dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/net/ipv6/netfilter/nf_conntrack_l3proto_ipv6.c

455 lines
12 KiB
C
Raw Normal View History

[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/*
* Copyright (C)2004 USAGI/WIDE Project
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Author:
* Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
*/
#include <linux/types.h>
#include <linux/ipv6.h>
#include <linux/in6.h>
#include <linux/netfilter.h>
#include <linux/module.h>
#include <linux/skbuff.h>
#include <linux/icmp.h>
#include <net/ipv6.h>
#include <net/inet_frag.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <linux/netfilter_bridge.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <linux/netfilter_ipv6.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
#include <net/netfilter/nf_conntrack_l3proto.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_zones.h>
#include <net/netfilter/ipv6/nf_conntrack_ipv6.h>
#include <net/netfilter/nf_nat_helper.h>
#include <net/netfilter/ipv6/nf_defrag_ipv6.h>
#include <net/netfilter/nf_log.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
static bool ipv6_pkt_to_tuple(const struct sk_buff *skb, unsigned int nhoff,
struct nf_conntrack_tuple *tuple)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
const u_int32_t *ap;
u_int32_t _addrs[8];
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
ap = skb_header_pointer(skb, nhoff + offsetof(struct ipv6hdr, saddr),
sizeof(_addrs), _addrs);
if (ap == NULL)
return false;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
return true;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static bool ipv6_invert_tuple(struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_tuple *orig)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
memcpy(tuple->src.u3.ip6, orig->dst.u3.ip6, sizeof(tuple->src.u3.ip6));
memcpy(tuple->dst.u3.ip6, orig->src.u3.ip6, sizeof(tuple->dst.u3.ip6));
return true;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static int ipv6_print_tuple(struct seq_file *s,
const struct nf_conntrack_tuple *tuple)
{
return seq_printf(s, "src=%pI6 dst=%pI6 ",
tuple->src.u3.ip6, tuple->dst.u3.ip6);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
unsigned int *dataoff, u_int8_t *protonum)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
__be16 frag_off;
int protoff;
u8 nexthdr;
if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
&nexthdr, sizeof(nexthdr)) != 0) {
pr_debug("ip6_conntrack_core: can't get nexthdr\n");
return -NF_ACCEPT;
}
protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/*
* (protoff == skb->len) mean that the packet doesn't have no data
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
* except of IPv6 & ext headers. but it's tracked anyway. - YK
*/
if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
pr_debug("ip6_conntrack_core: can't find proto in pkt\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
return -NF_ACCEPT;
}
*dataoff = protoff;
*protonum = nexthdr;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
return NF_ACCEPT;
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
static unsigned int ipv6_helper(unsigned int hooknum,
struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
struct nf_conn *ct;
const struct nf_conn_help *help;
const struct nf_conntrack_helper *helper;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
enum ip_conntrack_info ctinfo;
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
unsigned int ret;
__be16 frag_off;
int protoff;
u8 nexthdr;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* This is where we call the helper: as the packet goes out. */
ct = nf_ct_get(skb, &ctinfo);
if (!ct || ctinfo == IP_CT_RELATED_REPLY)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
return NF_ACCEPT;
help = nfct_help(ct);
if (!help)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
return NF_ACCEPT;
/* rcu_read_lock()ed by nf_hook_slow */
helper = rcu_dereference(help->helper);
if (!helper)
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
return NF_ACCEPT;
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
nexthdr = ipv6_hdr(skb)->nexthdr;
protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
&frag_off);
if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
pr_debug("proto header not found\n");
return NF_ACCEPT;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
ret = helper->help(skb, protoff, ct, ctinfo);
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
if (ret != NF_ACCEPT && (ret & NF_VERDICT_MASK) != NF_QUEUE) {
nf_log_packet(NFPROTO_IPV6, hooknum, skb, in, out, NULL,
"nf_ct_%s: dropping packet", helper->name);
}
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
return ret;
}
static unsigned int ipv6_confirm(unsigned int hooknum,
struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
{
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
unsigned char pnum = ipv6_hdr(skb)->nexthdr;
int protoff;
__be16 frag_off;
ct = nf_ct_get(skb, &ctinfo);
if (!ct || ctinfo == IP_CT_RELATED_REPLY)
goto out;
protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
&frag_off);
if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
pr_debug("proto header not found\n");
goto out;
}
/* adjust seqs for loopback traffic only in outgoing direction */
if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
!nf_is_loopback_packet(skb)) {
typeof(nf_nat_seq_adjust_hook) seq_adjust;
seq_adjust = rcu_dereference(nf_nat_seq_adjust_hook);
if (!seq_adjust ||
!seq_adjust(skb, ct, ctinfo, protoff)) {
NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
return NF_DROP;
}
}
out:
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* We've seen it coming out the other side: confirm it */
return nf_conntrack_confirm(skb);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static unsigned int __ipv6_conntrack_in(struct net *net,
unsigned int hooknum,
struct sk_buff *skb,
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
struct sk_buff *reasm = skb->nfct_reasm;
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
const struct nf_conn_help *help;
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
/* This packet is fragmented and has reassembled packet. */
if (reasm) {
/* Reassembled packet isn't parsed yet ? */
if (!reasm->nfct) {
unsigned int ret;
ret = nf_conntrack_in(net, PF_INET6, hooknum, reasm);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (ret != NF_ACCEPT)
return ret;
}
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
/* Conntrack helpers need the entire reassembled packet in the
* POST_ROUTING hook. In case of unconfirmed connections NAT
* might reassign a helper, so the entire packet is also
* required.
