dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/arch/x86/kernel/cpu/perf_counter.c

1726 lines
41 KiB
C
Raw Normal View History

/*
* Performance counter x86 architecture code
*
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
* Copyright (C) 2009 Jaswinder Singh Rajput
* Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
*
* For licencing details see kernel-base/COPYING
*/
#include <linux/perf_counter.h>
#include <linux/capability.h>
#include <linux/notifier.h>
#include <linux/hardirq.h>
#include <linux/kprobes.h>
#include <linux/module.h>
#include <linux/kdebug.h>
#include <linux/sched.h>
#include <linux/uaccess.h>
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
#include <linux/highmem.h>
#include <asm/apic.h>
#include <asm/stacktrace.h>
#include <asm/nmi.h>
static u64 perf_counter_mask __read_mostly;
struct cpu_hw_counters {
struct perf_counter *counters[X86_PMC_IDX_MAX];
unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
unsigned long interrupts;
int enabled;
};
/*
* struct x86_pmu - generic x86 pmu
*/
struct x86_pmu {
const char *name;
int version;
int (*handle_irq)(struct pt_regs *);
void (*disable_all)(void);
void (*enable_all)(void);
void (*enable)(struct hw_perf_counter *, int);
void (*disable)(struct hw_perf_counter *, int);
unsigned eventsel;
unsigned perfctr;
u64 (*event_map)(int);
u64 (*raw_event)(u64);
int max_events;
int num_counters;
int num_counters_fixed;
int counter_bits;
u64 counter_mask;
u64 max_period;
u64 intel_ctrl;
};
static struct x86_pmu x86_pmu __read_mostly;
static DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters) = {
.enabled = 1,
};
/*
* Intel PerfMon v3. Used on Core2 and later.
*/
static const u64 intel_perfmon_event_map[] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x003c,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x4f2e,
[PERF_COUNT_HW_CACHE_MISSES] = 0x412e,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
[PERF_COUNT_HW_BUS_CYCLES] = 0x013c,
};
static u64 intel_pmu_event_map(int event)
{
return intel_perfmon_event_map[event];
}
/*
* Generalized hw caching related event table, filled
* in on a per model basis. A value of 0 means
* 'not supported', -1 means 'event makes no sense on
* this CPU', any other value means the raw event
* ID.
*/
#define C(x) PERF_COUNT_HW_CACHE_##x
static u64 __read_mostly hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX];
static const u64 nehalem_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0x024e, /* L1D_PREFETCH.MISS */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0324, /* L2_RQSTS.LOADS */
[ C(RESULT_MISS) ] = 0x0224, /* L2_RQSTS.LD_MISS */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0c24, /* L2_RQSTS.RFOS */
[ C(RESULT_MISS) ] = 0x0824, /* L2_RQSTS.RFO_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2e, /* LLC Reference */
[ C(RESULT_MISS) ] = 0x412e, /* LLC Misses */
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0108, /* DTLB_LOAD_MISSES.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0x0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x20c8, /* ITLB_MISS_RETIRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
[ C(RESULT_MISS) ] = 0x03e8, /* BPU_CLEARS.ANY */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static const u64 core2_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI */
[ C(RESULT_MISS) ] = 0x0140, /* L1D_CACHE_LD.I_STATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI */
[ C(RESULT_MISS) ] = 0x0141, /* L1D_CACHE_ST.I_STATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0081, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0208, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0808, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x1282, /* ITLBMISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static const u64 atom_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS */
[ C(RESULT_MISS) ] = 0x0280, /* L1I.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI */
[ C(RESULT_MISS) ] = 0x4129, /* L2_LD.ISTATE */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI */
[ C(RESULT_MISS) ] = 0x412A, /* L2_ST.ISTATE */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0508, /* DTLB_MISSES.MISS_LD */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI (alias) */
[ C(RESULT_MISS) ] = 0x0608, /* DTLB_MISSES.MISS_ST */
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
[ C(RESULT_MISS) ] = 0x0282, /* ITLB.MISSES */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
[ C(RESULT_MISS) ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
static u64 intel_pmu_raw_event(u64 event)
{
#define CORE_EVNTSEL_EVENT_MASK 0x000000FFULL
#define CORE_EVNTSEL_UNIT_MASK 0x0000FF00ULL
#define CORE_EVNTSEL_EDGE_MASK 0x00040000ULL
#define CORE_EVNTSEL_INV_MASK 0x00800000ULL
#define CORE_EVNTSEL_COUNTER_MASK 0xFF000000ULL
#define CORE_EVNTSEL_MASK \
(CORE_EVNTSEL_EVENT_MASK | \
CORE_EVNTSEL_UNIT_MASK | \
CORE_EVNTSEL_EDGE_MASK | \
CORE_EVNTSEL_INV_MASK | \
CORE_EVNTSEL_COUNTER_MASK)
return event & CORE_EVNTSEL_MASK;
}
static const u64 amd_hw_cache_event_ids
[PERF_COUNT_HW_CACHE_MAX]
