Archived
14
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/staging/iio/light/tsl2563.c

999 lines
24 KiB
C
Raw Normal View History

/*
* drivers/i2c/chips/tsl2563.c
*
* Copyright (C) 2008 Nokia Corporation
*
* Written by Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
* Contact: Amit Kucheria <amit.kucheria@verdurent.com>
*
* Converted to IIO driver
* Amit Kucheria <amit.kucheria@verdurent.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/sched.h>
#include <linux/mutex.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/hwmon.h>
#include <linux/err.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include "../iio.h"
#include "tsl2563.h"
/* Use this many bits for fraction part. */
#define ADC_FRAC_BITS (14)
/* Given number of 1/10000's in ADC_FRAC_BITS precision. */
#define FRAC10K(f) (((f) * (1L << (ADC_FRAC_BITS))) / (10000))
/* Bits used for fraction in calibration coefficients.*/
#define CALIB_FRAC_BITS (10)
/* 0.5 in CALIB_FRAC_BITS precision */
#define CALIB_FRAC_HALF (1 << (CALIB_FRAC_BITS - 1))
/* Make a fraction from a number n that was multiplied with b. */
#define CALIB_FRAC(n, b) (((n) << CALIB_FRAC_BITS) / (b))
/* Decimal 10^(digits in sysfs presentation) */
#define CALIB_BASE_SYSFS (1000)
#define TSL2563_CMD (0x80)
#define TSL2563_CLEARINT (0x40)
#define TSL2563_REG_CTRL (0x00)
#define TSL2563_REG_TIMING (0x01)
#define TSL2563_REG_LOWLOW (0x02) /* data0 low threshold, 2 bytes */
#define TSL2563_REG_LOWHIGH (0x03)
#define TSL2563_REG_HIGHLOW (0x04) /* data0 high threshold, 2 bytes */
#define TSL2563_REG_HIGHHIGH (0x05)
#define TSL2563_REG_INT (0x06)
#define TSL2563_REG_ID (0x0a)
#define TSL2563_REG_DATA0LOW (0x0c) /* broadband sensor value, 2 bytes */
#define TSL2563_REG_DATA0HIGH (0x0d)
#define TSL2563_REG_DATA1LOW (0x0e) /* infrared sensor value, 2 bytes */
#define TSL2563_REG_DATA1HIGH (0x0f)
#define TSL2563_CMD_POWER_ON (0x03)
#define TSL2563_CMD_POWER_OFF (0x00)
#define TSL2563_CTRL_POWER_MASK (0x03)
#define TSL2563_TIMING_13MS (0x00)
#define TSL2563_TIMING_100MS (0x01)
#define TSL2563_TIMING_400MS (0x02)
#define TSL2563_TIMING_MASK (0x03)
#define TSL2563_TIMING_GAIN16 (0x10)
#define TSL2563_TIMING_GAIN1 (0x00)
#define TSL2563_INT_DISBLED (0x00)
#define TSL2563_INT_LEVEL (0x10)
#define TSL2563_INT_PERSIST(n) ((n) & 0x0F)
struct tsl2563_gainlevel_coeff {
u8 gaintime;
u16 min;
u16 max;
};
static struct tsl2563_gainlevel_coeff tsl2563_gainlevel_table[] = {
{
.gaintime = TSL2563_TIMING_400MS | TSL2563_TIMING_GAIN16,
.min = 0,
.max = 65534,
}, {
.gaintime = TSL2563_TIMING_400MS | TSL2563_TIMING_GAIN1,
.min = 2048,
.max = 65534,
}, {
.gaintime = TSL2563_TIMING_100MS | TSL2563_TIMING_GAIN1,
.min = 4095,
.max = 37177,
}, {
.gaintime = TSL2563_TIMING_13MS | TSL2563_TIMING_GAIN1,
.min = 3000,
.max = 65535,
},
};
struct tsl2563_chip {
struct mutex lock;
struct i2c_client *client;
struct iio_dev *indio_dev;
struct delayed_work poweroff_work;
struct work_struct work_thresh;
s64 event_timestamp;
/* Remember state for suspend and resume functions */
pm_message_t state;
struct tsl2563_gainlevel_coeff *gainlevel;
u16 low_thres;
u16 high_thres;
u8 intr;
bool int_enabled;
/* Calibration coefficients */
u32 calib0;
u32 calib1;
int cover_comp_gain;
/* Cache current values, to be returned while suspended */
u32 data0;
u32 data1;
};