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
*/
ct = nf_ct_get(reasm, &ctinfo);
if (ct != NULL && !nf_ct_is_untracked(ct)) {
help = nfct_help(ct);
if ((help && help->helper) || !nf_ct_is_confirmed(ct)) {
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
nf_conntrack_get_reasm(skb);
NF_HOOK_THRESH(NFPROTO_IPV6, hooknum, reasm,
(struct net_device *)in,
(struct net_device *)out,
okfn, NF_IP6_PRI_CONNTRACK + 1);
return NF_DROP_ERR(-ECANCELED);
}
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
nf_conntrack_get(reasm->nfct);
skb->nfct = reasm->nfct;
skb->nfctinfo = reasm->nfctinfo;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
return NF_ACCEPT;
}
return nf_conntrack_in(net, PF_INET6, hooknum, skb);
}
static unsigned int ipv6_conntrack_in(unsigned int hooknum,
struct sk_buff *skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
{
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
return __ipv6_conntrack_in(dev_net(in), hooknum, skb, in, out, okfn);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static unsigned int ipv6_conntrack_local(unsigned int hooknum,
struct sk_buff *skb,
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
const struct net_device *in,
const struct net_device *out,
int (*okfn)(struct sk_buff *))
{
/* root is playing with raw sockets. */
if (skb->len < sizeof(struct ipv6hdr)) {
net_notice_ratelimited("ipv6_conntrack_local: packet too short\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
return NF_ACCEPT;
}
netfilter: nf_conntrack_ipv6: improve fragmentation handling The IPv6 conntrack fragmentation currently has a couple of shortcomings. Fragmentes are collected in PREROUTING/OUTPUT, are defragmented, the defragmented packet is then passed to conntrack, the resulting conntrack information is attached to each original fragment and the fragments then continue their way through the stack. Helper invocation occurs in the POSTROUTING hook, at which point only the original fragments are available. The result of this is that fragmented packets are never passed to helpers. This patch improves the situation in the following way: - If a reassembled packet belongs to a connection that has a helper assigned, the reassembled packet is passed through the stack instead of the original fragments. - During defragmentation, the largest received fragment size is stored. On output, the packet is refragmented if required. If the largest received fragment size exceeds the outgoing MTU, a "packet too big" message is generated, thus behaving as if the original fragments were passed through the stack from an outside point of view. - The ipv6_helper() hook function can't receive fragments anymore for connections using a helper, so it is switched to use ipv6_skip_exthdr() instead of the netfilter specific nf_ct_ipv6_skip_exthdr() and the reassembled packets are passed to connection tracking helpers. The result of this is that we can properly track fragmented packets, but still generate ICMPv6 Packet too big messages if we would have before. This patch is also required as a precondition for IPv6 NAT, where NAT helpers might enlarge packets up to a point that they require fragmentation. In that case we can't generate Packet too big messages since the proper MTU can't be calculated in all cases (f.i. when changing textual representation of a variable amount of addresses), so the packet is transparently fragmented iff the original packet or fragments would have fit the outgoing MTU. IPVS parts by Jesper Dangaard Brouer <brouer@redhat.com>. Signed-off-by: Patrick McHardy <kaber@trash.net>
2012-08-26 17:13:58 +00:00
return __ipv6_conntrack_in(dev_net(out), hooknum, skb, in, out, okfn);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
static struct nf_hook_ops ipv6_conntrack_ops[] __read_mostly = {
{
.hook = ipv6_conntrack_in,
.owner = THIS_MODULE,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_PRE_ROUTING,
.priority = NF_IP6_PRI_CONNTRACK,
},
{
.hook = ipv6_conntrack_local,
.owner = THIS_MODULE,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_LOCAL_OUT,
.priority = NF_IP6_PRI_CONNTRACK,
},