[PERF_COUNT_HW_CACHE_OP_MAX]
[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
[ C(L1D) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
[ C(RESULT_MISS) ] = 0x0041, /* Data Cache Misses */
},
[ C(OP_WRITE) ] = {
perf_counter, x8: Fix L1-data-Cache-Store-Referencees for AMD Fix AMD's Data Cache Refills from System event. After this patch : ./tools/perf/perf stat -e l1d -e l1d-misses -e l1d-write -e l1d-prefetch -e l1d-prefetch-miss -e l1i -e l1i-misses -e l1i-prefetch -e l2 -e l2-misses -e l2-write -e dtlb -e dtlb-misses -e itlb -e itlb-misses -e bpu -e bpu-misses ls /dev/ > /dev/null Performance counter stats for 'ls /dev/': 2499484 L1-data-Cache-Load-Referencees (scaled from 3.97%) 70347 L1-data-Cache-Load-Misses (scaled from 7.30%) 9360 L1-data-Cache-Store-Referencees (scaled from 8.64%) 32804 L1-data-Cache-Prefetch-Referencees (scaled from 17.72%) 7693 L1-data-Cache-Prefetch-Misses (scaled from 22.97%) 2180945 L1-instruction-Cache-Load-Referencees (scaled from 28.48%) 14518 L1-instruction-Cache-Load-Misses (scaled from 35.00%) 2405 L1-instruction-Cache-Prefetch-Referencees (scaled from 34.89%) 71387 L2-Cache-Load-Referencees (scaled from 34.94%) 18732 L2-Cache-Load-Misses (scaled from 34.92%) 79918 L2-Cache-Store-Referencees (scaled from 36.02%) 1295294 Data-TLB-Cache-Load-Referencees (scaled from 35.99%) 30896 Data-TLB-Cache-Load-Misses (scaled from 33.36%) 1222030 Instruction-TLB-Cache-Load-Referencees (scaled from 29.46%) 357 Instruction-TLB-Cache-Load-Misses (scaled from 20.46%) 530888 Branch-Cache-Load-Referencees (scaled from 11.48%) 8638 Branch-Cache-Load-Misses (scaled from 5.09%) 0.011295149 seconds time elapsed. Earlier it always shows value 0. Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com> LKML-Reference: <1245484165.3102.6.camel@localhost.localdomain> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-20 07:49:25 +00:00
[ C(RESULT_ACCESS) ] = 0x0142, /* Data Cache Refills :system */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts */
[ C(RESULT_MISS) ] = 0x0167, /* Data Prefetcher :cancelled */
},
},
[ C(L1I ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches */
[ C(RESULT_MISS) ] = 0x0081, /* Instruction cache misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
[ C(RESULT_MISS) ] = 0,
},
},
[ C(LL ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
[ C(RESULT_MISS) ] = 0x037E, /* L2 Cache Misses : IC+DC */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback */
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(DTLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses */
[ C(RESULT_MISS) ] = 0x0046, /* L1 DTLB and L2 DLTB Miss */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = 0,
[ C(RESULT_MISS) ] = 0,
},
},
[ C(ITLB) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes */
[ C(RESULT_MISS) ] = 0x0085, /* Instr. fetch ITLB misses */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
[ C(BPU ) ] = {
[ C(OP_READ) ] = {
[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr. */
[ C(RESULT_MISS) ] = 0x00c3, /* Retired Mispredicted BI */
},
[ C(OP_WRITE) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
[ C(OP_PREFETCH) ] = {
[ C(RESULT_ACCESS) ] = -1,
[ C(RESULT_MISS) ] = -1,
},
},
};
/*
* AMD Performance Monitor K7 and later.
*/
static const u64 amd_perfmon_event_map[] =
{
[PERF_COUNT_HW_CPU_CYCLES] = 0x0076,
[PERF_COUNT_HW_INSTRUCTIONS] = 0x00c0,
[PERF_COUNT_HW_CACHE_REFERENCES] = 0x0080,
[PERF_COUNT_HW_CACHE_MISSES] = 0x0081,
[PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x00c4,
[PERF_COUNT_HW_BRANCH_MISSES] = 0x00c5,
};
static u64 amd_pmu_event_map(int event)
{
return amd_perfmon_event_map[event];
}
static u64 amd_pmu_raw_event(u64 event)
{
#define K7_EVNTSEL_EVENT_MASK 0x7000000FFULL
#define K7_EVNTSEL_UNIT_MASK 0x00000FF00ULL
#define K7_EVNTSEL_EDGE_MASK 0x000040000ULL
#define K7_EVNTSEL_INV_MASK 0x000800000ULL
#define K7_EVNTSEL_COUNTER_MASK 0x0FF000000ULL
#define K7_EVNTSEL_MASK \
(K7_EVNTSEL_EVENT_MASK | \
K7_EVNTSEL_UNIT_MASK | \
K7_EVNTSEL_EDGE_MASK | \
K7_EVNTSEL_INV_MASK | \
K7_EVNTSEL_COUNTER_MASK)
return event & K7_EVNTSEL_MASK;
}
/*
* Propagate counter elapsed time into the generic counter.
* Can only be executed on the CPU where the counter is active.
* Returns the delta events processed.
*/
static u64
x86_perf_counter_update(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
int shift = 64 - x86_pmu.counter_bits;
u64 prev_raw_count, new_raw_count;
s64 delta;
/*
* Careful: an NMI might modify the previous counter value.
*
* Our tactic to handle this is to first atomically read and
* exchange a new raw count - then add that new-prev delta
* count to the generic counter atomically:
*/
again:
prev_raw_count = atomic64_read(&hwc->prev_count);
rdmsrl(hwc->counter_base + idx, new_raw_count);
if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count)
goto again;
/*
* Now we have the new raw value and have updated the prev
* timestamp already. We can now calculate the elapsed delta
* (counter-)time and add that to the generic counter.
*
* Careful, not all hw sign-extends above the physical width
* of the count.