static int tsl2563_write(struct i2c_client *client, u8 reg, u8 value)
{
int ret;
u8 buf[2];
buf[0] = TSL2563_CMD | reg;
buf[1] = value;
ret = i2c_master_send(client, buf, sizeof(buf));
return (ret == sizeof(buf)) ? 0 : ret;
}
static int tsl2563_read(struct i2c_client *client, u8 reg, void *buf, int len)
{
int ret;
u8 cmd = TSL2563_CMD | reg;
ret = i2c_master_send(client, &cmd, sizeof(cmd));
if (ret != sizeof(cmd))
return ret;
return i2c_master_recv(client, buf, len);
}
static int tsl2563_set_power(struct tsl2563_chip *chip, int on)
{
struct i2c_client *client = chip->client;
u8 cmd;
cmd = on ? TSL2563_CMD_POWER_ON : TSL2563_CMD_POWER_OFF;
return tsl2563_write(client, TSL2563_REG_CTRL, cmd);
}
/*
* Return value is 0 for off, 1 for on, or a negative error
* code if reading failed.
*/
static int tsl2563_get_power(struct tsl2563_chip *chip)
{
struct i2c_client *client = chip->client;
int ret;
u8 val;
ret = tsl2563_read(client, TSL2563_REG_CTRL, &val, sizeof(val));
if (ret != sizeof(val))
return ret;
return (val & TSL2563_CTRL_POWER_MASK) == TSL2563_CMD_POWER_ON;
}
static int tsl2563_configure(struct tsl2563_chip *chip)
{
int ret;
ret = tsl2563_write(chip->client, TSL2563_REG_TIMING,
chip->gainlevel->gaintime);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_HIGHLOW,
chip->high_thres & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_HIGHHIGH,
(chip->high_thres >> 8) & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_LOWLOW,
chip->low_thres & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, TSL2563_REG_LOWHIGH,
(chip->low_thres >> 8) & 0xFF);
/* Interrupt register is automatically written anyway if it is relevant
so is not here */
error_ret:
return ret;
}
static void tsl2563_poweroff_work(struct work_struct *work)
{
struct tsl2563_chip *chip =
container_of(work, struct tsl2563_chip, poweroff_work.work);
tsl2563_set_power(chip, 0);
}
static int tsl2563_detect(struct tsl2563_chip *chip)
{
int ret;
ret = tsl2563_set_power(chip, 1);
if (ret)
return ret;
ret = tsl2563_get_power(chip);
if (ret < 0)
return ret;
return ret ? 0 : -ENODEV;
}
static int tsl2563_read_id(struct tsl2563_chip *chip, u8 *id)
{
struct i2c_client *client = chip->client;
int ret;
ret = tsl2563_read(client, TSL2563_REG_ID, id, sizeof(*id));
if (ret != sizeof(*id))
return ret;
return 0;
}
/*
* "Normalized" ADC value is one obtained with 400ms of integration time and
* 16x gain. This function returns the number of bits of shift needed to
* convert between normalized values and HW values obtained using given
* timing and gain settings.
*/
static int adc_shiftbits(u8 timing)
{
int shift = 0;
switch (timing & TSL2563_TIMING_MASK) {
case TSL2563_TIMING_13MS:
shift += 5;
break;
case TSL2563_TIMING_100MS:
shift += 2;
break;
case TSL2563_TIMING_400MS:
/* no-op */
break;
}
if (!(timing & TSL2563_TIMING_GAIN16))
shift += 4;
return shift;
}
/* Convert a HW ADC value to normalized scale. */
static u32 normalize_adc(u16 adc, u8 timing)
{
return adc << adc_shiftbits(timing);
}
static void tsl2563_wait_adc(struct tsl2563_chip *chip)
{
unsigned int delay;
switch (chip->gainlevel->gaintime & TSL2563_TIMING_MASK) {
case TSL2563_TIMING_13MS:
delay = 14;
break;
case TSL2563_TIMING_100MS:
delay = 101;
break;
default:
delay = 402;
}
/*
* TODO: Make sure that we wait at least required delay but why we
* have to extend it one tick more?
