dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/include/linux/nl80211.h

1376 lines
52 KiB
C
Raw Normal View History

#ifndef __LINUX_NL80211_H
#define __LINUX_NL80211_H
/*
* 802.11 netlink interface public header
*
* Copyright 2006, 2007, 2008 Johannes Berg <johannes@sipsolutions.net>
* Copyright 2008 Michael Wu <flamingice@sourmilk.net>
* Copyright 2008 Luis Carlos Cobo <luisca@cozybit.com>
* Copyright 2008 Michael Buesch <mb@bu3sch.de>
* Copyright 2008, 2009 Luis R. Rodriguez <lrodriguez@atheros.com>
* Copyright 2008 Jouni Malinen <jouni.malinen@atheros.com>
* Copyright 2008 Colin McCabe <colin@cozybit.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <linux/types.h>
/**
* DOC: Station handling
*
* Stations are added per interface, but a special case exists with VLAN
* interfaces. When a station is bound to an AP interface, it may be moved
* into a VLAN identified by a VLAN interface index (%NL80211_ATTR_STA_VLAN).
* The station is still assumed to belong to the AP interface it was added
* to.
*
* TODO: need more info?
*/
/**
* enum nl80211_commands - supported nl80211 commands
*
* @NL80211_CMD_UNSPEC: unspecified command to catch errors
*
* @NL80211_CMD_GET_WIPHY: request information about a wiphy or dump request
* to get a list of all present wiphys.
* @NL80211_CMD_SET_WIPHY: set wiphy parameters, needs %NL80211_ATTR_WIPHY or
* %NL80211_ATTR_IFINDEX; can be used to set %NL80211_ATTR_WIPHY_NAME,
* %NL80211_ATTR_WIPHY_TXQ_PARAMS, %NL80211_ATTR_WIPHY_FREQ,
* %NL80211_ATTR_WIPHY_CHANNEL_TYPE, %NL80211_ATTR_WIPHY_RETRY_SHORT,
* %NL80211_ATTR_WIPHY_RETRY_LONG, %NL80211_ATTR_WIPHY_FRAG_THRESHOLD,
* and/or %NL80211_ATTR_WIPHY_RTS_THRESHOLD.
* @NL80211_CMD_NEW_WIPHY: Newly created wiphy, response to get request
* or rename notification. Has attributes %NL80211_ATTR_WIPHY and
* %NL80211_ATTR_WIPHY_NAME.
* @NL80211_CMD_DEL_WIPHY: Wiphy deleted. Has attributes
* %NL80211_ATTR_WIPHY and %NL80211_ATTR_WIPHY_NAME.
*
* @NL80211_CMD_GET_INTERFACE: Request an interface's configuration;
* either a dump request on a %NL80211_ATTR_WIPHY or a specific get
* on an %NL80211_ATTR_IFINDEX is supported.
* @NL80211_CMD_SET_INTERFACE: Set type of a virtual interface, requires
* %NL80211_ATTR_IFINDEX and %NL80211_ATTR_IFTYPE.
* @NL80211_CMD_NEW_INTERFACE: Newly created virtual interface or response
* to %NL80211_CMD_GET_INTERFACE. Has %NL80211_ATTR_IFINDEX,
* %NL80211_ATTR_WIPHY and %NL80211_ATTR_IFTYPE attributes. Can also
* be sent from userspace to request creation of a new virtual interface,
* then requires attributes %NL80211_ATTR_WIPHY, %NL80211_ATTR_IFTYPE and
* %NL80211_ATTR_IFNAME.
* @NL80211_CMD_DEL_INTERFACE: Virtual interface was deleted, has attributes
* %NL80211_ATTR_IFINDEX and %NL80211_ATTR_WIPHY. Can also be sent from
* userspace to request deletion of a virtual interface, then requires
* attribute %NL80211_ATTR_IFINDEX.
*
* @NL80211_CMD_GET_KEY: Get sequence counter information for a key specified
* by %NL80211_ATTR_KEY_IDX and/or %NL80211_ATTR_MAC.
* @NL80211_CMD_SET_KEY: Set key attributes %NL80211_ATTR_KEY_DEFAULT,
* %NL80211_ATTR_KEY_DEFAULT_MGMT, or %NL80211_ATTR_KEY_THRESHOLD.
* @NL80211_CMD_NEW_KEY: add a key with given %NL80211_ATTR_KEY_DATA,
* %NL80211_ATTR_KEY_IDX, %NL80211_ATTR_MAC, %NL80211_ATTR_KEY_CIPHER,
* and %NL80211_ATTR_KEY_SEQ attributes.
* @NL80211_CMD_DEL_KEY: delete a key identified by %NL80211_ATTR_KEY_IDX
* or %NL80211_ATTR_MAC.
*
* @NL80211_CMD_GET_BEACON: retrieve beacon information (returned in a
* %NL80222_CMD_NEW_BEACON message)
* @NL80211_CMD_SET_BEACON: set the beacon on an access point interface
* using the %NL80211_ATTR_BEACON_INTERVAL, %NL80211_ATTR_DTIM_PERIOD,
* %NL80211_ATTR_BEACON_HEAD and %NL80211_ATTR_BEACON_TAIL attributes.
* @NL80211_CMD_NEW_BEACON: add a new beacon to an access point interface,
* parameters are like for %NL80211_CMD_SET_BEACON.
* @NL80211_CMD_DEL_BEACON: remove the beacon, stop sending it
*
* @NL80211_CMD_GET_STATION: Get station attributes for station identified by
* %NL80211_ATTR_MAC on the interface identified by %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_SET_STATION: Set station attributes for station identified by
* %NL80211_ATTR_MAC on the interface identified by %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_NEW_STATION: Add a station with given attributes to the
* the interface identified by %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_DEL_STATION: Remove a station identified by %NL80211_ATTR_MAC
* or, if no MAC address given, all stations, on the interface identified
* by %NL80211_ATTR_IFINDEX.
*
* @NL80211_CMD_GET_MPATH: Get mesh path attributes for mesh path to
* destination %NL80211_ATTR_MAC on the interface identified by
* %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_SET_MPATH: Set mesh path attributes for mesh path to
* destination %NL80211_ATTR_MAC on the interface identified by
* %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_NEW_PATH: Add a mesh path with given attributes to the
* the interface identified by %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_DEL_PATH: Remove a mesh path identified by %NL80211_ATTR_MAC
* or, if no MAC address given, all mesh paths, on the interface identified
* by %NL80211_ATTR_IFINDEX.
* @NL80211_CMD_SET_BSS: Set BSS attributes for BSS identified by
* %NL80211_ATTR_IFINDEX.
*
* @NL80211_CMD_GET_REG: ask the wireless core to send us its currently set
* regulatory domain.
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
* @NL80211_CMD_SET_REG: Set current regulatory domain. CRDA sends this command
* after being queried by the kernel. CRDA replies by sending a regulatory
* domain structure which consists of %NL80211_ATTR_REG_ALPHA set to our
* current alpha2 if it found a match. It also provides
* NL80211_ATTR_REG_RULE_FLAGS, and a set of regulatory rules. Each
* regulatory rule is a nested set of attributes given by
* %NL80211_ATTR_REG_RULE_FREQ_[START|END] and
* %NL80211_ATTR_FREQ_RANGE_MAX_BW with an attached power rule given by
* %NL80211_ATTR_REG_RULE_POWER_MAX_ANT_GAIN and
* %NL80211_ATTR_REG_RULE_POWER_MAX_EIRP.
* @NL80211_CMD_REQ_SET_REG: ask the wireless core to set the regulatory domain
* to the the specified ISO/IEC 3166-1 alpha2 country code. The core will
* store this as a valid request and then query userspace for it.
*
* @NL80211_CMD_GET_MESH_PARAMS: Get mesh networking properties for the
* interface identified by %NL80211_ATTR_IFINDEX
*
* @NL80211_CMD_SET_MESH_PARAMS: Set mesh networking properties for the
* interface identified by %NL80211_ATTR_IFINDEX
*
* @NL80211_CMD_SET_MGMT_EXTRA_IE: Set extra IEs for management frames. The
* interface is identified with %NL80211_ATTR_IFINDEX and the management
* frame subtype with %NL80211_ATTR_MGMT_SUBTYPE. The extra IE data to be
* added to the end of the specified management frame is specified with
* %NL80211_ATTR_IE. If the command succeeds, the requested data will be
* added to all specified management frames generated by
* kernel/firmware/driver.
* Note: This command has been removed and it is only reserved at this
* point to avoid re-using existing command number. The functionality this
* command was planned for has been provided with cleaner design with the
* option to specify additional IEs in NL80211_CMD_TRIGGER_SCAN,
* NL80211_CMD_AUTHENTICATE, NL80211_CMD_ASSOCIATE,
* NL80211_CMD_DEAUTHENTICATE, and NL80211_CMD_DISASSOCIATE.
