dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/vlynq/vlynq.c

814 lines
19 KiB
C
Raw Normal View History

/*
* Copyright (C) 2006, 2007 Eugene Konev <ejka@openwrt.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
* Parts of the VLYNQ specification can be found here:
* http://www.ti.com/litv/pdf/sprue36a
*/
#include <linux/init.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/vlynq.h>
#define VLYNQ_CTRL_PM_ENABLE 0x80000000
#define VLYNQ_CTRL_CLOCK_INT 0x00008000
#define VLYNQ_CTRL_CLOCK_DIV(x) (((x) & 7) << 16)
#define VLYNQ_CTRL_INT_LOCAL 0x00004000
#define VLYNQ_CTRL_INT_ENABLE 0x00002000
#define VLYNQ_CTRL_INT_VECTOR(x) (((x) & 0x1f) << 8)
#define VLYNQ_CTRL_INT2CFG 0x00000080
#define VLYNQ_CTRL_RESET 0x00000001
#define VLYNQ_CTRL_CLOCK_MASK (0x7 << 16)
#define VLYNQ_INT_OFFSET 0x00000014
#define VLYNQ_REMOTE_OFFSET 0x00000080
#define VLYNQ_STATUS_LINK 0x00000001
#define VLYNQ_STATUS_LERROR 0x00000080
#define VLYNQ_STATUS_RERROR 0x00000100
#define VINT_ENABLE 0x00000100
#define VINT_TYPE_EDGE 0x00000080
#define VINT_LEVEL_LOW 0x00000040
#define VINT_VECTOR(x) ((x) & 0x1f)
#define VINT_OFFSET(irq) (8 * ((irq) % 4))
#define VLYNQ_AUTONEGO_V2 0x00010000
struct vlynq_regs {
u32 revision;
u32 control;
u32 status;
u32 int_prio;
u32 int_status;
u32 int_pending;
u32 int_ptr;
u32 tx_offset;
struct vlynq_mapping rx_mapping[4];
u32 chip;
u32 autonego;
u32 unused[6];
u32 int_device[8];
};
#ifdef CONFIG_VLYNQ_DEBUG
static void vlynq_dump_regs(struct vlynq_device *dev)
{
int i;
printk(KERN_DEBUG "VLYNQ local=%p remote=%p\n",
dev->local, dev->remote);
for (i = 0; i < 32; i++) {
printk(KERN_DEBUG "VLYNQ: local %d: %08x\n",
i + 1, ((u32 *)dev->local)[i]);
printk(KERN_DEBUG "VLYNQ: remote %d: %08x\n",
i + 1, ((u32 *)dev->remote)[i]);
}
}
static void vlynq_dump_mem(u32 *base, int count)
{
int i;
for (i = 0; i < (count + 3) / 4; i++) {
if (i % 4 == 0)
printk(KERN_DEBUG "\nMEM[0x%04x]:", i * 4);
printk(KERN_DEBUG " 0x%08x", *(base + i));
}
printk(KERN_DEBUG "\n");
}
#endif
/* Check the VLYNQ link status with a given device */
static int vlynq_linked(struct vlynq_device *dev)
{
int i;
for (i = 0; i < 100; i++)
if (readl(&dev->local->status) & VLYNQ_STATUS_LINK)
return 1;
else
cpu_relax();
return 0;
}
static void vlynq_reset(struct vlynq_device *dev)
{
writel(readl(&dev->local->control) | VLYNQ_CTRL_RESET,
&dev->local->control);
/* Wait for the devices to finish resetting */
msleep(5);
/* Remove reset bit */
writel(readl(&dev->local->control) & ~VLYNQ_CTRL_RESET,
&dev->local->control);
/* Give some time for the devices to settle */
msleep(5);
}
static void vlynq_irq_unmask(struct irq_data *d)
{
struct vlynq_device *dev = irq_data_get_irq_chip_data(d);
int virq;
u32 val;
BUG_ON(!dev);
virq = d->irq - dev->irq_start;
val = readl(&dev->remote->int_device[virq >> 2]);
val |= (VINT_ENABLE | virq) << VINT_OFFSET(virq);
writel(val, &dev->remote->int_device[virq >> 2]);
}