*/
delta = (new_raw_count << shift) - (prev_raw_count << shift);
delta >>= shift;
atomic64_add(delta, &counter->count);
atomic64_sub(delta, &hwc->period_left);
return new_raw_count;
}
static atomic_t active_counters;
static DEFINE_MUTEX(pmc_reserve_mutex);
static bool reserve_pmc_hardware(void)
{
int i;
if (nmi_watchdog == NMI_LOCAL_APIC)
disable_lapic_nmi_watchdog();
for (i = 0; i < x86_pmu.num_counters; i++) {
if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
goto perfctr_fail;
}
for (i = 0; i < x86_pmu.num_counters; i++) {
if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
goto eventsel_fail;
}
return true;
eventsel_fail:
for (i--; i >= 0; i--)
release_evntsel_nmi(x86_pmu.eventsel + i);
i = x86_pmu.num_counters;
perfctr_fail:
for (i--; i >= 0; i--)
release_perfctr_nmi(x86_pmu.perfctr + i);
if (nmi_watchdog == NMI_LOCAL_APIC)
enable_lapic_nmi_watchdog();
return false;
}
static void release_pmc_hardware(void)
{
int i;
for (i = 0; i < x86_pmu.num_counters; i++) {
release_perfctr_nmi(x86_pmu.perfctr + i);
release_evntsel_nmi(x86_pmu.eventsel + i);
}
if (nmi_watchdog == NMI_LOCAL_APIC)
enable_lapic_nmi_watchdog();
}
static void hw_perf_counter_destroy(struct perf_counter *counter)
{
if (atomic_dec_and_mutex_lock(&active_counters, &pmc_reserve_mutex)) {
release_pmc_hardware();
mutex_unlock(&pmc_reserve_mutex);
}
}
static inline int x86_pmu_initialized(void)
{
return x86_pmu.handle_irq != NULL;
}
static inline int
set_ext_hw_attr(struct hw_perf_counter *hwc, struct perf_counter_attr *attr)
{
unsigned int cache_type, cache_op, cache_result;
u64 config, val;
config = attr->config;
cache_type = (config >> 0) & 0xff;
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
return -EINVAL;
cache_op = (config >> 8) & 0xff;
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
return -EINVAL;
cache_result = (config >> 16) & 0xff;
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
return -EINVAL;
val = hw_cache_event_ids[cache_type][cache_op][cache_result];
if (val == 0)
return -ENOENT;
if (val == -1)
return -EINVAL;
hwc->config |= val;
return 0;
}
/*
* Setup the hardware configuration for a given attr_type
*/
static int __hw_perf_counter_init(struct perf_counter *counter)
{
struct perf_counter_attr *attr = &counter->attr;
struct hw_perf_counter *hwc = &counter->hw;
int err;
if (!x86_pmu_initialized())
return -ENODEV;
err = 0;
if (!atomic_inc_not_zero(&active_counters)) {
mutex_lock(&pmc_reserve_mutex);
if (atomic_read(&active_counters) == 0 && !reserve_pmc_hardware())
err = -EBUSY;
else
atomic_inc(&active_counters);
mutex_unlock(&pmc_reserve_mutex);
}
if (err)
return err;
/*
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
* Generate PMC IRQs:
* (keep 'enabled' bit clear for now)
*/
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
hwc->config = ARCH_PERFMON_EVENTSEL_INT;
/*
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
* Count user and OS events unless requested not to.
*/
if (!attr->exclude_user)
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
if (!attr->exclude_kernel)
hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
if (!hwc->sample_period) {
hwc->sample_period = x86_pmu.max_period;
hwc->last_period = hwc->sample_period;
atomic64_set(&hwc->period_left, hwc->sample_period);
}
counter->destroy = hw_perf_counter_destroy;
/*
* Raw event type provide the config in the event structure
*/
if (attr->type == PERF_TYPE_RAW) {
hwc->config |= x86_pmu.raw_event(attr->config);
return 0;
}
if (attr->type == PERF_TYPE_HW_CACHE)
return set_ext_hw_attr(hwc, attr);
if (attr->config >= x86_pmu.max_events)
return -EINVAL;
/*
* The generic map:
*/
hwc->config |= x86_pmu.event_map(attr->config);
return 0;
}
static void intel_pmu_disable_all(void)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
}
static void amd_pmu_disable_all(void)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
int idx;
if (!cpuc->enabled)
return;
cpuc->enabled = 0;
/*
* ensure we write the disable before we start disabling the
* counters proper, so that amd_pmu_enable_counter() does the
* right thing.