*/
schedule_timeout_interruptible(msecs_to_jiffies(delay) + 2);
}
static int tsl2563_adjust_gainlevel(struct tsl2563_chip *chip, u16 adc)
{
struct i2c_client *client = chip->client;
if (adc > chip->gainlevel->max || adc < chip->gainlevel->min) {
(adc > chip->gainlevel->max) ?
chip->gainlevel++ : chip->gainlevel--;
tsl2563_write(client, TSL2563_REG_TIMING,
chip->gainlevel->gaintime);
tsl2563_wait_adc(chip);
tsl2563_wait_adc(chip);
return 1;
} else
return 0;
}
static int tsl2563_get_adc(struct tsl2563_chip *chip)
{
struct i2c_client *client = chip->client;
u8 buf0[2], buf1[2];
u16 adc0, adc1;
int retry = 1;
int ret = 0;
if (chip->state.event != PM_EVENT_ON)
goto out;
if (!chip->int_enabled) {
cancel_delayed_work(&chip->poweroff_work);
if (!tsl2563_get_power(chip)) {
ret = tsl2563_set_power(chip, 1);
if (ret)
goto out;
ret = tsl2563_configure(chip);
if (ret)
goto out;
tsl2563_wait_adc(chip);
}
}
while (retry) {
ret = tsl2563_read(client,
TSL2563_REG_DATA0LOW,
buf0, sizeof(buf0));
if (ret != sizeof(buf0))
goto out;
ret = tsl2563_read(client, TSL2563_REG_DATA1LOW,
buf1, sizeof(buf1));
if (ret != sizeof(buf1))
goto out;
adc0 = (buf0[1] << 8) + buf0[0];
adc1 = (buf1[1] << 8) + buf1[0];
retry = tsl2563_adjust_gainlevel(chip, adc0);
}
chip->data0 = normalize_adc(adc0, chip->gainlevel->gaintime);
chip->data1 = normalize_adc(adc1, chip->gainlevel->gaintime);
if (!chip->int_enabled)
schedule_delayed_work(&chip->poweroff_work, 5 * HZ);
ret = 0;
out:
return ret;
}
static inline int calib_to_sysfs(u32 calib)
{
return (int) (((calib * CALIB_BASE_SYSFS) +
CALIB_FRAC_HALF) >> CALIB_FRAC_BITS);
}
static inline u32 calib_from_sysfs(int value)
{
return (((u32) value) << CALIB_FRAC_BITS) / CALIB_BASE_SYSFS;
}
/*
* Conversions between lux and ADC values.
*
* The basic formula is lux = c0 * adc0 - c1 * adc1, where c0 and c1 are
* appropriate constants. Different constants are needed for different
* kinds of light, determined by the ratio adc1/adc0 (basically the ratio
* of the intensities in infrared and visible wavelengths). lux_table below
* lists the upper threshold of the adc1/adc0 ratio and the corresponding
* constants.
*/
struct tsl2563_lux_coeff {
unsigned long ch_ratio;
unsigned long ch0_coeff;
unsigned long ch1_coeff;
};
static const struct tsl2563_lux_coeff lux_table[] = {
{
.ch_ratio = FRAC10K(1300),
.ch0_coeff = FRAC10K(315),
.ch1_coeff = FRAC10K(262),
}, {
.ch_ratio = FRAC10K(2600),
.ch0_coeff = FRAC10K(337),
.ch1_coeff = FRAC10K(430),
}, {
.ch_ratio = FRAC10K(3900),
.ch0_coeff = FRAC10K(363),
.ch1_coeff = FRAC10K(529),
}, {
.ch_ratio = FRAC10K(5200),
.ch0_coeff = FRAC10K(392),
.ch1_coeff = FRAC10K(605),
}, {
.ch_ratio = FRAC10K(6500),
.ch0_coeff = FRAC10K(229),
.ch1_coeff = FRAC10K(291),
}, {
.ch_ratio = FRAC10K(8000),
.ch0_coeff = FRAC10K(157),
.ch1_coeff = FRAC10K(180),
}, {
.ch_ratio = FRAC10K(13000),
.ch0_coeff = FRAC10K(34),
.ch1_coeff = FRAC10K(26),
}, {
.ch_ratio = ULONG_MAX,
.ch0_coeff = 0,
.ch1_coeff = 0,
},
};
/*
* Convert normalized, scaled ADC values to lux.