static void vlynq_irq_mask(struct irq_data *d)
{
struct vlynq_device *dev = irq_data_get_irq_chip_data(d);
int virq;
u32 val;
BUG_ON(!dev);
virq = d->irq - dev->irq_start;
val = readl(&dev->remote->int_device[virq >> 2]);
val &= ~(VINT_ENABLE << VINT_OFFSET(virq));
writel(val, &dev->remote->int_device[virq >> 2]);
}
static int vlynq_irq_type(struct irq_data *d, unsigned int flow_type)
{
struct vlynq_device *dev = irq_data_get_irq_chip_data(d);
int virq;
u32 val;
BUG_ON(!dev);
virq = d->irq - dev->irq_start;
val = readl(&dev->remote->int_device[virq >> 2]);
switch (flow_type & IRQ_TYPE_SENSE_MASK) {
case IRQ_TYPE_EDGE_RISING:
case IRQ_TYPE_EDGE_FALLING:
case IRQ_TYPE_EDGE_BOTH:
val |= VINT_TYPE_EDGE << VINT_OFFSET(virq);
val &= ~(VINT_LEVEL_LOW << VINT_OFFSET(virq));
break;
case IRQ_TYPE_LEVEL_HIGH:
val &= ~(VINT_TYPE_EDGE << VINT_OFFSET(virq));
val &= ~(VINT_LEVEL_LOW << VINT_OFFSET(virq));
break;
case IRQ_TYPE_LEVEL_LOW:
val &= ~(VINT_TYPE_EDGE << VINT_OFFSET(virq));
val |= VINT_LEVEL_LOW << VINT_OFFSET(virq);
break;
default:
return -EINVAL;
}
writel(val, &dev->remote->int_device[virq >> 2]);
return 0;
}
static void vlynq_local_ack(struct irq_data *d)
{
struct vlynq_device *dev = irq_data_get_irq_chip_data(d);
u32 status = readl(&dev->local->status);
pr_debug("%s: local status: 0x%08x\n",
dev_name(&dev->dev), status);
writel(status, &dev->local->status);
}
static void vlynq_remote_ack(struct irq_data *d)
{
struct vlynq_device *dev = irq_data_get_irq_chip_data(d);
u32 status = readl(&dev->remote->status);
pr_debug("%s: remote status: 0x%08x\n",
dev_name(&dev->dev), status);
writel(status, &dev->remote->status);
}
static irqreturn_t vlynq_irq(int irq, void *dev_id)
{
struct vlynq_device *dev = dev_id;
u32 status;
int virq = 0;
status = readl(&dev->local->int_status);
writel(status, &dev->local->int_status);
if (unlikely(!status))
spurious_interrupt();
while (status) {
if (status & 1)
do_IRQ(dev->irq_start + virq);
status >>= 1;
virq++;
}
return IRQ_HANDLED;
}
static struct irq_chip vlynq_irq_chip = {
.name = "vlynq",
.irq_unmask = vlynq_irq_unmask,
.irq_mask = vlynq_irq_mask,
.irq_set_type = vlynq_irq_type,
};
static struct irq_chip vlynq_local_chip = {
.name = "vlynq local error",
.irq_unmask = vlynq_irq_unmask,
.irq_mask = vlynq_irq_mask,
.irq_ack = vlynq_local_ack,
};
static struct irq_chip vlynq_remote_chip = {
.name = "vlynq local error",
.irq_unmask = vlynq_irq_unmask,
.irq_mask = vlynq_irq_mask,
.irq_ack = vlynq_remote_ack,
};
static int vlynq_setup_irq(struct vlynq_device *dev)
{
u32 val;
int i, virq;
if (dev->local_irq == dev->remote_irq) {
printk(KERN_ERR
"%s: local vlynq irq should be different from remote\n",
dev_name(&dev->dev));
return -EINVAL;
}
/* Clear local and remote error bits */
writel(readl(&dev->local->status), &dev->local->status);
writel(readl(&dev->remote->status), &dev->remote->status);
/* Now setup interrupts */
val = VLYNQ_CTRL_INT_VECTOR(dev->local_irq);