*/
barrier();
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
u64 val;
if (!test_bit(idx, cpuc->active_mask))
continue;
rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
if (!(val & ARCH_PERFMON_EVENTSEL0_ENABLE))
continue;
val &= ~ARCH_PERFMON_EVENTSEL0_ENABLE;
wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
}
}
void hw_perf_disable(void)
{
if (!x86_pmu_initialized())
return;
return x86_pmu.disable_all();
}
static void intel_pmu_enable_all(void)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, x86_pmu.intel_ctrl);
}
static void amd_pmu_enable_all(void)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
int idx;
if (cpuc->enabled)
return;
cpuc->enabled = 1;
barrier();
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
u64 val;
if (!test_bit(idx, cpuc->active_mask))
continue;
rdmsrl(MSR_K7_EVNTSEL0 + idx, val);
if (val & ARCH_PERFMON_EVENTSEL0_ENABLE)
continue;
val |= ARCH_PERFMON_EVENTSEL0_ENABLE;
wrmsrl(MSR_K7_EVNTSEL0 + idx, val);
}
}
void hw_perf_enable(void)
{
if (!x86_pmu_initialized())
return;
x86_pmu.enable_all();
}
static inline u64 intel_pmu_get_status(void)
{
u64 status;
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
return status;
}
static inline void intel_pmu_ack_status(u64 ack)
{
wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
}
static inline void x86_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
{
int err;
err = checking_wrmsrl(hwc->config_base + idx,
hwc->config | ARCH_PERFMON_EVENTSEL0_ENABLE);
}
static inline void x86_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
{
int err;
err = checking_wrmsrl(hwc->config_base + idx,
hwc->config);
}
static inline void
intel_pmu_disable_fixed(struct hw_perf_counter *hwc, int __idx)
{
int idx = __idx - X86_PMC_IDX_FIXED;
u64 ctrl_val, mask;
int err;
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
err = checking_wrmsrl(hwc->config_base, ctrl_val);
}
static inline void
intel_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
{
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_disable_fixed(hwc, idx);
return;
}
x86_pmu_disable_counter(hwc, idx);
}
static inline void
amd_pmu_disable_counter(struct hw_perf_counter *hwc, int idx)
{
x86_pmu_disable_counter(hwc, idx);
}
static DEFINE_PER_CPU(u64, prev_left[X86_PMC_IDX_MAX]);
/*
* Set the next IRQ period, based on the hwc->period_left value.
* To be called with the counter disabled in hw:
*/
static int
x86_perf_counter_set_period(struct perf_counter *counter,
struct hw_perf_counter *hwc, int idx)
{
s64 left = atomic64_read(&hwc->period_left);
s64 period = hwc->sample_period;
int err, ret = 0;
/*
* If we are way outside a reasoable range then just skip forward:
*/
if (unlikely(left <= -period)) {
left = period;
atomic64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
if (unlikely(left <= 0)) {
left += period;
atomic64_set(&hwc->period_left, left);
hwc->last_period = period;
ret = 1;
}
/*
* Quirk: certain CPUs dont like it if just 1 event is left:
*/
if (unlikely(left < 2))
left = 2;
if (left > x86_pmu.max_period)
left = x86_pmu.max_period;
per_cpu(prev_left[idx], smp_processor_id()) = left;
/*
* The hw counter starts counting from this counter offset,
* mark it to be able to extra future deltas:
*/
atomic64_set(&hwc->prev_count, (u64)-left);
err = checking_wrmsrl(hwc->counter_base + idx,
(u64)(-left) & x86_pmu.counter_mask);
perf_counter_update_userpage(counter);
return ret;
}
static inline void
intel_pmu_enable_fixed(struct hw_perf_counter *hwc, int __idx)
{
int idx = __idx - X86_PMC_IDX_FIXED;
u64 ctrl_val, bits, mask;
int err;
/*
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
* Enable IRQ generation (0x8),
* and enable ring-3 counting (0x2) and ring-0 counting (0x1)
* if requested:
*/
perf_counters: allow users to count user, kernel and/or hypervisor events Impact: new perf_counter feature This extends the perf_counter_hw_event struct with bits that specify that events in user, kernel and/or hypervisor mode should not be counted (i.e. should be excluded), and adds code to program the PMU mode selection bits accordingly on x86 and powerpc. For software counters, we don't currently have the infrastructure to distinguish which mode an event occurs in, so we currently fail the counter initialization if the setting of the hw_event.exclude_* bits would require us to distinguish. Context switches and CPU migrations are currently considered to occur in kernel mode. On x86, this changes the previous policy that only root can count kernel events. Now non-root users can count kernel events or exclude them. Non-root users still can't use NMI events, though. On x86 we don't appear to have any way to control whether hypervisor events are counted or not, so hw_event.exclude_hv is ignored. On powerpc, the selection of whether to count events in user, kernel and/or hypervisor mode is PMU-wide, not per-counter, so this adds a check that the hw_event.exclude_* settings are the same as other events on the PMU. Counters being added to a group have to have the same settings as the other hardware counters in the group. Counters and groups can only be enabled in hw_perf_group_sched_in or power_perf_enable if they have the same settings as any other counters already on the PMU. If we are not running on a hypervisor, the exclude_hv setting is ignored (by forcing it to 0) since we can't ever get any hypervisor events. Signed-off-by: Paul Mackerras <paulus@samba.org>