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
{
.hook = ipv6_helper,
.owner = THIS_MODULE,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP6_PRI_CONNTRACK_HELPER,
},
{
.hook = ipv6_confirm,
.owner = THIS_MODULE,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP6_PRI_LAST,
},
netfilter: add user-space connection tracking helper infrastructure There are good reasons to supports helpers in user-space instead: * Rapid connection tracking helper development, as developing code in user-space is usually faster. * Reliability: A buggy helper does not crash the kernel. Moreover, we can monitor the helper process and restart it in case of problems. * Security: Avoid complex string matching and mangling in kernel-space running in privileged mode. Going further, we can even think about running user-space helpers as a non-root process. * Extensibility: It allows the development of very specific helpers (most likely non-standard proprietary protocols) that are very likely not to be accepted for mainline inclusion in the form of kernel-space connection tracking helpers. This patch adds the infrastructure to allow the implementation of user-space conntrack helpers by means of the new nfnetlink subsystem `nfnetlink_cthelper' and the existing queueing infrastructure (nfnetlink_queue). I had to add the new hook NF_IP6_PRI_CONNTRACK_HELPER to register ipv[4|6]_helper which results from splitting ipv[4|6]_confirm into two pieces. This change is required not to break NAT sequence adjustment and conntrack confirmation for traffic that is enqueued to our user-space conntrack helpers. Basic operation, in a few steps: 1) Register user-space helper by means of `nfct': nfct helper add ftp inet tcp [ It must be a valid existing helper supported by conntrack-tools ] 2) Add rules to enable the FTP user-space helper which is used to track traffic going to TCP port 21. For locally generated packets: iptables -I OUTPUT -t raw -p tcp --dport 21 -j CT --helper ftp For non-locally generated packets: iptables -I PREROUTING -t raw -p tcp --dport 21 -j CT --helper ftp 3) Run the test conntrackd in helper mode (see example files under doc/helper/conntrackd.conf conntrackd 4) Generate FTP traffic going, if everything is OK, then conntrackd should create expectations (you can check that with `conntrack': conntrack -E expect [NEW] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp [DESTROY] 301 proto=6 src=192.168.1.136 dst=130.89.148.12 sport=0 dport=54037 mask-src=255.255.255.255 mask-dst=255.255.255.255 sport=0 dport=65535 master-src=192.168.1.136 master-dst=130.89.148.12 sport=57127 dport=21 class=0 helper=ftp This confirms that our test helper is receiving packets including the conntrack information, and adding expectations in kernel-space. The user-space helper can also store its private tracking information in the conntrack structure in the kernel via the CTA_HELP_INFO. The kernel will consider this a binary blob whose layout is unknown. This information will be included in the information that is transfered to user-space via glue code that integrates nfnetlink_queue and ctnetlink. Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2012-05-13 19:44:54 +00:00
{
.hook = ipv6_helper,
.owner = THIS_MODULE,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_LOCAL_IN,
.priority = NF_IP6_PRI_CONNTRACK_HELPER,
},
{
.hook = ipv6_confirm,
.owner = THIS_MODULE,
.pf = NFPROTO_IPV6,
.hooknum = NF_INET_LOCAL_IN,
.priority = NF_IP6_PRI_LAST-1,
},
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
};
#if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
static int ipv6_tuple_to_nlattr(struct sk_buff *skb,
const struct nf_conntrack_tuple *tuple)
{
if (nla_put(skb, CTA_IP_V6_SRC, sizeof(u_int32_t) * 4,
&tuple->src.u3.ip6) ||
nla_put(skb, CTA_IP_V6_DST, sizeof(u_int32_t) * 4,
&tuple->dst.u3.ip6))
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
static const struct nla_policy ipv6_nla_policy[CTA_IP_MAX+1] = {
[CTA_IP_V6_SRC] = { .len = sizeof(u_int32_t)*4 },
[CTA_IP_V6_DST] = { .len = sizeof(u_int32_t)*4 },
};
static int ipv6_nlattr_to_tuple(struct nlattr *tb[],
struct nf_conntrack_tuple *t)
