_to_user(ce, e, sizeof(struct arpt_entry)) != 0 ||
copy_to_user(&ce->counters, &counters[i],
sizeof(counters[i])) != 0)
return -EFAULT;
*dstptr += sizeof(struct compat_arpt_entry);
*size -= sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);
target_offset = e->target_offset - (origsize - *size);
t = arpt_get_target(e);
ret = xt_compat_target_to_user(t, dstptr, size);
if (ret)
return ret;
next_offset = e->next_offset - (origsize - *size);
if (put_user(target_offset, &ce->target_offset) != 0 ||
put_user(next_offset, &ce->next_offset) != 0)
return -EFAULT;
return 0;
}
static int compat_copy_entries_to_user(unsigned int total_size,
struct xt_table *table,
void __user *userptr)
{
struct xt_counters *counters;
const struct xt_table_info *private = table->private;
void __user *pos;
unsigned int size;
int ret = 0;
void *loc_cpu_entry;
unsigned int i = 0;
struct arpt_entry *iter;
counters = alloc_counters(table);
if (IS_ERR(counters))
return PTR_ERR(counters);
/* choose the copy on our node/cpu */
loc_cpu_entry = private->entries[raw_smp_processor_id()];
pos = userptr;
size = total_size;
xt_entry_foreach(iter, loc_cpu_entry, total_size) {
ret = compat_copy_entry_to_user(iter, &pos,
&size, counters, i++);
if (ret != 0)
break;
}
vfree(counters);
return ret;
}
struct compat_arpt_get_entries {
char name[XT_TABLE_MAXNAMELEN];
compat_uint_t size;
struct compat_arpt_entry entrytable[0];
};
static int compat_get_entries(struct net *net,
struct compat_arpt_get_entries __user *uptr,
int *len)
{
int ret;
struct compat_arpt_get_entries get;
struct xt_table *t;
if (*len < sizeof(get)) {
duprintf("compat_get_entries: %u < %zu\n", *len, sizeof(get));
return -EINVAL;
}
if (copy_from_user(&get, uptr, sizeof(get)) != 0)
return -EFAULT;
if (*len != sizeof(struct compat_arpt_get_entries) + get.size) {
duprintf("compat_get_entries: %u != %zu\n",
*len, sizeof(get) + get.size);
return -EINVAL;
}
xt_compat_lock(NFPROTO_ARP);
t = xt_find_table_lock(net, NFPROTO_ARP, get.name);
if (t && !IS_ERR(t)) {
const struct xt_table_info *private = t->private;
struct xt_table_info info;
duprintf("t->private->number = %u\n", private->number);
ret = compat_table_info(private, &info);
if (!ret && get.size == info.size) {
ret = compat_copy_entries_to_user(private->size,
t, uptr->entrytable);
} else if (!ret) {
duprintf("compat_get_entries: I've got %u not %u!\n",
private->size, get.size);
ret = -EAGAIN;
}
xt_compat_flush_offsets(NFPROTO_ARP);
module_put(t->me);
xt_table_unlock(t);
} else
ret = t ? PTR_ERR(t) : -ENOENT;
xt_compat_unlock(NFPROTO_ARP);
return ret;
}
static int do_arpt_get_ctl(struct sock *, int, void __user *, int *);
static int compat_do_arpt_get_ctl(struct sock *sk, int cmd, void __user *user,
int *len)
{
int ret;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case ARPT_SO_GET_INFO:
ret = get_info(sock_net(sk), user, len, 1);
break;
case ARPT_SO_GET_ENTRIES:
ret = compat_get_entries(sock_net(sk), user, len);
break;
default:
ret = do_arpt_get_ctl(sk, cmd, user, len);
}
return ret;
}
#endif
static int do_arpt_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len)
{
int ret;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case ARPT_SO_SET_REPLACE:
ret = do_replace(sock_net(sk), user, len);
break;
case ARPT_SO_SET_ADD_COUNTERS:
ret = do_add_counters(sock_net(sk), user, len, 0);