2009-02-11 03:35:35 +00:00
bits = 0x8ULL;
if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
bits |= 0x2;
if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
bits |= 0x1;
bits <<= (idx * 4);
mask = 0xfULL << (idx * 4);
rdmsrl(hwc->config_base, ctrl_val);
ctrl_val &= ~mask;
ctrl_val |= bits;
err = checking_wrmsrl(hwc->config_base, ctrl_val);
}
static void intel_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
{
if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
intel_pmu_enable_fixed(hwc, idx);
return;
}
x86_pmu_enable_counter(hwc, idx);
}
static void amd_pmu_enable_counter(struct hw_perf_counter *hwc, int idx)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
if (cpuc->enabled)
x86_pmu_enable_counter(hwc, idx);
else
x86_pmu_disable_counter(hwc, idx);
}
static int
fixed_mode_idx(struct perf_counter *counter, struct hw_perf_counter *hwc)
{
unsigned int event;
if (!x86_pmu.num_counters_fixed)
return -1;
event = hwc->config & ARCH_PERFMON_EVENT_MASK;
if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_INSTRUCTIONS)))
return X86_PMC_IDX_FIXED_INSTRUCTIONS;
if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_CPU_CYCLES)))
return X86_PMC_IDX_FIXED_CPU_CYCLES;
if (unlikely(event == x86_pmu.event_map(PERF_COUNT_HW_BUS_CYCLES)))
return X86_PMC_IDX_FIXED_BUS_CYCLES;
return -1;
}
/*
* Find a PMC slot for the freshly enabled / scheduled in counter:
*/
static int x86_pmu_enable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
int idx;
idx = fixed_mode_idx(counter, hwc);
if (idx >= 0) {
/*
* Try to get the fixed counter, if that is already taken
* then try to get a generic counter:
*/
if (test_and_set_bit(idx, cpuc->used_mask))
goto try_generic;
hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
/*
* We set it so that counter_base + idx in wrmsr/rdmsr maps to
* MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
*/
hwc->counter_base =
MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
hwc->idx = idx;
} else {
idx = hwc->idx;
/* Try to get the previous generic counter again */
if (test_and_set_bit(idx, cpuc->used_mask)) {
try_generic:
idx = find_first_zero_bit(cpuc->used_mask,
x86_pmu.num_counters);
if (idx == x86_pmu.num_counters)
return -EAGAIN;
set_bit(idx, cpuc->used_mask);
hwc->idx = idx;
}
hwc->config_base = x86_pmu.eventsel;
hwc->counter_base = x86_pmu.perfctr;
}
perf_counters_lapic_init();
x86_pmu.disable(hwc, idx);
cpuc->counters[idx] = counter;
set_bit(idx, cpuc->active_mask);
x86_perf_counter_set_period(counter, hwc, idx);
x86_pmu.enable(hwc, idx);
perf_counter_update_userpage(counter);
return 0;
}
static void x86_pmu_unthrottle(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
cpuc->counters[hwc->idx] != counter))
return;
x86_pmu.enable(hwc, hwc->idx);
}
void perf_counter_print_debug(void)
{
u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
struct cpu_hw_counters *cpuc;
unsigned long flags;
int cpu, idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
if (x86_pmu.version >= 2) {
rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
pr_info("\n");
pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
pr_info("CPU#%d: status: %016llx\n", cpu, status);
pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
}
pr_info("CPU#%d: used: %016llx\n", cpu, *(u64 *)cpuc->used_mask);
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
rdmsrl(x86_pmu.perfctr + idx, pmc_count);
prev_left = per_cpu(prev_left[idx], cpu);
pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
cpu, idx, pmc_ctrl);
pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
cpu, idx, pmc_count);
pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
cpu, idx, prev_left);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
cpu, idx, pmc_count);
}
local_irq_restore(flags);
}
static void x86_pmu_disable(struct perf_counter *counter)
{
struct cpu_hw_counters *cpuc = &__get_cpu_var(cpu_hw_counters);
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
/*
* Must be done before we disable, otherwise the nmi handler
* could reenable again:
*/
clear_bit(idx, cpuc->active_mask);
x86_pmu.disable(hwc, idx);
/*
* Make sure the cleared pointer becomes visible before we
* (potentially) free the counter:
*/
barrier();
/*
* Drain the remaining delta count out of a counter
* that we are disabling:
*/
x86_perf_counter_update(counter, hwc, idx);
cpuc->counters[idx] = NULL;
clear_bit(idx, cpuc->used_mask);
perf_counter_update_userpage(counter);
}
/*
* Save and restart an expired counter. Called by NMI contexts,
* so it has to be careful about preempting normal counter ops:
*/
static int intel_pmu_save_and_restart(struct perf_counter *counter)
{
struct hw_perf_counter *hwc = &counter->hw;
int idx = hwc->idx;
int ret;
x86_perf_counter_update(counter, hwc, idx);
ret = x86_perf_counter_set_period(counter, hwc, idx);
if (counter->state == PERF_COUNTER_STATE_ACTIVE)
intel_pmu_enable_counter(hwc, idx);
return ret;
}
static void intel_pmu_reset(void)
{
unsigned long flags;
int idx;
if (!x86_pmu.num_counters)
return;
local_irq_save(flags);
printk("clearing PMU state on CPU#%d\n", smp_processor_id());
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
checking_wrmsrl(x86_pmu.eventsel + idx, 0ull);
checking_wrmsrl(x86_pmu.perfctr + idx, 0ull);
}
for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
checking_wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
}
local_irq_restore(flags);
}
/*