*
* @NL80211_CMD_GET_SCAN: get scan results
* @NL80211_CMD_TRIGGER_SCAN: trigger a new scan with the given parameters
* @NL80211_CMD_NEW_SCAN_RESULTS: scan notification (as a reply to
* NL80211_CMD_GET_SCAN and on the "scan" multicast group)
* @NL80211_CMD_SCAN_ABORTED: scan was aborted, for unspecified reasons,
* partial scan results may be available
*
* @NL80211_CMD_REG_CHANGE: indicates to userspace the regulatory domain
* has been changed and provides details of the request information
* that caused the change such as who initiated the regulatory request
* (%NL80211_ATTR_REG_INITIATOR), the wiphy_idx
* (%NL80211_ATTR_REG_ALPHA2) on which the request was made from if
* the initiator was %NL80211_REGDOM_SET_BY_COUNTRY_IE or
* %NL80211_REGDOM_SET_BY_DRIVER, the type of regulatory domain
* set (%NL80211_ATTR_REG_TYPE), if the type of regulatory domain is
* %NL80211_REG_TYPE_COUNTRY the alpha2 to which we have moved on
* to (%NL80211_ATTR_REG_ALPHA2).
* @NL80211_CMD_REG_BEACON_HINT: indicates to userspace that an AP beacon
* has been found while world roaming thus enabling active scan or
* any mode of operation that initiates TX (beacons) on a channel
* where we would not have been able to do either before. As an example
* if you are world roaming (regulatory domain set to world or if your
* driver is using a custom world roaming regulatory domain) and while
* doing a passive scan on the 5 GHz band you find an AP there (if not
* on a DFS channel) you will now be able to actively scan for that AP
* or use AP mode on your card on that same channel. Note that this will
* never be used for channels 1-11 on the 2 GHz band as they are always
* enabled world wide. This beacon hint is only sent if your device had
* either disabled active scanning or beaconing on a channel. We send to
* userspace the wiphy on which we removed a restriction from
* (%NL80211_ATTR_WIPHY) and the channel on which this occurred
* before (%NL80211_ATTR_FREQ_BEFORE) and after (%NL80211_ATTR_FREQ_AFTER)
* the beacon hint was processed.
*
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
* @NL80211_CMD_AUTHENTICATE: authentication request and notification.
* This command is used both as a command (request to authenticate) and
* as an event on the "mlme" multicast group indicating completion of the
* authentication process.
* When used as a command, %NL80211_ATTR_IFINDEX is used to identify the
* interface. %NL80211_ATTR_MAC is used to specify PeerSTAAddress (and
* BSSID in case of station mode). %NL80211_ATTR_SSID is used to specify
* the SSID (mainly for association, but is included in authentication
* request, too, to help BSS selection. %NL80211_ATTR_WIPHY_FREQ is used
* to specify the frequence of the channel in MHz. %NL80211_ATTR_AUTH_TYPE
* is used to specify the authentication type. %NL80211_ATTR_IE is used to
* define IEs (VendorSpecificInfo, but also including RSN IE and FT IEs)
* to be added to the frame.
* When used as an event, this reports reception of an Authentication
* frame in station and IBSS modes when the local MLME processed the
* frame, i.e., it was for the local STA and was received in correct
* state. This is similar to MLME-AUTHENTICATE.confirm primitive in the
* MLME SAP interface (kernel providing MLME, userspace SME). The
* included %NL80211_ATTR_FRAME attribute contains the management frame
* (including both the header and frame body, but not FCS). This event is
* also used to indicate if the authentication attempt timed out. In that
* case the %NL80211_ATTR_FRAME attribute is replaced with a
* %NL80211_ATTR_TIMED_OUT flag (and %NL80211_ATTR_MAC to indicate which
* pending authentication timed out).
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
* @NL80211_CMD_ASSOCIATE: association request and notification; like
* NL80211_CMD_AUTHENTICATE but for Association and Reassociation
* (similar to MLME-ASSOCIATE.request, MLME-REASSOCIATE.request,
* MLME-ASSOCIATE.confirm or MLME-REASSOCIATE.confirm primitives).
* @NL80211_CMD_DEAUTHENTICATE: deauthentication request and notification; like
* NL80211_CMD_AUTHENTICATE but for Deauthentication frames (similar to
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
* MLME-DEAUTHENTICATION.request and MLME-DEAUTHENTICATE.indication
* primitives).
* @NL80211_CMD_DISASSOCIATE: disassociation request and notification; like
* NL80211_CMD_AUTHENTICATE but for Disassociation frames (similar to
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
* MLME-DISASSOCIATE.request and MLME-DISASSOCIATE.indication primitives).
*
* @NL80211_CMD_MICHAEL_MIC_FAILURE: notification of a locally detected Michael
* MIC (part of TKIP) failure; sent on the "mlme" multicast group; the
* event includes %NL80211_ATTR_MAC to describe the source MAC address of
* the frame with invalid MIC, %NL80211_ATTR_KEY_TYPE to show the key
* type, %NL80211_ATTR_KEY_IDX to indicate the key identifier, and
* %NL80211_ATTR_KEY_SEQ to indicate the TSC value of the frame; this
* event matches with MLME-MICHAELMICFAILURE.indication() primitive
*
* @NL80211_CMD_JOIN_IBSS: Join a new IBSS -- given at least an SSID and a
* FREQ attribute (for the initial frequency if no peer can be found)
* and optionally a MAC (as BSSID) and FREQ_FIXED attribute if those
* should be fixed rather than automatically determined. Can only be
* executed on a network interface that is UP, and fixed BSSID/FREQ
* may be rejected. Another optional parameter is the beacon interval,
* given in the %NL80211_ATTR_BEACON_INTERVAL attribute, which if not
* given defaults to 100 TU (102.4ms).
* @NL80211_CMD_LEAVE_IBSS: Leave the IBSS -- no special arguments, the IBSS is
* determined by the network interface.
*
* @NL80211_CMD_TESTMODE: testmode command, takes a wiphy (or ifindex) attribute
* to identify the device, and the TESTDATA blob attribute to pass through
* to the driver.
*
* @NL80211_CMD_CONNECT: connection request and notification; this command
* requests to connect to a specified network but without separating
* auth and assoc steps. For this, you need to specify the SSID in a
* %NL80211_ATTR_SSID attribute, and can optionally specify the association
* IEs in %NL80211_ATTR_IE, %NL80211_ATTR_AUTH_TYPE, %NL80211_ATTR_MAC,
* %NL80211_ATTR_WIPHY_FREQ and %NL80211_ATTR_CONTROL_PORT.
* It is also sent as an event, with the BSSID and response IEs when the
* connection is established or failed to be established. This can be
* determined by the STATUS_CODE attribute.
* @NL80211_CMD_ROAM: request that the card roam (currently not implemented),
* sent as an event when the card/driver roamed by itself.
* @NL80211_CMD_DISCONNECT: drop a given connection; also used to notify
* userspace that a connection was dropped by the AP or due to other
* reasons, for this the %NL80211_ATTR_DISCONNECTED_BY_AP and
* %NL80211_ATTR_REASON_CODE attributes are used.
*
* @NL80211_CMD_MAX: highest used command number
* @__NL80211_CMD_AFTER_LAST: internal use
*/
enum nl80211_commands {
/* don't change the order or add anything inbetween, this is ABI! */
NL80211_CMD_UNSPEC,
NL80211_CMD_GET_WIPHY, /* can dump */
NL80211_CMD_SET_WIPHY,
NL80211_CMD_NEW_WIPHY,
NL80211_CMD_DEL_WIPHY,
NL80211_CMD_GET_INTERFACE, /* can dump */
NL80211_CMD_SET_INTERFACE,
NL80211_CMD_NEW_INTERFACE,
NL80211_CMD_DEL_INTERFACE,
NL80211_CMD_GET_KEY,
NL80211_CMD_SET_KEY,
NL80211_CMD_NEW_KEY,
NL80211_CMD_DEL_KEY,
NL80211_CMD_GET_BEACON,
NL80211_CMD_SET_BEACON,
NL80211_CMD_NEW_BEACON,
NL80211_CMD_DEL_BEACON,
NL80211_CMD_GET_STATION,
NL80211_CMD_SET_STATION,
NL80211_CMD_NEW_STATION,
NL80211_CMD_DEL_STATION,
NL80211_CMD_GET_MPATH,
NL80211_CMD_SET_MPATH,
NL80211_CMD_NEW_MPATH,
NL80211_CMD_DEL_MPATH,
NL80211_CMD_SET_BSS,
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
NL80211_CMD_SET_REG,
NL80211_CMD_REQ_SET_REG,
NL80211_CMD_GET_MESH_PARAMS,
NL80211_CMD_SET_MESH_PARAMS,
NL80211_CMD_SET_MGMT_EXTRA_IE /* reserved; not used */,
NL80211_CMD_GET_REG,
NL80211_CMD_GET_SCAN,
NL80211_CMD_TRIGGER_SCAN,
NL80211_CMD_NEW_SCAN_RESULTS,
NL80211_CMD_SCAN_ABORTED,
NL80211_CMD_REG_CHANGE,
NL80211_CMD_AUTHENTICATE,
NL80211_CMD_ASSOCIATE,
NL80211_CMD_DEAUTHENTICATE,
NL80211_CMD_DISASSOCIATE,
NL80211_CMD_MICHAEL_MIC_FAILURE,
NL80211_CMD_REG_BEACON_HINT,
NL80211_CMD_JOIN_IBSS,
NL80211_CMD_LEAVE_IBSS,
NL80211_CMD_TESTMODE,
NL80211_CMD_CONNECT,
NL80211_CMD_ROAM,
NL80211_CMD_DISCONNECT,
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
/* add new commands above here */
/* used to define NL80211_CMD_MAX below */
__NL80211_CMD_AFTER_LAST,
NL80211_CMD_MAX = __NL80211_CMD_AFTER_LAST - 1
};
/*
* Allow user space programs to use #ifdef on new commands by defining them
* here
*/
#define NL80211_CMD_SET_BSS NL80211_CMD_SET_BSS
#define NL80211_CMD_SET_MGMT_EXTRA_IE NL80211_CMD_SET_MGMT_EXTRA_IE
#define NL80211_CMD_REG_CHANGE NL80211_CMD_REG_CHANGE
#define NL80211_CMD_AUTHENTICATE NL80211_CMD_AUTHENTICATE
#define NL80211_CMD_ASSOCIATE NL80211_CMD_ASSOCIATE
#define NL80211_CMD_DEAUTHENTICATE NL80211_CMD_DEAUTHENTICATE
#define NL80211_CMD_DISASSOCIATE NL80211_CMD_DISASSOCIATE
#define NL80211_CMD_REG_BEACON_HINT NL80211_CMD_REG_BEACON_HINT
/**
* enum nl80211_attrs - nl80211 netlink attributes
*
* @NL80211_ATTR_UNSPEC: unspecified attribute to catch errors
*
* @NL80211_ATTR_WIPHY: index of wiphy to operate on, cf.