*/
static unsigned int adc_to_lux(u32 adc0, u32 adc1)
{
const struct tsl2563_lux_coeff *lp = lux_table;
unsigned long ratio, lux, ch0 = adc0, ch1 = adc1;
ratio = ch0 ? ((ch1 << ADC_FRAC_BITS) / ch0) : ULONG_MAX;
while (lp->ch_ratio < ratio)
lp++;
lux = ch0 * lp->ch0_coeff - ch1 * lp->ch1_coeff;
return (unsigned int) (lux >> ADC_FRAC_BITS);
}
/*--------------------------------------------------------------*/
/* Sysfs interface */
/*--------------------------------------------------------------*/
static ssize_t tsl2563_adc_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_get_adc(chip);
if (ret)
goto out;
switch (this_attr->address) {
case 0:
ret = snprintf(buf, PAGE_SIZE, "%d\n", chip->data0);
break;
case 1:
ret = snprintf(buf, PAGE_SIZE, "%d\n", chip->data1);
break;
}
out:
mutex_unlock(&chip->lock);
return ret;
}
/* Apply calibration coefficient to ADC count. */
static u32 calib_adc(u32 adc, u32 calib)
{
unsigned long scaled = adc;
scaled *= calib;
scaled >>= CALIB_FRAC_BITS;
return (u32) scaled;
}
static ssize_t tsl2563_lux_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
u32 calib0, calib1;
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_get_adc(chip);
if (ret)
goto out;
calib0 = calib_adc(chip->data0, chip->calib0) * chip->cover_comp_gain;
calib1 = calib_adc(chip->data1, chip->calib1) * chip->cover_comp_gain;
ret = snprintf(buf, PAGE_SIZE, "%d\n", adc_to_lux(calib0, calib1));
out:
mutex_unlock(&chip->lock);
return ret;
}
static ssize_t format_calib(char *buf, int len, u32 calib)
{
return snprintf(buf, PAGE_SIZE, "%d\n", calib_to_sysfs(calib));
}
static ssize_t tsl2563_calib_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret;
mutex_lock(&chip->lock);
switch (this_attr->address) {
case 0:
ret = format_calib(buf, PAGE_SIZE, chip->calib0);
break;
case 1:
ret = format_calib(buf, PAGE_SIZE, chip->calib1);
break;
default:
ret = -ENODEV;
}
mutex_unlock(&chip->lock);
return ret;
}
static ssize_t tsl2563_calib_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int value;
u32 calib;
if (1 != sscanf(buf, "%d", &value))
return -EINVAL;
calib = calib_from_sysfs(value);
switch (this_attr->address) {
case 0:
chip->calib0 = calib;
break;
case 1:
chip->calib1 = calib;
break;
}
return len;
}
static IIO_DEVICE_ATTR(intensity0_both_raw, S_IRUGO,
tsl2563_adc_show, NULL, 0);
static IIO_DEVICE_ATTR(intensity1_ir_raw, S_IRUGO,
tsl2563_adc_show, NULL, 1);
static DEVICE_ATTR(illuminance0_input, S_IRUGO, tsl2563_lux_show, NULL);
static IIO_DEVICE_ATTR(intensity0_both_calibgain, S_IRUGO | S_IWUSR,
tsl2563_calib_show, tsl2563_calib_store, 0);
static IIO_DEVICE_ATTR(intensity1_ir_calibgain, S_IRUGO | S_IWUSR,
tsl2563_calib_show, tsl2563_calib_store, 1);
static ssize_t tsl2563_show_name(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
return sprintf(buf, "%s\n", chip->client->name);
}
static DEVICE_ATTR(name, S_IRUGO, tsl2563_show_name, NULL);
static struct attribute *tsl2563_attributes[] = {
&iio_dev_attr_intensity0_both_raw.dev_attr.attr,
&iio_dev_attr_intensity1_ir_raw.dev_attr.attr,
&dev_attr_illuminance0_input.attr,
&iio_dev_attr_intensity0_both_calibgain.dev_attr.attr,
&iio_dev_attr_intensity1_ir_calibgain.dev_attr.attr,