* This handler is triggered by the local APIC, so the APIC IRQ handling
* rules apply:
*/
static int intel_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_counters *cpuc;
int bit, cpu, loops;
u64 ack, status;
data.regs = regs;
data.addr = 0;
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
perf_disable();
status = intel_pmu_get_status();
if (!status) {
perf_enable();
return 0;
}
loops = 0;
again:
if (++loops > 100) {
WARN_ONCE(1, "perfcounters: irq loop stuck!\n");
perf_counter: Fix context removal deadlock Disable the PMU globally before removing a counter from a context. This fixes the following lockup: [22081.741922] ------------[ cut here ]------------ [22081.746668] WARNING: at arch/x86/kernel/cpu/perf_counter.c:803 intel_pmu_handle_irq+0x9b/0x24e() [22081.755624] Hardware name: X8DTN [22081.758903] perfcounters: irq loop stuck! [22081.762985] Modules linked in: [22081.766136] Pid: 11082, comm: perf Not tainted 2.6.30-rc6-tip #226 [22081.772432] Call Trace: [22081.774940] <NMI> [<ffffffff81019aed>] ? intel_pmu_handle_irq+0x9b/0x24e [22081.781993] [<ffffffff81019aed>] ? intel_pmu_handle_irq+0x9b/0x24e [22081.788368] [<ffffffff8104505c>] ? warn_slowpath_common+0x77/0xa3 [22081.794649] [<ffffffff810450d3>] ? warn_slowpath_fmt+0x40/0x45 [22081.800696] [<ffffffff81019aed>] ? intel_pmu_handle_irq+0x9b/0x24e [22081.807080] [<ffffffff814d1a72>] ? perf_counter_nmi_handler+0x3f/0x4a [22081.813751] [<ffffffff814d2d09>] ? notifier_call_chain+0x58/0x86 [22081.819951] [<ffffffff8105b250>] ? notify_die+0x2d/0x32 [22081.825392] [<ffffffff814d1414>] ? do_nmi+0x8e/0x242 [22081.830538] [<ffffffff814d0f0a>] ? nmi+0x1a/0x20 [22081.835342] [<ffffffff8117e102>] ? selinux_file_free_security+0x0/0x1a [22081.842105] [<ffffffff81018793>] ? x86_pmu_disable_counter+0x15/0x41 [22081.848673] <<EOE>> [<ffffffff81018f3d>] ? x86_pmu_disable+0x86/0x103 [22081.855512] [<ffffffff8108fedd>] ? __perf_counter_remove_from_context+0x0/0xfe [22081.862926] [<ffffffff8108fcbc>] ? counter_sched_out+0x30/0xce [22081.868909] [<ffffffff8108ff36>] ? __perf_counter_remove_from_context+0x59/0xfe [22081.876382] [<ffffffff8106808a>] ? smp_call_function_single+0x6c/0xe6 [22081.882955] [<ffffffff81091b96>] ? perf_release+0x86/0x14c [22081.888600] [<ffffffff810c4c84>] ? __fput+0xe7/0x195 [22081.893718] [<ffffffff810c213e>] ? filp_close+0x5b/0x62 [22081.899107] [<ffffffff81046a70>] ? put_files_struct+0x64/0xc2 [22081.905031] [<ffffffff8104841a>] ? do_exit+0x1e2/0x6ef [22081.910360] [<ffffffff814d0a60>] ? _spin_lock_irqsave+0x9/0xe [22081.916292] [<ffffffff8104898e>] ? do_group_exit+0x67/0x93 [22081.921953] [<ffffffff810489cc>] ? sys_exit_group+0x12/0x16 [22081.927759] [<ffffffff8100baab>] ? system_call_fastpath+0x16/0x1b [22081.934076] ---[ end trace 3a3936ce3e1b4505 ]--- And could potentially also fix the lockup reported by Marcelo Tosatti. Also, print more debug info in case of a detected lockup. [ Impact: fix lockup ] Reported-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-05-20 18:13:28 +00:00
perf_counter_print_debug();
intel_pmu_reset();
perf_enable();
return 1;
}
inc_irq_stat(apic_perf_irqs);
ack = status;
for_each_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
struct perf_counter *counter = cpuc->counters[bit];
clear_bit(bit, (unsigned long *) &status);
if (!test_bit(bit, cpuc->active_mask))
continue;
if (!intel_pmu_save_and_restart(counter))
continue;
data.period = counter->hw.last_period;
if (perf_counter_overflow(counter, 1, &data))
intel_pmu_disable_counter(&counter->hw, bit);
}
intel_pmu_ack_status(ack);
/*
* Repeat if there is more work to be done:
*/
status = intel_pmu_get_status();
if (status)
goto again;
perf_enable();
return 1;
}
static int amd_pmu_handle_irq(struct pt_regs *regs)
{
struct perf_sample_data data;
struct cpu_hw_counters *cpuc;
struct perf_counter *counter;
struct hw_perf_counter *hwc;
int cpu, idx, handled = 0;
u64 val;
data.regs = regs;
data.addr = 0;
cpu = smp_processor_id();
cpuc = &per_cpu(cpu_hw_counters, cpu);
for (idx = 0; idx < x86_pmu.num_counters; idx++) {
if (!test_bit(idx, cpuc->active_mask))
continue;
counter = cpuc->counters[idx];
hwc = &counter->hw;
val = x86_perf_counter_update(counter, hwc, idx);
if (val & (1ULL << (x86_pmu.counter_bits - 1)))
continue;
/*
* counter overflow
*/
handled = 1;
data.period = counter->hw.last_period;
if (!x86_perf_counter_set_period(counter, hwc, idx))
continue;
if (perf_counter_overflow(counter, 1, &data))
amd_pmu_disable_counter(hwc, idx);
}
if (handled)
inc_irq_stat(apic_perf_irqs);
return handled;
}
void smp_perf_pending_interrupt(struct pt_regs *regs)
{
irq_enter();
ack_APIC_irq();
inc_irq_stat(apic_pending_irqs);
perf_counter_do_pending();
irq_exit();
}
void set_perf_counter_pending(void)
{
apic->send_IPI_self(LOCAL_PENDING_VECTOR);
}
void perf_counters_lapic_init(void)
{
if (!x86_pmu_initialized())
return;
/*
* Always use NMI for PMU
*/
apic_write(APIC_LVTPC, APIC_DM_NMI);
}
static int __kprobes
perf_counter_nmi_handler(struct notifier_block *self,
unsigned long cmd, void *__args)
{
struct die_args *args = __args;
struct pt_regs *regs;
if (!atomic_read(&active_counters))
return NOTIFY_DONE;
switch (cmd) {
case DIE_NMI:
case DIE_NMI_IPI:
break;
default:
return NOTIFY_DONE;
}
regs = args->regs;
apic_write(APIC_LVTPC, APIC_DM_NMI);
/*
* Can't rely on the handled return value to say it was our NMI, two
* counters could trigger 'simultaneously' raising two back-to-back NMIs.