* /sys/class/ieee80211/<phyname>/index
* @NL80211_ATTR_WIPHY_NAME: wiphy name (used for renaming)
* @NL80211_ATTR_WIPHY_TXQ_PARAMS: a nested array of TX queue parameters
* @NL80211_ATTR_WIPHY_FREQ: frequency of the selected channel in MHz
* @NL80211_ATTR_WIPHY_CHANNEL_TYPE: included with NL80211_ATTR_WIPHY_FREQ
* if HT20 or HT40 are allowed (i.e., 802.11n disabled if not included):
* NL80211_CHAN_NO_HT = HT not allowed (i.e., same as not including
* this attribute)
* NL80211_CHAN_HT20 = HT20 only
* NL80211_CHAN_HT40MINUS = secondary channel is below the primary channel
* NL80211_CHAN_HT40PLUS = secondary channel is above the primary channel
* @NL80211_ATTR_WIPHY_RETRY_SHORT: TX retry limit for frames whose length is
* less than or equal to the RTS threshold; allowed range: 1..255;
* dot11ShortRetryLimit; u8
* @NL80211_ATTR_WIPHY_RETRY_LONG: TX retry limit for frames whose length is
* greater than the RTS threshold; allowed range: 1..255;
* dot11ShortLongLimit; u8
* @NL80211_ATTR_WIPHY_FRAG_THRESHOLD: fragmentation threshold, i.e., maximum
* length in octets for frames; allowed range: 256..8000, disable
* fragmentation with (u32)-1; dot11FragmentationThreshold; u32
* @NL80211_ATTR_WIPHY_RTS_THRESHOLD: RTS threshold (TX frames with length
* larger than or equal to this use RTS/CTS handshake); allowed range:
* 0..65536, disable with (u32)-1; dot11RTSThreshold; u32
*
* @NL80211_ATTR_IFINDEX: network interface index of the device to operate on
* @NL80211_ATTR_IFNAME: network interface name
* @NL80211_ATTR_IFTYPE: type of virtual interface, see &enum nl80211_iftype
*
* @NL80211_ATTR_MAC: MAC address (various uses)
*
* @NL80211_ATTR_KEY_DATA: (temporal) key data; for TKIP this consists of
* 16 bytes encryption key followed by 8 bytes each for TX and RX MIC
* keys
* @NL80211_ATTR_KEY_IDX: key ID (u8, 0-3)
* @NL80211_ATTR_KEY_CIPHER: key cipher suite (u32, as defined by IEEE 802.11
* section 7.3.2.25.1, e.g. 0x000FAC04)
* @NL80211_ATTR_KEY_SEQ: transmit key sequence number (IV/PN) for TKIP and
* CCMP keys, each six bytes in little endian
*
* @NL80211_ATTR_BEACON_INTERVAL: beacon interval in TU
* @NL80211_ATTR_DTIM_PERIOD: DTIM period for beaconing
* @NL80211_ATTR_BEACON_HEAD: portion of the beacon before the TIM IE
* @NL80211_ATTR_BEACON_TAIL: portion of the beacon after the TIM IE
*
* @NL80211_ATTR_STA_AID: Association ID for the station (u16)
* @NL80211_ATTR_STA_FLAGS: flags, nested element with NLA_FLAG attributes of
* &enum nl80211_sta_flags (deprecated, use %NL80211_ATTR_STA_FLAGS2)
* @NL80211_ATTR_STA_LISTEN_INTERVAL: listen interval as defined by
* IEEE 802.11 7.3.1.6 (u16).
* @NL80211_ATTR_STA_SUPPORTED_RATES: supported rates, array of supported
* rates as defined by IEEE 802.11 7.3.2.2 but without the length
* restriction (at most %NL80211_MAX_SUPP_RATES).
* @NL80211_ATTR_STA_VLAN: interface index of VLAN interface to move station
* to, or the AP interface the station was originally added to to.
* @NL80211_ATTR_STA_INFO: information about a station, part of station info
* given for %NL80211_CMD_GET_STATION, nested attribute containing
* info as possible, see &enum nl80211_sta_info.
*
* @NL80211_ATTR_WIPHY_BANDS: Information about an operating bands,
* consisting of a nested array.
*
* @NL80211_ATTR_MESH_ID: mesh id (1-32 bytes).
* @NL80211_ATTR_PLINK_ACTION: action to perform on the mesh peer link.
* @NL80211_ATTR_MPATH_NEXT_HOP: MAC address of the next hop for a mesh path.
* @NL80211_ATTR_MPATH_INFO: information about a mesh_path, part of mesh path
* info given for %NL80211_CMD_GET_MPATH, nested attribute described at
* &enum nl80211_mpath_info.
*
* @NL80211_ATTR_MNTR_FLAGS: flags, nested element with NLA_FLAG attributes of
* &enum nl80211_mntr_flags.
*
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
* @NL80211_ATTR_REG_ALPHA2: an ISO-3166-alpha2 country code for which the
* current regulatory domain should be set to or is already set to.
* For example, 'CR', for Costa Rica. This attribute is used by the kernel
* to query the CRDA to retrieve one regulatory domain. This attribute can
* also be used by userspace to query the kernel for the currently set
* regulatory domain. We chose an alpha2 as that is also used by the
* IEEE-802.11d country information element to identify a country.
* Users can also simply ask the wireless core to set regulatory domain
* to a specific alpha2.
* @NL80211_ATTR_REG_RULES: a nested array of regulatory domain regulatory
* rules.
*
* @NL80211_ATTR_BSS_CTS_PROT: whether CTS protection is enabled (u8, 0 or 1)
* @NL80211_ATTR_BSS_SHORT_PREAMBLE: whether short preamble is enabled
* (u8, 0 or 1)
* @NL80211_ATTR_BSS_SHORT_SLOT_TIME: whether short slot time enabled
* (u8, 0 or 1)
* @NL80211_ATTR_BSS_BASIC_RATES: basic rates, array of basic
* rates in format defined by IEEE 802.11 7.3.2.2 but without the length
* restriction (at most %NL80211_MAX_SUPP_RATES).
*
* @NL80211_ATTR_HT_CAPABILITY: HT Capability information element (from
* association request when used with NL80211_CMD_NEW_STATION)
*
* @NL80211_ATTR_SUPPORTED_IFTYPES: nested attribute containing all
* supported interface types, each a flag attribute with the number
* of the interface mode.
*
* @NL80211_ATTR_MGMT_SUBTYPE: Management frame subtype for
* %NL80211_CMD_SET_MGMT_EXTRA_IE.
*
* @NL80211_ATTR_IE: Information element(s) data (used, e.g., with
* %NL80211_CMD_SET_MGMT_EXTRA_IE).
*
* @NL80211_ATTR_MAX_NUM_SCAN_SSIDS: number of SSIDs you can scan with
* a single scan request, a wiphy attribute.