val |= VLYNQ_CTRL_INT_ENABLE | VLYNQ_CTRL_INT_LOCAL |
VLYNQ_CTRL_INT2CFG;
val |= readl(&dev->local->control);
writel(VLYNQ_INT_OFFSET, &dev->local->int_ptr);
writel(val, &dev->local->control);
val = VLYNQ_CTRL_INT_VECTOR(dev->remote_irq);
val |= VLYNQ_CTRL_INT_ENABLE;
val |= readl(&dev->remote->control);
writel(VLYNQ_INT_OFFSET, &dev->remote->int_ptr);
writel(val, &dev->remote->int_ptr);
writel(val, &dev->remote->control);
for (i = dev->irq_start; i <= dev->irq_end; i++) {
virq = i - dev->irq_start;
if (virq == dev->local_irq) {
irq_set_chip_and_handler(i, &vlynq_local_chip,
handle_level_irq);
irq_set_chip_data(i, dev);
} else if (virq == dev->remote_irq) {
irq_set_chip_and_handler(i, &vlynq_remote_chip,
handle_level_irq);
irq_set_chip_data(i, dev);
} else {
irq_set_chip_and_handler(i, &vlynq_irq_chip,
handle_simple_irq);
irq_set_chip_data(i, dev);
writel(0, &dev->remote->int_device[virq >> 2]);
}
}
if (request_irq(dev->irq, vlynq_irq, IRQF_SHARED, "vlynq", dev)) {
printk(KERN_ERR "%s: request_irq failed\n",
dev_name(&dev->dev));
return -EAGAIN;
}
return 0;
}
static void vlynq_device_release(struct device *dev)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
kfree(vdev);
}
static int vlynq_device_match(struct device *dev,
struct device_driver *drv)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
struct vlynq_driver *vdrv = to_vlynq_driver(drv);
struct vlynq_device_id *ids = vdrv->id_table;
while (ids->id) {
if (ids->id == vdev->dev_id) {
vdev->divisor = ids->divisor;
vlynq_set_drvdata(vdev, ids);
printk(KERN_INFO "Driver found for VLYNQ "
"device: %08x\n", vdev->dev_id);
return 1;
}
printk(KERN_DEBUG "Not using the %08x VLYNQ device's driver"
" for VLYNQ device: %08x\n", ids->id, vdev->dev_id);
ids++;
}
return 0;
}
static int vlynq_device_probe(struct device *dev)
{
struct vlynq_device *vdev = to_vlynq_device(dev);
struct vlynq_driver *drv = to_vlynq_driver(dev->driver);
struct vlynq_device_id *id = vlynq_get_drvdata(vdev);
int result = -ENODEV;
if (drv->probe)
result = drv->probe(vdev, id);
if (result)
put_device(dev);
return result;
}
static int vlynq_device_remove(struct device *dev)
{
struct vlynq_driver *drv = to_vlynq_driver(dev->driver);
if (drv->remove)
drv->remove(to_vlynq_device(dev));
return 0;
}
int __vlynq_register_driver(struct vlynq_driver *driver, struct module *owner)
{
driver->driver.name = driver->name;
driver->driver.bus = &vlynq_bus_type;
return driver_register(&driver->driver);
}
EXPORT_SYMBOL(__vlynq_register_driver);
void vlynq_unregister_driver(struct vlynq_driver *driver)
{
driver_unregister(&driver->driver);
}
EXPORT_SYMBOL(vlynq_unregister_driver);
/*
* A VLYNQ remote device can clock the VLYNQ bus master
* using a dedicated clock line. In that case, both the
* remove device and the bus master should have the same
* serial clock dividers configured. Iterate through the
* 8 possible dividers until we actually link with the
* device.