*
* If the first NMI handles both, the latter will be empty and daze
* the CPU.
*/
x86_pmu.handle_irq(regs);
return NOTIFY_STOP;
}
static __read_mostly struct notifier_block perf_counter_nmi_notifier = {
.notifier_call = perf_counter_nmi_handler,
.next = NULL,
.priority = 1
};
static struct x86_pmu intel_pmu = {
.name = "Intel",
.handle_irq = intel_pmu_handle_irq,
.disable_all = intel_pmu_disable_all,
.enable_all = intel_pmu_enable_all,
.enable = intel_pmu_enable_counter,
.disable = intel_pmu_disable_counter,
.eventsel = MSR_ARCH_PERFMON_EVENTSEL0,
.perfctr = MSR_ARCH_PERFMON_PERFCTR0,
.event_map = intel_pmu_event_map,
.raw_event = intel_pmu_raw_event,
.max_events = ARRAY_SIZE(intel_perfmon_event_map),
/*
* Intel PMCs cannot be accessed sanely above 32 bit width,
* so we install an artificial 1<<31 period regardless of
* the generic counter period:
*/
.max_period = (1ULL << 31) - 1,
};
static struct x86_pmu amd_pmu = {
.name = "AMD",
.handle_irq = amd_pmu_handle_irq,
.disable_all = amd_pmu_disable_all,
.enable_all = amd_pmu_enable_all,
.enable = amd_pmu_enable_counter,
.disable = amd_pmu_disable_counter,
.eventsel = MSR_K7_EVNTSEL0,
.perfctr = MSR_K7_PERFCTR0,
.event_map = amd_pmu_event_map,
.raw_event = amd_pmu_raw_event,
.max_events = ARRAY_SIZE(amd_perfmon_event_map),
.num_counters = 4,
.counter_bits = 48,
.counter_mask = (1ULL << 48) - 1,
/* use highest bit to detect overflow */
.max_period = (1ULL << 47) - 1,
};
static int intel_pmu_init(void)
{
union cpuid10_edx edx;
union cpuid10_eax eax;
unsigned int unused;
unsigned int ebx;
int version;
if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON))
return -ENODEV;
/*
* Check whether the Architectural PerfMon supports
* Branch Misses Retired Event or not.
*/
cpuid(10, &eax.full, &ebx, &unused, &edx.full);
if (eax.split.mask_length <= ARCH_PERFMON_BRANCH_MISSES_RETIRED)
return -ENODEV;
version = eax.split.version_id;
if (version < 2)
return -ENODEV;
x86_pmu = intel_pmu;
x86_pmu.version = version;
x86_pmu.num_counters = eax.split.num_counters;
x86_pmu.counter_bits = eax.split.bit_width;
x86_pmu.counter_mask = (1ULL << eax.split.bit_width) - 1;
/*
* Quirk: v2 perfmon does not report fixed-purpose counters, so
* assume at least 3 counters:
*/
x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
/*
* Install the hw-cache-events table:
*/
switch (boot_cpu_data.x86_model) {
case 15: /* original 65 nm celeron/pentium/core2/xeon, "Merom"/"Conroe" */
case 22: /* single-core 65 nm celeron/core2solo "Merom-L"/"Conroe-L" */
case 23: /* current 45 nm celeron/core2/xeon "Penryn"/"Wolfdale" */
case 29: /* six-core 45 nm xeon "Dunnington" */
memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
pr_cont("Core2 events, ");
break;
default:
case 26:
memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
pr_cont("Nehalem/Corei7 events, ");
break;
case 28:
memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
pr_cont("Atom events, ");
break;
}
return 0;
}
static int amd_pmu_init(void)
{
/* Performance-monitoring supported from K7 and later: */
if (boot_cpu_data.x86 < 6)
return -ENODEV;
x86_pmu = amd_pmu;
/* Events are common for all AMDs */
memcpy(hw_cache_event_ids, amd_hw_cache_event_ids,
sizeof(hw_cache_event_ids));
return 0;
}
void __init init_hw_perf_counters(void)
{
int err;
pr_info("Performance Counters: ");
switch (boot_cpu_data.x86_vendor) {
case X86_VENDOR_INTEL:
err = intel_pmu_init();
break;
case X86_VENDOR_AMD:
err = amd_pmu_init();
break;
default:
return;
}
if (err != 0) {
pr_cont("no PMU driver, software counters only.\n");
return;
}
pr_cont("%s PMU driver.\n", x86_pmu.name);
if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
WARN(1, KERN_ERR "hw perf counters %d > max(%d), clipping!",
x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
}
perf_counter_mask = (1 << x86_pmu.num_counters) - 1;
perf_max_counters = x86_pmu.num_counters;
if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
WARN(1, KERN_ERR "hw perf counters fixed %d > max(%d), clipping!",
x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
}
perf_counter_mask |=
((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
x86_pmu.intel_ctrl = perf_counter_mask;
perf_counters_lapic_init();
register_die_notifier(&perf_counter_nmi_notifier);
pr_info("... version: %d\n", x86_pmu.version);
pr_info("... bit width: %d\n", x86_pmu.counter_bits);
pr_info("... generic counters: %d\n", x86_pmu.num_counters);
pr_info("... value mask: %016Lx\n", x86_pmu.counter_mask);
pr_info("... max period: %016Lx\n", x86_pmu.max_period);
pr_info("... fixed-purpose counters: %d\n", x86_pmu.num_counters_fixed);
pr_info("... counter mask: %016Lx\n", perf_counter_mask);
}
static inline void x86_pmu_read(struct perf_counter *counter)
{
x86_perf_counter_update(counter, &counter->hw, counter->hw.idx);
}
static const struct pmu pmu = {
.enable = x86_pmu_enable,
.disable = x86_pmu_disable,
.read = x86_pmu_read,
.unthrottle = x86_pmu_unthrottle,
};