* @NL80211_ATTR_MAX_SCAN_IE_LEN: maximum length of information elements
* that can be added to a scan request
*
* @NL80211_ATTR_SCAN_FREQUENCIES: nested attribute with frequencies (in MHz)
* @NL80211_ATTR_SCAN_SSIDS: nested attribute with SSIDs, leave out for passive
* scanning and include a zero-length SSID (wildcard) for wildcard scan
* @NL80211_ATTR_SCAN_GENERATION: the scan generation increases whenever the
* scan result list changes (BSS expired or added) so that applications
* can verify that they got a single, consistent snapshot (when all dump
* messages carried the same generation number)
* @NL80211_ATTR_BSS: scan result BSS
*
* @NL80211_ATTR_REG_INITIATOR: indicates who requested the regulatory domain
* currently in effect. This could be any of the %NL80211_REGDOM_SET_BY_*
* @NL80211_ATTR_REG_TYPE: indicates the type of the regulatory domain currently
* set. This can be one of the nl80211_reg_type (%NL80211_REGDOM_TYPE_*)
*
* @NL80211_ATTR_SUPPORTED_COMMANDS: wiphy attribute that specifies
* an array of command numbers (i.e. a mapping index to command number)
* that the driver for the given wiphy supports.
*
* @NL80211_ATTR_FRAME: frame data (binary attribute), including frame header
* and body, but not FCS; used, e.g., with NL80211_CMD_AUTHENTICATE and
* NL80211_CMD_ASSOCIATE events
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
* @NL80211_ATTR_SSID: SSID (binary attribute, 0..32 octets)
* @NL80211_ATTR_AUTH_TYPE: AuthenticationType, see &enum nl80211_auth_type,
* represented as a u32
* @NL80211_ATTR_REASON_CODE: ReasonCode for %NL80211_CMD_DEAUTHENTICATE and
* %NL80211_CMD_DISASSOCIATE, u16
*
* @NL80211_ATTR_KEY_TYPE: Key Type, see &enum nl80211_key_type, represented as
* a u32
*
* @NL80211_ATTR_FREQ_BEFORE: A channel which has suffered a regulatory change
* due to considerations from a beacon hint. This attribute reflects
* the state of the channel _before_ the beacon hint processing. This
* attributes consists of a nested attribute containing
* NL80211_FREQUENCY_ATTR_*
* @NL80211_ATTR_FREQ_AFTER: A channel which has suffered a regulatory change
* due to considerations from a beacon hint. This attribute reflects
* the state of the channel _after_ the beacon hint processing. This
* attributes consists of a nested attribute containing
* NL80211_FREQUENCY_ATTR_*
*
* @NL80211_ATTR_CIPHER_SUITES: a set of u32 values indicating the supported
* cipher suites
*
* @NL80211_ATTR_FREQ_FIXED: a flag indicating the IBSS should not try to look
* for other networks on different channels
*
* @NL80211_ATTR_TIMED_OUT: a flag indicating than an operation timed out; this
* is used, e.g., with %NL80211_CMD_AUTHENTICATE event
*
* @NL80211_ATTR_USE_MFP: Whether management frame protection (IEEE 802.11w) is
* used for the association (&enum nl80211_mfp, represented as a u32);
* this attribute can be used
* with %NL80211_CMD_ASSOCIATE request
*
* @NL80211_ATTR_STA_FLAGS2: Attribute containing a
* &struct nl80211_sta_flag_update.
*
* @NL80211_ATTR_CONTROL_PORT: A flag indicating whether user space controls
* IEEE 802.1X port, i.e., sets/clears %NL80211_STA_FLAG_AUTHORIZED, in
* station mode. If the flag is included in %NL80211_CMD_ASSOCIATE
* request, the driver will assume that the port is unauthorized until
* authorized by user space. Otherwise, port is marked authorized by
* default in station mode.
*
* @NL80211_ATTR_TESTDATA: Testmode data blob, passed through to the driver.
* We recommend using nested, driver-specific attributes within this.
*
* @NL80211_ATTR_DISCONNECTED_BY_AP: A flag indicating that the DISCONNECT
* event was due to the AP disconnecting the station, and not due to
* a local disconnect request.
* @NL80211_ATTR_STATUS_CODE: StatusCode for the %NL80211_CMD_CONNECT
* event (u16)
* @NL80211_ATTR_PRIVACY: Flag attribute, used with connect(), indicating
* that protected APs should be used.
*
* @NL80211_ATTR_CIPHERS_PAIRWISE: Used with CONNECT and ASSOCIATE to
* indicate which unicast key ciphers will be used with the connection
* (an array of u32).
* @NL80211_ATTR_CIPHER_GROUP: Used with CONNECT and ASSOCIATE to indicate
* which group key cipher will be used with the connection (a u32).
* @NL80211_ATTR_WPA_VERSIONS: Used with CONNECT and ASSOCIATE to indicate
* which WPA version(s) the AP we want to associate with is using
* (a u32 with flags from &enum nl80211_wpa_versions).
* @NL80211_ATTR_AKM_SUITES: Used with CONNECT and ASSOCIATE to indicate
* which key management algorithm(s) to use (an array of u32).
*
* @NL80211_ATTR_REQ_IE: (Re)association request information elements as
* sent out by the card, for ROAM and successful CONNECT events.
* @NL80211_ATTR_RESP_IE: (Re)association response information elements as
* sent by peer, for ROAM and successful CONNECT events.
*
* @NL80211_ATTR_PREV_BSSID: previous BSSID, to be used by in ASSOCIATE
* commands to specify using a reassociate frame
*
* @NL80211_ATTR_KEY: key information in a nested attribute with
* %NL80211_KEY_* sub-attributes
* @NL80211_ATTR_KEYS: array of keys for static WEP keys for connect()
* and join_ibss(), key information is in a nested attribute each
* with %NL80211_KEY_* sub-attributes
*
* @NL80211_ATTR_MAX: highest attribute number currently defined
* @__NL80211_ATTR_AFTER_LAST: internal use
*/
enum nl80211_attrs {
/* don't change the order or add anything inbetween, this is ABI! */
NL80211_ATTR_UNSPEC,
NL80211_ATTR_WIPHY,
NL80211_ATTR_WIPHY_NAME,
NL80211_ATTR_IFINDEX,
NL80211_ATTR_IFNAME,
NL80211_ATTR_IFTYPE,
NL80211_ATTR_MAC,
NL80211_ATTR_KEY_DATA,
NL80211_ATTR_KEY_IDX,
NL80211_ATTR_KEY_CIPHER,
NL80211_ATTR_KEY_SEQ,
NL80211_ATTR_KEY_DEFAULT,
NL80211_ATTR_BEACON_INTERVAL,
NL80211_ATTR_DTIM_PERIOD,
NL80211_ATTR_BEACON_HEAD,
NL80211_ATTR_BEACON_TAIL,
NL80211_ATTR_STA_AID,
NL80211_ATTR_STA_FLAGS,
NL80211_ATTR_STA_LISTEN_INTERVAL,
NL80211_ATTR_STA_SUPPORTED_RATES,
NL80211_ATTR_STA_VLAN,
NL80211_ATTR_STA_INFO,
NL80211_ATTR_WIPHY_BANDS,
NL80211_ATTR_MNTR_FLAGS,
NL80211_ATTR_MESH_ID,
NL80211_ATTR_STA_PLINK_ACTION,
NL80211_ATTR_MPATH_NEXT_HOP,
NL80211_ATTR_MPATH_INFO,
NL80211_ATTR_BSS_CTS_PROT,
NL80211_ATTR_BSS_SHORT_PREAMBLE,
NL80211_ATTR_BSS_SHORT_SLOT_TIME,
NL80211_ATTR_HT_CAPABILITY,
NL80211_ATTR_SUPPORTED_IFTYPES,
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
NL80211_ATTR_REG_ALPHA2,
NL80211_ATTR_REG_RULES,
NL80211_ATTR_MESH_PARAMS,
NL80211_ATTR_BSS_BASIC_RATES,
NL80211_ATTR_WIPHY_TXQ_PARAMS,
NL80211_ATTR_WIPHY_FREQ,
NL80211_ATTR_WIPHY_CHANNEL_TYPE,
NL80211_ATTR_KEY_DEFAULT_MGMT,
NL80211_ATTR_MGMT_SUBTYPE,
NL80211_ATTR_IE,
NL80211_ATTR_MAX_NUM_SCAN_SSIDS,