break;
default:
duprintf("do_arpt_set_ctl: unknown request %i\n", cmd);
ret = -EINVAL;
}
return ret;
}
static int do_arpt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len)
{
int ret;
if (!capable(CAP_NET_ADMIN))
return -EPERM;
switch (cmd) {
case ARPT_SO_GET_INFO:
ret = get_info(sock_net(sk), user, len, 0);
break;
case ARPT_SO_GET_ENTRIES:
ret = get_entries(sock_net(sk), user, len);
break;
case ARPT_SO_GET_REVISION_TARGET: {
struct xt_get_revision rev;
if (*len != sizeof(rev)) {
ret = -EINVAL;
break;
}
if (copy_from_user(&rev, user, sizeof(rev)) != 0) {
ret = -EFAULT;
break;
}
rev.name[sizeof(rev.name)-1] = 0;
try_then_request_module(xt_find_revision(NFPROTO_ARP, rev.name,
rev.revision, 1, &ret),
"arpt_%s", rev.name);
break;
}
default:
duprintf("do_arpt_get_ctl: unknown request %i\n", cmd);
ret = -EINVAL;
}
return ret;
}
struct xt_table *arpt_register_table(struct net *net,
const struct xt_table *table,
const struct arpt_replace *repl)
{
int ret;
struct xt_table_info *newinfo;
struct xt_table_info bootstrap = {0};
void *loc_cpu_entry;
struct xt_table *new_table;
newinfo = xt_alloc_table_info(repl->size);
if (!newinfo) {
ret = -ENOMEM;
goto out;
}
/* choose the copy on our node/cpu */
loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
memcpy(loc_cpu_entry, repl->entries, repl->size);
ret = translate_table(newinfo, loc_cpu_entry, repl);
duprintf("arpt_register_table: translate table gives %d\n", ret);
if (ret != 0)
goto out_free;
new_table = xt_register_table(net, table, &bootstrap, newinfo);
if (IS_ERR(new_table)) {
ret = PTR_ERR(new_table);
goto out_free;
}
return new_table;
out_free:
xt_free_table_info(newinfo);
out:
return ERR_PTR(ret);
}
void arpt_unregister_table(struct xt_table *table)
{
struct xt_table_info *private;
void *loc_cpu_entry;
struct module *table_owner = table->me;
struct arpt_entry *iter;
private = xt_unregister_table(table);
/* Decrease module usage counts and free resources */
loc_cpu_entry = private->entries[raw_smp_processor_id()];
xt_entry_foreach(iter, loc_cpu_entry, private->size)
cleanup_entry(iter);
if (private->number > private->initial_entries)
module_put(table_owner);
xt_free_table_info(private);
}
/* The built-in targets: standard (NULL) and error. */
static struct xt_target arpt_builtin_tg[] __read_mostly = {
{
.name = XT_STANDARD_TARGET,
.targetsize = sizeof(int),
.family = NFPROTO_ARP,
#ifdef CONFIG_COMPAT
.compatsize = sizeof(compat_int_t),
.compat_from_user = compat_standard_from_user,
.compat_to_user = compat_standard_to_user,
#endif
},
{
.name = XT_ERROR_TARGET,
.target = arpt_error,
.targetsize = XT_FUNCTION_MAXNAMELEN,
.family = NFPROTO_ARP,
},
};
static struct nf_sockopt_ops arpt_sockopts = {
.pf = PF_INET,
.set_optmin = ARPT_BASE_CTL,
.set_optmax = ARPT_SO_SET_MAX+1,
.set = do_arpt_set_ctl,
#ifdef CONFIG_COMPAT
.compat_set = compat_do_arpt_set_ctl,
#endif
.get_optmin = ARPT_BASE_CTL,
.get_optmax = ARPT_SO_GET_MAX+1,
.get = do_arpt_get_ctl,
#ifdef CONFIG_COMPAT
.compat_get = compat_do_arpt_get_ctl,
#endif