*/
static int __vlynq_try_remote(struct vlynq_device *dev)
{
int i;
vlynq_reset(dev);
for (i = dev->dev_id ? vlynq_rdiv2 : vlynq_rdiv8; dev->dev_id ?
i <= vlynq_rdiv8 : i >= vlynq_rdiv2;
dev->dev_id ? i++ : i--) {
if (!vlynq_linked(dev))
break;
writel((readl(&dev->remote->control) &
~VLYNQ_CTRL_CLOCK_MASK) |
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_rdiv1),
&dev->remote->control);
writel((readl(&dev->local->control)
& ~(VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_MASK)) |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_rdiv1),
&dev->local->control);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using remote clock divisor %d\n",
dev_name(&dev->dev), i - vlynq_rdiv1 + 1);
dev->divisor = i;
return 0;
} else {
vlynq_reset(dev);
}
}
return -ENODEV;
}
/*
* A VLYNQ remote device can be clocked by the VLYNQ bus
* master using a dedicated clock line. In that case, only
* the bus master configures the serial clock divider.
* Iterate through the 8 possible dividers until we
* actually get a link with the device.
*/
static int __vlynq_try_local(struct vlynq_device *dev)
{
int i;
vlynq_reset(dev);
for (i = dev->dev_id ? vlynq_ldiv2 : vlynq_ldiv8; dev->dev_id ?
i <= vlynq_ldiv8 : i >= vlynq_ldiv2;
dev->dev_id ? i++ : i--) {
writel((readl(&dev->local->control) &
~VLYNQ_CTRL_CLOCK_MASK) |
VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(i - vlynq_ldiv1),
&dev->local->control);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using local clock divisor %d\n",
dev_name(&dev->dev), i - vlynq_ldiv1 + 1);
dev->divisor = i;
return 0;
} else {
vlynq_reset(dev);
}
}
return -ENODEV;
}
/*
* When using external clocking method, serial clock
* is supplied by an external oscillator, therefore we
* should mask the local clock bit in the clock control
* register for both the bus master and the remote device.
*/
static int __vlynq_try_external(struct vlynq_device *dev)
{
vlynq_reset(dev);
if (!vlynq_linked(dev))
return -ENODEV;
writel((readl(&dev->remote->control) &
~VLYNQ_CTRL_CLOCK_INT),
&dev->remote->control);
writel((readl(&dev->local->control) &
~VLYNQ_CTRL_CLOCK_INT),
&dev->local->control);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG "%s: using external clock\n",
dev_name(&dev->dev));
dev->divisor = vlynq_div_external;
return 0;
}
return -ENODEV;
}
static int __vlynq_enable_device(struct vlynq_device *dev)
{
int result;
struct plat_vlynq_ops *ops = dev->dev.platform_data;
result = ops->on(dev);
if (result)
return result;
switch (dev->divisor) {
case vlynq_div_external:
case vlynq_div_auto:
/* When the device is brought from reset it should have clock
* generation negotiated by hardware.