&dev_attr_name.attr,
NULL
};
static const struct attribute_group tsl2563_group = {
.attrs = tsl2563_attributes,
};
static ssize_t tsl2563_read_thresh(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
u16 val = 0;
switch (this_attr->address) {
case TSL2563_REG_HIGHLOW:
val = chip->high_thres;
break;
case TSL2563_REG_LOWLOW:
val = chip->low_thres;
break;
}
return snprintf(buf, PAGE_SIZE, "%d\n", val);
}
static ssize_t tsl2563_write_thresh(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
unsigned long val;
int ret;
ret = strict_strtoul(buf, 10, &val);
if (ret)
return ret;
mutex_lock(&chip->lock);
ret = tsl2563_write(chip->client, this_attr->address, val & 0xFF);
if (ret)
goto error_ret;
ret = tsl2563_write(chip->client, this_attr->address + 1,
(val >> 8) & 0xFF);
switch (this_attr->address) {
case TSL2563_REG_HIGHLOW:
chip->high_thres = val;
break;
case TSL2563_REG_LOWLOW:
chip->low_thres = val;
break;
}
error_ret:
mutex_unlock(&chip->lock);
return ret < 0 ? ret : len;
}
static IIO_DEVICE_ATTR(intensity0_both_raw_thresh_rising_value,
S_IRUGO | S_IWUSR,
tsl2563_read_thresh,
tsl2563_write_thresh,
TSL2563_REG_HIGHLOW);
static IIO_DEVICE_ATTR(intensity0_both_raw_thresh_falling_value,
S_IRUGO | S_IWUSR,
tsl2563_read_thresh,
tsl2563_write_thresh,
TSL2563_REG_LOWLOW);
static int tsl2563_int_th(struct iio_dev *dev_info,
int index,
s64 timestamp,
int not_test)
{
struct tsl2563_chip *chip = dev_info->dev_data;
chip->event_timestamp = timestamp;
schedule_work(&chip->work_thresh);
return 0;
}
static void tsl2563_int_bh(struct work_struct *work_s)
{
struct tsl2563_chip *chip
= container_of(work_s,
struct tsl2563_chip, work_thresh);
u8 cmd = TSL2563_CMD | TSL2563_CLEARINT;
iio_push_event(chip->indio_dev, 0,
IIO_UNMOD_EVENT_CODE(IIO_EV_CLASS_LIGHT,
0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER),
chip->event_timestamp);
/* reenable_irq */
enable_irq(chip->client->irq);
/* clear the interrupt and push the event */
i2c_master_send(chip->client, &cmd, sizeof(cmd));
}
static ssize_t tsl2563_write_interrupt_config(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
struct iio_event_attr *this_attr = to_iio_event_attr(attr);
int input, ret = 0;
ret = sscanf(buf, "%d", &input);
if (ret != 1)
return -EINVAL;
mutex_lock(&chip->lock);
if (input && !(chip->intr & 0x30)) {
iio_add_event_to_list(this_attr->listel,
&indio_dev->interrupts[0]->ev_list);
chip->intr &= ~0x30;
chip->intr |= 0x10;
/* ensure the chip is actually on */
cancel_delayed_work(&chip->poweroff_work);
if (!tsl2563_get_power(chip)) {
ret = tsl2563_set_power(chip, 1);
if (ret)
goto out;
ret = tsl2563_configure(chip);
if (ret)
goto out;
}
ret = tsl2563_write(chip->client, TSL2563_REG_INT, chip->intr);
chip->int_enabled = true;
}
if (!input && (chip->intr & 0x30)) {
chip->intr |= ~0x30;
ret = tsl2563_write(chip->client, TSL2563_REG_INT, chip->intr);
iio_remove_event_from_list(this_attr->listel,
&indio_dev->interrupts[0]->ev_list);
chip->int_enabled = false;
/* now the interrupt is not enabled, we can go to sleep */
schedule_delayed_work(&chip->poweroff_work, 5 * HZ);
}
out:
mutex_unlock(&chip->lock);
return (ret < 0) ? ret : len;
}