const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
{
int err;
err = __hw_perf_counter_init(counter);
if (err)
return ERR_PTR(err);
return &pmu;
}
/*
* callchain support
*/
static inline
void callchain_store(struct perf_callchain_entry *entry, u64 ip)
{
if (entry->nr < PERF_MAX_STACK_DEPTH)
entry->ip[entry->nr++] = ip;
}
static DEFINE_PER_CPU(struct perf_callchain_entry, irq_entry);
static DEFINE_PER_CPU(struct perf_callchain_entry, nmi_entry);
static DEFINE_PER_CPU(int, in_nmi_frame);
static void
backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
/* Ignore warnings */
}
static void backtrace_warning(void *data, char *msg)
{
/* Ignore warnings */
}
static int backtrace_stack(void *data, char *name)
{
per_cpu(in_nmi_frame, smp_processor_id()) =
x86_is_stack_id(NMI_STACK, name);
return 0;
}
static void backtrace_address(void *data, unsigned long addr, int reliable)
{
struct perf_callchain_entry *entry = data;
if (per_cpu(in_nmi_frame, smp_processor_id()))
return;
if (reliable)
callchain_store(entry, addr);
}
static const struct stacktrace_ops backtrace_ops = {
.warning = backtrace_warning,
.warning_symbol = backtrace_warning_symbol,
.stack = backtrace_stack,
.address = backtrace_address,
};
#include "../dumpstack.h"
static void
perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
callchain_store(entry, PERF_CONTEXT_KERNEL);
callchain_store(entry, regs->ip);
dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
}
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
/*
* best effort, GUP based copy_from_user() that assumes IRQ or NMI context
*/
static unsigned long
copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
{
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
unsigned long offset, addr = (unsigned long)from;
int type = in_nmi() ? KM_NMI : KM_IRQ0;
unsigned long size, len = 0;
struct page *page;
void *map;
int ret;
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
do {
ret = __get_user_pages_fast(addr, 1, 0, &page);
if (!ret)
break;
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
offset = addr & (PAGE_SIZE - 1);
size = min(PAGE_SIZE - offset, n - len);
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
map = kmap_atomic(page, type);
memcpy(to, map+offset, size);
kunmap_atomic(map, type);
put_page(page);
len += size;
to += size;
addr += size;
} while (len < n);
return len;
}
static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
{
unsigned long bytes;
bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
return bytes == sizeof(*frame);
}
static void
perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
struct stack_frame frame;
const void __user *fp;
if (!user_mode(regs))
regs = task_pt_regs(current);
perf_counter: x86: Fix call-chain support to use NMI-safe methods __copy_from_user_inatomic() isn't NMI safe in that it can trigger the page fault handler which is another trap and its return path invokes IRET which will also close the NMI context. Therefore use a GUP based approach to copy the stack frames over. We tried an alternative solution as well: we used a forward ported version of Mathieu Desnoyers's "NMI safe INT3 and Page Fault" patch that modifies the exception return path to use an open-coded IRET with explicit stack unrolling and TF checking. This didnt work as it interacted with faulting user-space instructions, causing them not to restart properly, which corrupts user-space registers. Solving that would probably involve disassembling those instructions and backtracing the RIP. But even without that, the code was deemed rather complex to the already non-trivial x86 entry assembly code, so instead we went for this GUP based method that does a software-walk of the pagetables. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Nick Piggin <npiggin@suse.de> Cc: Pekka Enberg <penberg@cs.helsinki.fi> Cc: Vegard Nossum <vegard.nossum@gmail.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> LKML-Reference: <new-submission> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-06-15 11:07:24 +00:00
fp = (void __user *)regs->bp;
callchain_store(entry, PERF_CONTEXT_USER);
callchain_store(entry, regs->ip);
while (entry->nr < PERF_MAX_STACK_DEPTH) {
frame.next_frame = NULL;
frame.return_address = 0;
if (!copy_stack_frame(fp, &frame))
break;
if ((unsigned long)fp < regs->sp)
break;
callchain_store(entry, frame.return_address);
fp = frame.next_frame;
}
}
static void
perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
{
int is_user;
if (!regs)
return;
is_user = user_mode(regs);
if (!current || current->pid == 0)
return;
if (is_user && current->state != TASK_RUNNING)
return;
if (!is_user)
perf_callchain_kernel(regs, entry);
if (current->mm)
perf_callchain_user(regs, entry);
}
struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
{
struct perf_callchain_entry *entry;
if (in_nmi())
entry = &__get_cpu_var(nmi_entry);
else
entry = &__get_cpu_var(irq_entry);
entry->nr = 0;
perf_do_callchain(regs, entry);
return entry;
}