NL80211_ATTR_SCAN_FREQUENCIES,
NL80211_ATTR_SCAN_SSIDS,
NL80211_ATTR_SCAN_GENERATION,
NL80211_ATTR_BSS,
NL80211_ATTR_REG_INITIATOR,
NL80211_ATTR_REG_TYPE,
NL80211_ATTR_SUPPORTED_COMMANDS,
NL80211_ATTR_FRAME,
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
NL80211_ATTR_SSID,
NL80211_ATTR_AUTH_TYPE,
NL80211_ATTR_REASON_CODE,
NL80211_ATTR_KEY_TYPE,
NL80211_ATTR_MAX_SCAN_IE_LEN,
NL80211_ATTR_CIPHER_SUITES,
NL80211_ATTR_FREQ_BEFORE,
NL80211_ATTR_FREQ_AFTER,
NL80211_ATTR_FREQ_FIXED,
NL80211_ATTR_WIPHY_RETRY_SHORT,
NL80211_ATTR_WIPHY_RETRY_LONG,
NL80211_ATTR_WIPHY_FRAG_THRESHOLD,
NL80211_ATTR_WIPHY_RTS_THRESHOLD,
NL80211_ATTR_TIMED_OUT,
NL80211_ATTR_USE_MFP,
NL80211_ATTR_STA_FLAGS2,
NL80211_ATTR_CONTROL_PORT,
NL80211_ATTR_TESTDATA,
NL80211_ATTR_PRIVACY,
NL80211_ATTR_DISCONNECTED_BY_AP,
NL80211_ATTR_STATUS_CODE,
NL80211_ATTR_CIPHER_SUITES_PAIRWISE,
NL80211_ATTR_CIPHER_SUITE_GROUP,
NL80211_ATTR_WPA_VERSIONS,
NL80211_ATTR_AKM_SUITES,
NL80211_ATTR_REQ_IE,
NL80211_ATTR_RESP_IE,
NL80211_ATTR_PREV_BSSID,
NL80211_ATTR_KEY,
NL80211_ATTR_KEYS,
/* add attributes here, update the policy in nl80211.c */
__NL80211_ATTR_AFTER_LAST,
NL80211_ATTR_MAX = __NL80211_ATTR_AFTER_LAST - 1
};
/*
* Allow user space programs to use #ifdef on new attributes by defining them
* here
*/
#define NL80211_CMD_CONNECT NL80211_CMD_CONNECT
#define NL80211_ATTR_HT_CAPABILITY NL80211_ATTR_HT_CAPABILITY
#define NL80211_ATTR_BSS_BASIC_RATES NL80211_ATTR_BSS_BASIC_RATES
#define NL80211_ATTR_WIPHY_TXQ_PARAMS NL80211_ATTR_WIPHY_TXQ_PARAMS
#define NL80211_ATTR_WIPHY_FREQ NL80211_ATTR_WIPHY_FREQ
#define NL80211_ATTR_WIPHY_CHANNEL_TYPE NL80211_ATTR_WIPHY_CHANNEL_TYPE
#define NL80211_ATTR_MGMT_SUBTYPE NL80211_ATTR_MGMT_SUBTYPE
#define NL80211_ATTR_IE NL80211_ATTR_IE
#define NL80211_ATTR_REG_INITIATOR NL80211_ATTR_REG_INITIATOR
#define NL80211_ATTR_REG_TYPE NL80211_ATTR_REG_TYPE
#define NL80211_ATTR_FRAME NL80211_ATTR_FRAME
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
#define NL80211_ATTR_SSID NL80211_ATTR_SSID
#define NL80211_ATTR_AUTH_TYPE NL80211_ATTR_AUTH_TYPE
#define NL80211_ATTR_REASON_CODE NL80211_ATTR_REASON_CODE
#define NL80211_ATTR_CIPHER_SUITES_PAIRWISE NL80211_ATTR_CIPHER_SUITES_PAIRWISE
#define NL80211_ATTR_CIPHER_SUITE_GROUP NL80211_ATTR_CIPHER_SUITE_GROUP
#define NL80211_ATTR_WPA_VERSIONS NL80211_ATTR_WPA_VERSIONS
#define NL80211_ATTR_AKM_SUITES NL80211_ATTR_AKM_SUITES
#define NL80211_ATTR_KEY NL80211_ATTR_KEY
#define NL80211_ATTR_KEYS NL80211_ATTR_KEYS
#define NL80211_MAX_SUPP_RATES 32
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
#define NL80211_MAX_SUPP_REG_RULES 32
#define NL80211_TKIP_DATA_OFFSET_ENCR_KEY 0
#define NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY 16
#define NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY 24
#define NL80211_HT_CAPABILITY_LEN 26
#define NL80211_MAX_NR_CIPHER_SUITES 5
#define NL80211_MAX_NR_AKM_SUITES 2
/**
* enum nl80211_iftype - (virtual) interface types
*
* @NL80211_IFTYPE_UNSPECIFIED: unspecified type, driver decides
* @NL80211_IFTYPE_ADHOC: independent BSS member
* @NL80211_IFTYPE_STATION: managed BSS member
* @NL80211_IFTYPE_AP: access point
* @NL80211_IFTYPE_AP_VLAN: VLAN interface for access points
* @NL80211_IFTYPE_WDS: wireless distribution interface
* @NL80211_IFTYPE_MONITOR: monitor interface receiving all frames
* @NL80211_IFTYPE_MESH_POINT: mesh point
* @NL80211_IFTYPE_MAX: highest interface type number currently defined
* @__NL80211_IFTYPE_AFTER_LAST: internal use
*
* These values are used with the %NL80211_ATTR_IFTYPE
* to set the type of an interface.
*
*/
enum nl80211_iftype {
NL80211_IFTYPE_UNSPECIFIED,
NL80211_IFTYPE_ADHOC,
NL80211_IFTYPE_STATION,
NL80211_IFTYPE_AP,
NL80211_IFTYPE_AP_VLAN,
NL80211_IFTYPE_WDS,
NL80211_IFTYPE_MONITOR,
NL80211_IFTYPE_MESH_POINT,
/* keep last */
__NL80211_IFTYPE_AFTER_LAST,
NL80211_IFTYPE_MAX = __NL80211_IFTYPE_AFTER_LAST - 1
};
/**
* enum nl80211_sta_flags - station flags
*
* Station flags. When a station is added to an AP interface, it is
* assumed to be already associated (and hence authenticated.)
*
* @NL80211_STA_FLAG_AUTHORIZED: station is authorized (802.1X)
* @NL80211_STA_FLAG_SHORT_PREAMBLE: station is capable of receiving frames
* with short barker preamble
* @NL80211_STA_FLAG_WME: station is WME/QoS capable
* @NL80211_STA_FLAG_MFP: station uses management frame protection
*/
enum nl80211_sta_flags {
__NL80211_STA_FLAG_INVALID,
NL80211_STA_FLAG_AUTHORIZED,
NL80211_STA_FLAG_SHORT_PREAMBLE,
NL80211_STA_FLAG_WME,
NL80211_STA_FLAG_MFP,
/* keep last */
__NL80211_STA_FLAG_AFTER_LAST,
NL80211_STA_FLAG_MAX = __NL80211_STA_FLAG_AFTER_LAST - 1
};
/**
* struct nl80211_sta_flag_update - station flags mask/set
* @mask: mask of station flags to set
* @set: which values to set them to
*
* Both mask and set contain bits as per &enum nl80211_sta_flags.
*/
struct nl80211_sta_flag_update {
__u32 mask;
__u32 set;
} __attribute__((packed));
/**
* enum nl80211_rate_info - bitrate information
*
* These attribute types are used with %NL80211_STA_INFO_TXRATE
* when getting information about the bitrate of a station.
*
* @__NL80211_RATE_INFO_INVALID: attribute number 0 is reserved
* @NL80211_RATE_INFO_BITRATE: total bitrate (u16, 100kbit/s)
* @NL80211_RATE_INFO_MCS: mcs index for 802.11n (u8)
* @NL80211_RATE_INFO_40_MHZ_WIDTH: 40 Mhz dualchannel bitrate
* @NL80211_RATE_INFO_SHORT_GI: 400ns guard interval
* @NL80211_RATE_INFO_MAX: highest rate_info number currently defined
* @__NL80211_RATE_INFO_AFTER_LAST: internal use
*/
enum nl80211_rate_info {
__NL80211_RATE_INFO_INVALID,
NL80211_RATE_INFO_BITRATE,
NL80211_RATE_INFO_MCS,
NL80211_RATE_INFO_40_MHZ_WIDTH,
NL80211_RATE_INFO_SHORT_GI,
/* keep last */
__NL80211_RATE_INFO_AFTER_LAST,
NL80211_RATE_INFO_MAX = __NL80211_RATE_INFO_AFTER_LAST - 1
};
/**
* enum nl80211_sta_info - station information
*
* These attribute types are used with %NL80211_ATTR_STA_INFO
* when getting information about a station.
*
* @__NL80211_STA_INFO_INVALID: attribute number 0 is reserved
* @NL80211_STA_INFO_INACTIVE_TIME: time since last activity (u32, msecs)
* @NL80211_STA_INFO_RX_BYTES: total received bytes (u32, from this station)
* @NL80211_STA_INFO_TX_BYTES: total transmitted bytes (u32, to this station)
* @__NL80211_STA_INFO_AFTER_LAST: internal
* @NL80211_STA_INFO_MAX: highest possible station info attribute
* @NL80211_STA_INFO_SIGNAL: signal strength of last received PPDU (u8, dBm)
* @NL80211_STA_INFO_TX_BITRATE: current unicast tx rate, nested attribute
* containing info as possible, see &enum nl80211_sta_info_txrate.