{
if (!tb[CTA_IP_V6_SRC] || !tb[CTA_IP_V6_DST])
return -EINVAL;
memcpy(&t->src.u3.ip6, nla_data(tb[CTA_IP_V6_SRC]),
sizeof(u_int32_t) * 4);
memcpy(&t->dst.u3.ip6, nla_data(tb[CTA_IP_V6_DST]),
sizeof(u_int32_t) * 4);
return 0;
}
static int ipv6_nlattr_tuple_size(void)
{
return nla_policy_len(ipv6_nla_policy, CTA_IP_MAX + 1);
}
#endif
struct nf_conntrack_l3proto nf_conntrack_l3proto_ipv6 __read_mostly = {
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
.l3proto = PF_INET6,
.name = "ipv6",
.pkt_to_tuple = ipv6_pkt_to_tuple,
.invert_tuple = ipv6_invert_tuple,
.print_tuple = ipv6_print_tuple,
.get_l4proto = ipv6_get_l4proto,
#if defined(CONFIG_NF_CT_NETLINK) || defined(CONFIG_NF_CT_NETLINK_MODULE)
.tuple_to_nlattr = ipv6_tuple_to_nlattr,
.nlattr_tuple_size = ipv6_nlattr_tuple_size,
.nlattr_to_tuple = ipv6_nlattr_to_tuple,
.nla_policy = ipv6_nla_policy,
#endif
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
.me = THIS_MODULE,
};
MODULE_ALIAS("nf_conntrack-" __stringify(AF_INET6));
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Yasuyuki KOZAKAI @USAGI <yasuyuki.kozakai@toshiba.co.jp>");
static int ipv6_net_init(struct net *net)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
int ret = 0;
ret = nf_conntrack_l4proto_register(net,
&nf_conntrack_l4proto_tcp6);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (ret < 0) {
printk(KERN_ERR "nf_conntrack_l4proto_tcp6: protocol register failed\n");
goto out;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
ret = nf_conntrack_l4proto_register(net,
&nf_conntrack_l4proto_udp6);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (ret < 0) {
printk(KERN_ERR "nf_conntrack_l4proto_udp6: protocol register failed\n");
goto cleanup_tcp6;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
ret = nf_conntrack_l4proto_register(net,
&nf_conntrack_l4proto_icmpv6);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (ret < 0) {
printk(KERN_ERR "nf_conntrack_l4proto_icmp6: protocol register failed\n");
goto cleanup_udp6;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
ret = nf_conntrack_l3proto_register(net,
&nf_conntrack_l3proto_ipv6);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (ret < 0) {
printk(KERN_ERR "nf_conntrack_l3proto_ipv6: protocol register failed\n");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
goto cleanup_icmpv6;
}
return 0;
cleanup_icmpv6:
nf_conntrack_l4proto_unregister(net,
&nf_conntrack_l4proto_icmpv6);
cleanup_udp6:
nf_conntrack_l4proto_unregister(net,
&nf_conntrack_l4proto_udp6);
cleanup_tcp6:
nf_conntrack_l4proto_unregister(net,
&nf_conntrack_l4proto_tcp6);
out:
return ret;
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
static void ipv6_net_exit(struct net *net)
{
nf_conntrack_l3proto_unregister(net,
&nf_conntrack_l3proto_ipv6);
nf_conntrack_l4proto_unregister(net,
&nf_conntrack_l4proto_icmpv6);
nf_conntrack_l4proto_unregister(net,
&nf_conntrack_l4proto_udp6);
nf_conntrack_l4proto_unregister(net,
&nf_conntrack_l4proto_tcp6);
}
static struct pernet_operations ipv6_net_ops = {
.init = ipv6_net_init,
.exit = ipv6_net_exit,
};
static int __init nf_conntrack_l3proto_ipv6_init(void)
{
int ret = 0;
need_conntrack();
nf_defrag_ipv6_enable();
ret = register_pernet_subsys(&ipv6_net_ops);
if (ret < 0)
goto cleanup_pernet;
ret = nf_register_hooks(ipv6_conntrack_ops,
ARRAY_SIZE(ipv6_conntrack_ops));
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
if (ret < 0) {
pr_err("nf_conntrack_ipv6: can't register pre-routing defrag "
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
"hook.\n");
goto cleanup_ipv6;
}
return ret;
cleanup_ipv6:
unregister_pernet_subsys(&ipv6_net_ops);
cleanup_pernet:
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
return ret;
}
static void __exit nf_conntrack_l3proto_ipv6_fini(void)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
{
synchronize_net();
nf_unregister_hooks(ipv6_conntrack_ops, ARRAY_SIZE(ipv6_conntrack_ops));
unregister_pernet_subsys(&ipv6_net_ops);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-10 00:38:16 +00:00
}
module_init(nf_conntrack_l3proto_ipv6_init);
module_exit(nf_conntrack_l3proto_ipv6_fini);