[NETFILTER]: Fix/improve deadlock condition on module removal netfilter So I've had a deadlock reported to me. I've found that the sequence of events goes like this: 1) process A (modprobe) runs to remove ip_tables.ko 2) process B (iptables-restore) runs and calls setsockopt on a netfilter socket, increasing the ip_tables socket_ops use count 3) process A acquires a file lock on the file ip_tables.ko, calls remove_module in the kernel, which in turn executes the ip_tables module cleanup routine, which calls nf_unregister_sockopt 4) nf_unregister_sockopt, seeing that the use count is non-zero, puts the calling process into uninterruptible sleep, expecting the process using the socket option code to wake it up when it exits the kernel 4) the user of the socket option code (process B) in do_ipt_get_ctl, calls ipt_find_table_lock, which in this case calls request_module to load ip_tables_nat.ko 5) request_module forks a copy of modprobe (process C) to load the module and blocks until modprobe exits. 6) Process C. forked by request_module process the dependencies of ip_tables_nat.ko, of which ip_tables.ko is one. 7) Process C attempts to lock the request module and all its dependencies, it blocks when it attempts to lock ip_tables.ko (which was previously locked in step 3) Theres not really any great permanent solution to this that I can see, but I've developed a two part solution that corrects the problem Part 1) Modifies the nf_sockopt registration code so that, instead of using a use counter internal to the nf_sockopt_ops structure, we instead use a pointer to the registering modules owner to do module reference counting when nf_sockopt calls a modules set/get routine. This prevents the deadlock by preventing set 4 from happening. Part 2) Enhances the modprobe utilty so that by default it preforms non-blocking remove operations (the same way rmmod does), and add an option to explicity request blocking operation. So if you select blocking operation in modprobe you can still cause the above deadlock, but only if you explicity try (and since root can do any old stupid thing it would like.... :) ). Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Signed-off-by: Patrick McHardy <kaber@trash.net> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-09-11 09:28:26 +00:00
.owner = THIS_MODULE,
};
static int __net_init arp_tables_net_init(struct net *net)
{
return xt_proto_init(net, NFPROTO_ARP);
}
static void __net_exit arp_tables_net_exit(struct net *net)
{
xt_proto_fini(net, NFPROTO_ARP);
}
static struct pernet_operations arp_tables_net_ops = {
.init = arp_tables_net_init,
.exit = arp_tables_net_exit,
};
static int __init arp_tables_init(void)
{
int ret;
ret = register_pernet_subsys(&arp_tables_net_ops);
if (ret < 0)
goto err1;
/* No one else will be downing sem now, so we won't sleep */
ret = xt_register_targets(arpt_builtin_tg, ARRAY_SIZE(arpt_builtin_tg));
if (ret < 0)
goto err2;
/* Register setsockopt */
ret = nf_register_sockopt(&arpt_sockopts);
if (ret < 0)
goto err4;
printk(KERN_INFO "arp_tables: (C) 2002 David S. Miller\n");
return 0;
err4:
xt_unregister_targets(arpt_builtin_tg, ARRAY_SIZE(arpt_builtin_tg));
err2:
unregister_pernet_subsys(&arp_tables_net_ops);
err1:
return ret;
}
static void __exit arp_tables_fini(void)
{
nf_unregister_sockopt(&arpt_sockopts);
xt_unregister_targets(arpt_builtin_tg, ARRAY_SIZE(arpt_builtin_tg));
unregister_pernet_subsys(&arp_tables_net_ops);
}
EXPORT_SYMBOL(arpt_register_table);
EXPORT_SYMBOL(arpt_unregister_table);
EXPORT_SYMBOL(arpt_do_table);
module_init(arp_tables_init);
module_exit(arp_tables_fini);