* @NL80211_STA_INFO_RX_PACKETS: total received packet (u32, from this station)
* @NL80211_STA_INFO_TX_PACKETS: total transmitted packets (u32, to this
* station)
*/
enum nl80211_sta_info {
__NL80211_STA_INFO_INVALID,
NL80211_STA_INFO_INACTIVE_TIME,
NL80211_STA_INFO_RX_BYTES,
NL80211_STA_INFO_TX_BYTES,
NL80211_STA_INFO_LLID,
NL80211_STA_INFO_PLID,
NL80211_STA_INFO_PLINK_STATE,
NL80211_STA_INFO_SIGNAL,
NL80211_STA_INFO_TX_BITRATE,
NL80211_STA_INFO_RX_PACKETS,
NL80211_STA_INFO_TX_PACKETS,
/* keep last */
__NL80211_STA_INFO_AFTER_LAST,
NL80211_STA_INFO_MAX = __NL80211_STA_INFO_AFTER_LAST - 1
};
/**
* enum nl80211_mpath_flags - nl80211 mesh path flags
*
* @NL80211_MPATH_FLAG_ACTIVE: the mesh path is active
* @NL80211_MPATH_FLAG_RESOLVING: the mesh path discovery process is running
* @NL80211_MPATH_FLAG_DSN_VALID: the mesh path contains a valid DSN
* @NL80211_MPATH_FLAG_FIXED: the mesh path has been manually set
* @NL80211_MPATH_FLAG_RESOLVED: the mesh path discovery process succeeded
*/
enum nl80211_mpath_flags {
NL80211_MPATH_FLAG_ACTIVE = 1<<0,
NL80211_MPATH_FLAG_RESOLVING = 1<<1,
NL80211_MPATH_FLAG_DSN_VALID = 1<<2,
NL80211_MPATH_FLAG_FIXED = 1<<3,
NL80211_MPATH_FLAG_RESOLVED = 1<<4,
};
/**
* enum nl80211_mpath_info - mesh path information
*
* These attribute types are used with %NL80211_ATTR_MPATH_INFO when getting
* information about a mesh path.
*
* @__NL80211_MPATH_INFO_INVALID: attribute number 0 is reserved
* @NL80211_ATTR_MPATH_FRAME_QLEN: number of queued frames for this destination
* @NL80211_ATTR_MPATH_DSN: destination sequence number
* @NL80211_ATTR_MPATH_METRIC: metric (cost) of this mesh path
* @NL80211_ATTR_MPATH_EXPTIME: expiration time for the path, in msec from now
* @NL80211_ATTR_MPATH_FLAGS: mesh path flags, enumerated in
* &enum nl80211_mpath_flags;
* @NL80211_ATTR_MPATH_DISCOVERY_TIMEOUT: total path discovery timeout, in msec
* @NL80211_ATTR_MPATH_DISCOVERY_RETRIES: mesh path discovery retries
*/
enum nl80211_mpath_info {
__NL80211_MPATH_INFO_INVALID,
NL80211_MPATH_INFO_FRAME_QLEN,
NL80211_MPATH_INFO_DSN,
NL80211_MPATH_INFO_METRIC,
NL80211_MPATH_INFO_EXPTIME,
NL80211_MPATH_INFO_FLAGS,
NL80211_MPATH_INFO_DISCOVERY_TIMEOUT,
NL80211_MPATH_INFO_DISCOVERY_RETRIES,
/* keep last */
__NL80211_MPATH_INFO_AFTER_LAST,
NL80211_MPATH_INFO_MAX = __NL80211_MPATH_INFO_AFTER_LAST - 1
};
/**
* enum nl80211_band_attr - band attributes
* @__NL80211_BAND_ATTR_INVALID: attribute number 0 is reserved
* @NL80211_BAND_ATTR_FREQS: supported frequencies in this band,
* an array of nested frequency attributes
* @NL80211_BAND_ATTR_RATES: supported bitrates in this band,
* an array of nested bitrate attributes
* @NL80211_BAND_ATTR_HT_MCS_SET: 16-byte attribute containing the MCS set as
* defined in 802.11n
* @NL80211_BAND_ATTR_HT_CAPA: HT capabilities, as in the HT information IE
* @NL80211_BAND_ATTR_HT_AMPDU_FACTOR: A-MPDU factor, as in 11n
* @NL80211_BAND_ATTR_HT_AMPDU_DENSITY: A-MPDU density, as in 11n
*/
enum nl80211_band_attr {
__NL80211_BAND_ATTR_INVALID,
NL80211_BAND_ATTR_FREQS,
NL80211_BAND_ATTR_RATES,
NL80211_BAND_ATTR_HT_MCS_SET,
NL80211_BAND_ATTR_HT_CAPA,
NL80211_BAND_ATTR_HT_AMPDU_FACTOR,
NL80211_BAND_ATTR_HT_AMPDU_DENSITY,
/* keep last */
__NL80211_BAND_ATTR_AFTER_LAST,
NL80211_BAND_ATTR_MAX = __NL80211_BAND_ATTR_AFTER_LAST - 1
};
#define NL80211_BAND_ATTR_HT_CAPA NL80211_BAND_ATTR_HT_CAPA
/**
* enum nl80211_frequency_attr - frequency attributes
* @NL80211_FREQUENCY_ATTR_FREQ: Frequency in MHz
* @NL80211_FREQUENCY_ATTR_DISABLED: Channel is disabled in current
* regulatory domain.
* @NL80211_FREQUENCY_ATTR_PASSIVE_SCAN: Only passive scanning is
* permitted on this channel in current regulatory domain.
* @NL80211_FREQUENCY_ATTR_NO_IBSS: IBSS networks are not permitted
* on this channel in current regulatory domain.
* @NL80211_FREQUENCY_ATTR_RADAR: Radar detection is mandatory
* on this channel in current regulatory domain.
* @NL80211_FREQUENCY_ATTR_MAX_TX_POWER: Maximum transmission power in mBm
* (100 * dBm).
*/
enum nl80211_frequency_attr {
__NL80211_FREQUENCY_ATTR_INVALID,
NL80211_FREQUENCY_ATTR_FREQ,
NL80211_FREQUENCY_ATTR_DISABLED,
NL80211_FREQUENCY_ATTR_PASSIVE_SCAN,
NL80211_FREQUENCY_ATTR_NO_IBSS,
NL80211_FREQUENCY_ATTR_RADAR,
NL80211_FREQUENCY_ATTR_MAX_TX_POWER,
/* keep last */
__NL80211_FREQUENCY_ATTR_AFTER_LAST,
NL80211_FREQUENCY_ATTR_MAX = __NL80211_FREQUENCY_ATTR_AFTER_LAST - 1
};
#define NL80211_FREQUENCY_ATTR_MAX_TX_POWER NL80211_FREQUENCY_ATTR_MAX_TX_POWER
/**
* enum nl80211_bitrate_attr - bitrate attributes
* @NL80211_BITRATE_ATTR_RATE: Bitrate in units of 100 kbps
* @NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE: Short preamble supported
* in 2.4 GHz band.
*/
enum nl80211_bitrate_attr {
__NL80211_BITRATE_ATTR_INVALID,
NL80211_BITRATE_ATTR_RATE,
NL80211_BITRATE_ATTR_2GHZ_SHORTPREAMBLE,
/* keep last */
__NL80211_BITRATE_ATTR_AFTER_LAST,
NL80211_BITRATE_ATTR_MAX = __NL80211_BITRATE_ATTR_AFTER_LAST - 1
};
/**
* enum nl80211_initiator - Indicates the initiator of a reg domain request
* @NL80211_REGDOM_SET_BY_CORE: Core queried CRDA for a dynamic world
* regulatory domain.
* @NL80211_REGDOM_SET_BY_USER: User asked the wireless core to set the
* regulatory domain.
* @NL80211_REGDOM_SET_BY_DRIVER: a wireless drivers has hinted to the
* wireless core it thinks its knows the regulatory domain we should be in.
* @NL80211_REGDOM_SET_BY_COUNTRY_IE: the wireless core has received an
* 802.11 country information element with regulatory information it
* thinks we should consider.
*/
enum nl80211_reg_initiator {
NL80211_REGDOM_SET_BY_CORE,
NL80211_REGDOM_SET_BY_USER,
NL80211_REGDOM_SET_BY_DRIVER,
NL80211_REGDOM_SET_BY_COUNTRY_IE,
};
/**
* enum nl80211_reg_type - specifies the type of regulatory domain
* @NL80211_REGDOM_TYPE_COUNTRY: the regulatory domain set is one that pertains
* to a specific country. When this is set you can count on the
* ISO / IEC 3166 alpha2 country code being valid.
* @NL80211_REGDOM_TYPE_WORLD: the regulatory set domain is the world regulatory
* domain.
* @NL80211_REGDOM_TYPE_CUSTOM_WORLD: the regulatory domain set is a custom
* driver specific world regulatory domain. These do not apply system-wide
* and are only applicable to the individual devices which have requested
* them to be applied.
* @NL80211_REGDOM_TYPE_INTERSECTION: the regulatory domain set is the product
* of an intersection between two regulatory domains -- the previously
* set regulatory domain on the system and the last accepted regulatory
* domain request to be processed.