* Check which device is generating clocks and perform setup
* accordingly */
if (vlynq_linked(dev) && readl(&dev->remote->control) &
VLYNQ_CTRL_CLOCK_INT) {
if (!__vlynq_try_remote(dev) ||
!__vlynq_try_local(dev) ||
!__vlynq_try_external(dev))
return 0;
} else {
if (!__vlynq_try_external(dev) ||
!__vlynq_try_local(dev) ||
!__vlynq_try_remote(dev))
return 0;
}
break;
case vlynq_ldiv1:
case vlynq_ldiv2:
case vlynq_ldiv3:
case vlynq_ldiv4:
case vlynq_ldiv5:
case vlynq_ldiv6:
case vlynq_ldiv7:
case vlynq_ldiv8:
writel(VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(dev->divisor -
vlynq_ldiv1), &dev->local->control);
writel(0, &dev->remote->control);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using local clock divisor %d\n",
dev_name(&dev->dev),
dev->divisor - vlynq_ldiv1 + 1);
return 0;
}
break;
case vlynq_rdiv1:
case vlynq_rdiv2:
case vlynq_rdiv3:
case vlynq_rdiv4:
case vlynq_rdiv5:
case vlynq_rdiv6:
case vlynq_rdiv7:
case vlynq_rdiv8:
writel(0, &dev->local->control);
writel(VLYNQ_CTRL_CLOCK_INT |
VLYNQ_CTRL_CLOCK_DIV(dev->divisor -
vlynq_rdiv1), &dev->remote->control);
if (vlynq_linked(dev)) {
printk(KERN_DEBUG
"%s: using remote clock divisor %d\n",
dev_name(&dev->dev),
dev->divisor - vlynq_rdiv1 + 1);
return 0;
}
break;
}
ops->off(dev);
return -ENODEV;
}
int vlynq_enable_device(struct vlynq_device *dev)
{
struct plat_vlynq_ops *ops = dev->dev.platform_data;
int result = -ENODEV;
result = __vlynq_enable_device(dev);
if (result)
return result;
result = vlynq_setup_irq(dev);
if (result)
ops->off(dev);
dev->enabled = !result;
return result;
}
EXPORT_SYMBOL(vlynq_enable_device);
void vlynq_disable_device(struct vlynq_device *dev)
{
struct plat_vlynq_ops *ops = dev->dev.platform_data;
dev->enabled = 0;
free_irq(dev->irq, dev);
ops->off(dev);
}
EXPORT_SYMBOL(vlynq_disable_device);
int vlynq_set_local_mapping(struct vlynq_device *dev, u32 tx_offset,
struct vlynq_mapping *mapping)
{
int i;
if (!dev->enabled)
return -ENXIO;
writel(tx_offset, &dev->local->tx_offset);
for (i = 0; i < 4; i++) {
writel(mapping[i].offset, &dev->local->rx_mapping[i].offset);
writel(mapping[i].size, &dev->local->rx_mapping[i].size);
}
return 0;
}
EXPORT_SYMBOL(vlynq_set_local_mapping);
int vlynq_set_remote_mapping(struct vlynq_device *dev, u32 tx_offset,
struct vlynq_mapping *mapping)
{
int i;
if (!dev->enabled)
return -ENXIO;
writel(tx_offset, &dev->remote->tx_offset);
for (i = 0; i < 4; i++) {
writel(mapping[i].offset, &dev->remote->rx_mapping[i].offset);
writel(mapping[i].size, &dev->remote->rx_mapping[i].size);
}
return 0;
}
EXPORT_SYMBOL(vlynq_set_remote_mapping);
int vlynq_set_local_irq(struct vlynq_device *dev, int virq)
{
int irq = dev->irq_start + virq;
if (dev->enabled)
return -EBUSY;
if ((irq < dev->irq_start) || (irq > dev->irq_end))
return -EINVAL;
if (virq == dev->remote_irq)
return -EINVAL;
dev->local_irq = virq;
return 0;
}
EXPORT_SYMBOL(vlynq_set_local_irq);
int vlynq_set_remote_irq(struct vlynq_device *dev, int virq)
{
int irq = dev->irq_start + virq;
if (dev->enabled)
return -EBUSY;
if ((irq < dev->irq_start) || (irq > dev->irq_end))
return -EINVAL;
if (virq == dev->local_irq)
return -EINVAL;
dev->remote_irq = virq;
return 0;
}
EXPORT_SYMBOL(vlynq_set_remote_irq);