*/
enum nl80211_reg_type {
NL80211_REGDOM_TYPE_COUNTRY,
NL80211_REGDOM_TYPE_WORLD,
NL80211_REGDOM_TYPE_CUSTOM_WORLD,
NL80211_REGDOM_TYPE_INTERSECTION,
};
cfg80211: Add new wireless regulatory infrastructure This adds the new wireless regulatory infrastructure. The main motiviation behind this was to centralize regulatory code as each driver was implementing their own regulatory solution, and to replace the initial centralized code we have where: * only 3 regulatory domains are supported: US, JP and EU * regulatory domains can only be changed through module parameter * all rules were built statically in the kernel We now have support for regulatory domains for many countries and regulatory domains are now queried through a userspace agent through udev allowing distributions to update regulatory rules without updating the kernel. Each driver can regulatory_hint() a regulatory domain based on either their EEPROM mapped regulatory domain value to a respective ISO/IEC 3166-1 country code or pass an internally built regulatory domain. We also add support to let the user set the regulatory domain through userspace in case of faulty EEPROMs to further help compliance. Support for world roaming will be added soon for cards capable of this. For more information see: http://wireless.kernel.org/en/developers/Regulatory/CRDA For now we leave an option to enable the old module parameter, ieee80211_regdom, and to build the 3 old regdomains statically (US, JP and EU). This option is CONFIG_WIRELESS_OLD_REGULATORY. These old static definitions and the module parameter is being scheduled for removal for 2.6.29. Note that if you use this you won't make use of a world regulatory domain as its pointless. If you leave this option enabled and if CRDA is present and you use US or JP we will try to ask CRDA to update us a regulatory domain for us. Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-09-10 06:19:48 +00:00
/**
* enum nl80211_reg_rule_attr - regulatory rule attributes
* @NL80211_ATTR_REG_RULE_FLAGS: a set of flags which specify additional
* considerations for a given frequency range. These are the
* &enum nl80211_reg_rule_flags.
* @NL80211_ATTR_FREQ_RANGE_START: starting frequencry for the regulatory
* rule in KHz. This is not a center of frequency but an actual regulatory
* band edge.
* @NL80211_ATTR_FREQ_RANGE_END: ending frequency for the regulatory rule
* in KHz. This is not a center a frequency but an actual regulatory
* band edge.
* @NL80211_ATTR_FREQ_RANGE_MAX_BW: maximum allowed bandwidth for this
* frequency range, in KHz.
* @NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN: the maximum allowed antenna gain
* for a given frequency range. The value is in mBi (100 * dBi).
* If you don't have one then don't send this.
* @NL80211_ATTR_POWER_RULE_MAX_EIRP: the maximum allowed EIRP for
* a given frequency range. The value is in mBm (100 * dBm).
*/
enum nl80211_reg_rule_attr {
__NL80211_REG_RULE_ATTR_INVALID,
NL80211_ATTR_REG_RULE_FLAGS,
NL80211_ATTR_FREQ_RANGE_START,
NL80211_ATTR_FREQ_RANGE_END,
NL80211_ATTR_FREQ_RANGE_MAX_BW,
NL80211_ATTR_POWER_RULE_MAX_ANT_GAIN,
NL80211_ATTR_POWER_RULE_MAX_EIRP,
/* keep last */
__NL80211_REG_RULE_ATTR_AFTER_LAST,
NL80211_REG_RULE_ATTR_MAX = __NL80211_REG_RULE_ATTR_AFTER_LAST - 1
};
/**
* enum nl80211_reg_rule_flags - regulatory rule flags
*
* @NL80211_RRF_NO_OFDM: OFDM modulation not allowed
* @NL80211_RRF_NO_CCK: CCK modulation not allowed
* @NL80211_RRF_NO_INDOOR: indoor operation not allowed
* @NL80211_RRF_NO_OUTDOOR: outdoor operation not allowed
* @NL80211_RRF_DFS: DFS support is required to be used
* @NL80211_RRF_PTP_ONLY: this is only for Point To Point links
* @NL80211_RRF_PTMP_ONLY: this is only for Point To Multi Point links
* @NL80211_RRF_PASSIVE_SCAN: passive scan is required
* @NL80211_RRF_NO_IBSS: no IBSS is allowed
*/
enum nl80211_reg_rule_flags {
NL80211_RRF_NO_OFDM = 1<<0,
NL80211_RRF_NO_CCK = 1<<1,
NL80211_RRF_NO_INDOOR = 1<<2,
NL80211_RRF_NO_OUTDOOR = 1<<3,
NL80211_RRF_DFS = 1<<4,
NL80211_RRF_PTP_ONLY = 1<<5,
NL80211_RRF_PTMP_ONLY = 1<<6,
NL80211_RRF_PASSIVE_SCAN = 1<<7,
NL80211_RRF_NO_IBSS = 1<<8,
};
/**
* enum nl80211_mntr_flags - monitor configuration flags
*
* Monitor configuration flags.
*
* @__NL80211_MNTR_FLAG_INVALID: reserved
*
* @NL80211_MNTR_FLAG_FCSFAIL: pass frames with bad FCS
* @NL80211_MNTR_FLAG_PLCPFAIL: pass frames with bad PLCP
* @NL80211_MNTR_FLAG_CONTROL: pass control frames
* @NL80211_MNTR_FLAG_OTHER_BSS: disable BSSID filtering
* @NL80211_MNTR_FLAG_COOK_FRAMES: report frames after processing.
* overrides all other flags.
*
* @__NL80211_MNTR_FLAG_AFTER_LAST: internal use
* @NL80211_MNTR_FLAG_MAX: highest possible monitor flag
*/
enum nl80211_mntr_flags {
__NL80211_MNTR_FLAG_INVALID,
NL80211_MNTR_FLAG_FCSFAIL,
NL80211_MNTR_FLAG_PLCPFAIL,
NL80211_MNTR_FLAG_CONTROL,
NL80211_MNTR_FLAG_OTHER_BSS,
NL80211_MNTR_FLAG_COOK_FRAMES,
/* keep last */
__NL80211_MNTR_FLAG_AFTER_LAST,
NL80211_MNTR_FLAG_MAX = __NL80211_MNTR_FLAG_AFTER_LAST - 1
};
/**
* enum nl80211_meshconf_params - mesh configuration parameters
*
* Mesh configuration parameters
*
* @__NL80211_MESHCONF_INVALID: internal use
*
* @NL80211_MESHCONF_RETRY_TIMEOUT: specifies the initial retry timeout in
* millisecond units, used by the Peer Link Open message
*
* @NL80211_MESHCONF_CONFIRM_TIMEOUT: specifies the inital confirm timeout, in
* millisecond units, used by the peer link management to close a peer link
*
* @NL80211_MESHCONF_HOLDING_TIMEOUT: specifies the holding timeout, in
* millisecond units
*
* @NL80211_MESHCONF_MAX_PEER_LINKS: maximum number of peer links allowed
* on this mesh interface
*
* @NL80211_MESHCONF_MAX_RETRIES: specifies the maximum number of peer link
* open retries that can be sent to establish a new peer link instance in a
* mesh
*
* @NL80211_MESHCONF_TTL: specifies the value of TTL field set at a source mesh
* point.
*
* @NL80211_MESHCONF_AUTO_OPEN_PLINKS: whether we should automatically
* open peer links when we detect compatible mesh peers.