static int vlynq_probe(struct platform_device *pdev)
{
struct vlynq_device *dev;
struct resource *regs_res, *mem_res, *irq_res;
int len, result;
regs_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
if (!regs_res)
return -ENODEV;
mem_res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mem");
if (!mem_res)
return -ENODEV;
irq_res = platform_get_resource_byname(pdev, IORESOURCE_IRQ, "devirq");
if (!irq_res)
return -ENODEV;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
printk(KERN_ERR
"vlynq: failed to allocate device structure\n");
return -ENOMEM;
}
dev->id = pdev->id;
dev->dev.bus = &vlynq_bus_type;
dev->dev.parent = &pdev->dev;
dev_set_name(&dev->dev, "vlynq%d", dev->id);
dev->dev.platform_data = pdev->dev.platform_data;
dev->dev.release = vlynq_device_release;
dev->regs_start = regs_res->start;
dev->regs_end = regs_res->end;
dev->mem_start = mem_res->start;
dev->mem_end = mem_res->end;
len = resource_size(regs_res);
if (!request_mem_region(regs_res->start, len, dev_name(&dev->dev))) {
printk(KERN_ERR "%s: Can't request vlynq registers\n",
dev_name(&dev->dev));
result = -ENXIO;
goto fail_request;
}
dev->local = ioremap(regs_res->start, len);
if (!dev->local) {
printk(KERN_ERR "%s: Can't remap vlynq registers\n",
dev_name(&dev->dev));
result = -ENXIO;
goto fail_remap;
}
dev->remote = (struct vlynq_regs *)((void *)dev->local +
VLYNQ_REMOTE_OFFSET);
dev->irq = platform_get_irq_byname(pdev, "irq");
dev->irq_start = irq_res->start;
dev->irq_end = irq_res->end;
dev->local_irq = dev->irq_end - dev->irq_start;
dev->remote_irq = dev->local_irq - 1;
if (device_register(&dev->dev))
goto fail_register;
platform_set_drvdata(pdev, dev);
printk(KERN_INFO "%s: regs 0x%p, irq %d, mem 0x%p\n",
dev_name(&dev->dev), (void *)dev->regs_start, dev->irq,
(void *)dev->mem_start);
dev->dev_id = 0;
dev->divisor = vlynq_div_auto;
result = __vlynq_enable_device(dev);
if (result == 0) {
dev->dev_id = readl(&dev->remote->chip);
((struct plat_vlynq_ops *)(dev->dev.platform_data))->off(dev);
}
if (dev->dev_id)
printk(KERN_INFO "Found a VLYNQ device: %08x\n", dev->dev_id);
return 0;
fail_register:
iounmap(dev->local);
fail_remap:
fail_request:
release_mem_region(regs_res->start, len);
kfree(dev);
return result;
}
static int vlynq_remove(struct platform_device *pdev)
{
struct vlynq_device *dev = platform_get_drvdata(pdev);
device_unregister(&dev->dev);
iounmap(dev->local);
release_mem_region(dev->regs_start, dev->regs_end - dev->regs_start);
kfree(dev);
return 0;
}
static struct platform_driver vlynq_platform_driver = {
.driver.name = "vlynq",
.probe = vlynq_probe,
.remove = vlynq_remove,
};
struct bus_type vlynq_bus_type = {
.name = "vlynq",
.match = vlynq_device_match,
.probe = vlynq_device_probe,
.remove = vlynq_device_remove,
};
EXPORT_SYMBOL(vlynq_bus_type);
static int vlynq_init(void)
{
int res = 0;
res = bus_register(&vlynq_bus_type);
if (res)
goto fail_bus;
res = platform_driver_register(&vlynq_platform_driver);
if (res)
goto fail_platform;
return 0;
fail_platform:
bus_unregister(&vlynq_bus_type);
fail_bus:
return res;
}
static void vlynq_exit(void)
{
platform_driver_unregister(&vlynq_platform_driver);
bus_unregister(&vlynq_bus_type);
}
module_init(vlynq_init);
module_exit(vlynq_exit);