*
* @NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES: the number of action frames
* containing a PREQ that an MP can send to a particular destination (path
* target)
*
* @NL80211_MESHCONF_PATH_REFRESH_TIME: how frequently to refresh mesh paths
* (in milliseconds)
*
* @NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT: minimum length of time to wait
* until giving up on a path discovery (in milliseconds)
*
* @NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT: The time (in TUs) for which mesh
* points receiving a PREQ shall consider the forwarding information from the
* root to be valid. (TU = time unit)
*
* @NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL: The minimum interval of time (in
* TUs) during which an MP can send only one action frame containing a PREQ
* reference element
*
* @NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME: The interval of time (in TUs)
* that it takes for an HWMP information element to propagate across the mesh
*
* @NL80211_MESHCONF_ATTR_MAX: highest possible mesh configuration attribute
*
* @__NL80211_MESHCONF_ATTR_AFTER_LAST: internal use
*/
enum nl80211_meshconf_params {
__NL80211_MESHCONF_INVALID,
NL80211_MESHCONF_RETRY_TIMEOUT,
NL80211_MESHCONF_CONFIRM_TIMEOUT,
NL80211_MESHCONF_HOLDING_TIMEOUT,
NL80211_MESHCONF_MAX_PEER_LINKS,
NL80211_MESHCONF_MAX_RETRIES,
NL80211_MESHCONF_TTL,
NL80211_MESHCONF_AUTO_OPEN_PLINKS,
NL80211_MESHCONF_HWMP_MAX_PREQ_RETRIES,
NL80211_MESHCONF_PATH_REFRESH_TIME,
NL80211_MESHCONF_MIN_DISCOVERY_TIMEOUT,
NL80211_MESHCONF_HWMP_ACTIVE_PATH_TIMEOUT,
NL80211_MESHCONF_HWMP_PREQ_MIN_INTERVAL,
NL80211_MESHCONF_HWMP_NET_DIAM_TRVS_TIME,
/* keep last */
__NL80211_MESHCONF_ATTR_AFTER_LAST,
NL80211_MESHCONF_ATTR_MAX = __NL80211_MESHCONF_ATTR_AFTER_LAST - 1
};
/**
* enum nl80211_txq_attr - TX queue parameter attributes
* @__NL80211_TXQ_ATTR_INVALID: Attribute number 0 is reserved
* @NL80211_TXQ_ATTR_QUEUE: TX queue identifier (NL80211_TXQ_Q_*)
* @NL80211_TXQ_ATTR_TXOP: Maximum burst time in units of 32 usecs, 0 meaning
* disabled
* @NL80211_TXQ_ATTR_CWMIN: Minimum contention window [a value of the form
* 2^n-1 in the range 1..32767]
* @NL80211_TXQ_ATTR_CWMAX: Maximum contention window [a value of the form
* 2^n-1 in the range 1..32767]
* @NL80211_TXQ_ATTR_AIFS: Arbitration interframe space [0..255]
* @__NL80211_TXQ_ATTR_AFTER_LAST: Internal
* @NL80211_TXQ_ATTR_MAX: Maximum TXQ attribute number
*/
enum nl80211_txq_attr {
__NL80211_TXQ_ATTR_INVALID,
NL80211_TXQ_ATTR_QUEUE,
NL80211_TXQ_ATTR_TXOP,
NL80211_TXQ_ATTR_CWMIN,
NL80211_TXQ_ATTR_CWMAX,
NL80211_TXQ_ATTR_AIFS,
/* keep last */
__NL80211_TXQ_ATTR_AFTER_LAST,
NL80211_TXQ_ATTR_MAX = __NL80211_TXQ_ATTR_AFTER_LAST - 1
};
enum nl80211_txq_q {
NL80211_TXQ_Q_VO,
NL80211_TXQ_Q_VI,
NL80211_TXQ_Q_BE,
NL80211_TXQ_Q_BK
};
enum nl80211_channel_type {
NL80211_CHAN_NO_HT,
NL80211_CHAN_HT20,
NL80211_CHAN_HT40MINUS,
NL80211_CHAN_HT40PLUS
};
/**
* enum nl80211_bss - netlink attributes for a BSS
*
* @__NL80211_BSS_INVALID: invalid
* @NL80211_BSS_FREQUENCY: frequency in MHz (u32)
* @NL80211_BSS_TSF: TSF of the received probe response/beacon (u64)
* @NL80211_BSS_BEACON_INTERVAL: beacon interval of the (I)BSS (u16)
* @NL80211_BSS_CAPABILITY: capability field (CPU order, u16)
* @NL80211_BSS_INFORMATION_ELEMENTS: binary attribute containing the
* raw information elements from the probe response/beacon (bin)
* @NL80211_BSS_SIGNAL_MBM: signal strength of probe response/beacon
* in mBm (100 * dBm) (s32)
* @NL80211_BSS_SIGNAL_UNSPEC: signal strength of the probe response/beacon
* in unspecified units, scaled to 0..100 (u8)
* @NL80211_BSS_STATUS: status, if this BSS is "used"
* @__NL80211_BSS_AFTER_LAST: internal
* @NL80211_BSS_MAX: highest BSS attribute
*/
enum nl80211_bss {
__NL80211_BSS_INVALID,
NL80211_BSS_BSSID,
NL80211_BSS_FREQUENCY,
NL80211_BSS_TSF,
NL80211_BSS_BEACON_INTERVAL,
NL80211_BSS_CAPABILITY,
NL80211_BSS_INFORMATION_ELEMENTS,
NL80211_BSS_SIGNAL_MBM,
NL80211_BSS_SIGNAL_UNSPEC,
NL80211_BSS_STATUS,
/* keep last */
__NL80211_BSS_AFTER_LAST,
NL80211_BSS_MAX = __NL80211_BSS_AFTER_LAST - 1
};
/**
* enum nl80211_bss_status - BSS "status"
*/
enum nl80211_bss_status {
NL80211_BSS_STATUS_AUTHENTICATED,
NL80211_BSS_STATUS_ASSOCIATED,
NL80211_BSS_STATUS_IBSS_JOINED,
};
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
/**
* enum nl80211_auth_type - AuthenticationType
*
* @NL80211_AUTHTYPE_OPEN_SYSTEM: Open System authentication
* @NL80211_AUTHTYPE_SHARED_KEY: Shared Key authentication (WEP only)
* @NL80211_AUTHTYPE_FT: Fast BSS Transition (IEEE 802.11r)
* @NL80211_AUTHTYPE_NETWORK_EAP: Network EAP (some Cisco APs and mainly LEAP)
* @__NL80211_AUTHTYPE_NUM: internal
* @NL80211_AUTHTYPE_MAX: maximum valid auth algorithm
* @NL80211_AUTHTYPE_AUTOMATIC: determine automatically (if necessary by
* trying multiple times); this is invalid in netlink -- leave out
* the attribute for this on CONNECT commands.
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
*/
enum nl80211_auth_type {
NL80211_AUTHTYPE_OPEN_SYSTEM,
NL80211_AUTHTYPE_SHARED_KEY,
NL80211_AUTHTYPE_FT,
NL80211_AUTHTYPE_NETWORK_EAP,
/* keep last */
__NL80211_AUTHTYPE_NUM,
NL80211_AUTHTYPE_MAX = __NL80211_AUTHTYPE_NUM - 1,
NL80211_AUTHTYPE_AUTOMATIC
nl80211: Add MLME primitives to support external SME This patch adds new nl80211 commands to allow user space to request authentication and association (and also deauthentication and disassociation). The commands are structured to allow separate authentication and association steps, i.e., the interface between kernel and user space is similar to the MLME SAP interface in IEEE 802.11 standard and an user space application takes the role of the SME. The patch introduces MLME-AUTHENTICATE.request, MLME-{,RE}ASSOCIATE.request, MLME-DEAUTHENTICATE.request, and MLME-DISASSOCIATE.request primitives. The authentication and association commands request the actual operations in two steps (assuming the driver supports this; if not, separate authentication step is skipped; this could end up being a separate "connect" command). The initial implementation for mac80211 uses the current net/mac80211/mlme.c for actual sending and processing of management frames and the new nl80211 commands will just stop the current state machine from moving automatically from authentication to association. Future cleanup may move more of the MLME operations into cfg80211. The goal of this design is to provide more control of authentication and association process to user space without having to move the full MLME implementation. This should be enough to allow IEEE 802.11r FT protocol and 802.11s SAE authentication to be implemented. Obviously, this will also bring the extra benefit of not having to use WEXT for association requests with mac80211. An example implementation of a user space SME using the new nl80211 commands is available for wpa_supplicant. This patch is enough to get IEEE 802.11r FT protocol working with over-the-air mechanism (over-the-DS will need additional MLME primitives for handling the FT Action frames). Signed-off-by: Jouni Malinen <j@w1.fi> Signed-off-by: John W. Linville <linville@tuxdriver.com>
2009-03-19 11:39:22 +00:00
};
/**
* enum nl80211_key_type - Key Type
* @NL80211_KEYTYPE_GROUP: Group (broadcast/multicast) key
* @NL80211_KEYTYPE_PAIRWISE: Pairwise (unicast/individual) key
* @NL80211_KEYTYPE_PEERKEY: PeerKey (DLS)
*/
enum nl80211_key_type {
NL80211_KEYTYPE_GROUP,
NL80211_KEYTYPE_PAIRWISE,
NL80211_KEYTYPE_PEERKEY,
};
/**
* enum nl80211_mfp - Management frame protection state
* @NL80211_MFP_NO: Management frame protection not used
* @NL80211_MFP_REQUIRED: Management frame protection required
*/
enum nl80211_mfp {
NL80211_MFP_NO,
NL80211_MFP_REQUIRED,
};
enum nl80211_wpa_versions {
NL80211_WPA_VERSION_1 = 1 << 0,
NL80211_WPA_VERSION_2 = 1 << 1,
};
/**
* enum nl80211_key_attributes - key attributes
* @__NL80211_KEY_INVALID: invalid
* @NL80211_KEY_DATA: (temporal) key data; for TKIP this consists of
* 16 bytes encryption key followed by 8 bytes each for TX and RX MIC
* keys
* @NL80211_KEY_IDX: key ID (u8, 0-3)
* @NL80211_KEY_CIPHER: key cipher suite (u32, as defined by IEEE 802.11
* section 7.3.2.25.1, e.g. 0x000FAC04)
* @NL80211_KEY_SEQ: transmit key sequence number (IV/PN) for TKIP and
* CCMP keys, each six bytes in little endian
* @NL80211_KEY_DEFAULT: flag indicating default key
* @NL80211_KEY_DEFAULT_MGMT: flag indicating default management key
* @__NL80211_KEY_AFTER_LAST: internal
* @NL80211_KEY_MAX: highest key attribute
*/
enum nl80211_key_attributes {
__NL80211_KEY_INVALID,
NL80211_KEY_DATA,
NL80211_KEY_IDX,
NL80211_KEY_CIPHER,
NL80211_KEY_SEQ,
NL80211_KEY_DEFAULT,
NL80211_KEY_DEFAULT_MGMT,
/* keep last */
__NL80211_KEY_AFTER_LAST,
NL80211_KEY_MAX = __NL80211_KEY_AFTER_LAST - 1
};
#endif /* __LINUX_NL80211_H */