static ssize_t tsl2563_read_interrupt_config(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct tsl2563_chip *chip = indio_dev->dev_data;
int ret;
u8 rxbuf;
ssize_t len;
mutex_lock(&chip->lock);
ret = tsl2563_read(chip->client,
TSL2563_REG_INT,
&rxbuf,
sizeof(rxbuf));
mutex_unlock(&chip->lock);
if (ret < 0)
goto error_ret;
len = snprintf(buf, PAGE_SIZE, "%d\n", !!(rxbuf & 0x30));
error_ret:
return (ret < 0) ? ret : len;
}
IIO_EVENT_ATTR(intensity0_both_thresh_en,
tsl2563_read_interrupt_config,
tsl2563_write_interrupt_config,
0,
tsl2563_int_th);
static struct attribute *tsl2563_event_attributes[] = {
&iio_event_attr_intensity0_both_thresh_en.dev_attr.attr,
&iio_dev_attr_intensity0_both_raw_thresh_rising_value.dev_attr.attr,
&iio_dev_attr_intensity0_both_raw_thresh_falling_value.dev_attr.attr,
NULL,
};
static struct attribute_group tsl2563_event_attribute_group = {
.attrs = tsl2563_event_attributes,
};
/*--------------------------------------------------------------*/
/* Probe, Attach, Remove */
/*--------------------------------------------------------------*/
static struct i2c_driver tsl2563_i2c_driver;
static int __devinit tsl2563_probe(struct i2c_client *client,
const struct i2c_device_id *device_id)
{
struct tsl2563_chip *chip;
struct tsl2563_platform_data *pdata = client->dev.platform_data;
int err = 0;
int ret;
u8 id;
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
INIT_WORK(&chip->work_thresh, tsl2563_int_bh);
i2c_set_clientdata(client, chip);
chip->client = client;
err = tsl2563_detect(chip);
if (err) {
dev_err(&client->dev, "device not found, error %d\n", -err);
goto fail1;
}
err = tsl2563_read_id(chip, &id);
if (err)
goto fail1;
mutex_init(&chip->lock);
/* Default values used until userspace says otherwise */
chip->low_thres = 0x0;
chip->high_thres = 0xffff;
chip->gainlevel = tsl2563_gainlevel_table;
chip->intr = TSL2563_INT_PERSIST(4);
chip->calib0 = calib_from_sysfs(CALIB_BASE_SYSFS);
chip->calib1 = calib_from_sysfs(CALIB_BASE_SYSFS);
if (pdata)
chip->cover_comp_gain = pdata->cover_comp_gain;
else
chip->cover_comp_gain = 1;
dev_info(&client->dev, "model %d, rev. %d\n", id >> 4, id & 0x0f);
chip->indio_dev = iio_allocate_device();
if (!chip->indio_dev)
goto fail1;
chip->indio_dev->attrs = &tsl2563_group;
chip->indio_dev->dev.parent = &client->dev;
chip->indio_dev->dev_data = (void *)(chip);
chip->indio_dev->driver_module = THIS_MODULE;
chip->indio_dev->modes = INDIO_DIRECT_MODE;
if (client->irq) {
chip->indio_dev->num_interrupt_lines = 1;
chip->indio_dev->event_attrs
= &tsl2563_event_attribute_group;
}
ret = iio_device_register(chip->indio_dev);
if (ret)
goto fail1;
if (client->irq) {
ret = iio_register_interrupt_line(client->irq,
chip->indio_dev,
0,
IRQF_TRIGGER_RISING,
client->name);
if (ret)
goto fail2;
}
err = tsl2563_configure(chip);
if (err)
goto fail3;
INIT_DELAYED_WORK(&chip->poweroff_work, tsl2563_poweroff_work);
/* The interrupt cannot yet be enabled so this is fine without lock */
schedule_delayed_work(&chip->poweroff_work, 5 * HZ);
return 0;
fail3:
if (client->irq)
iio_unregister_interrupt_line(chip->indio_dev, 0);
fail2:
iio_device_unregister(chip->indio_dev);
fail1:
kfree(chip);
return err;
}
static int tsl2563_remove(struct i2c_client *client)
{
struct tsl2563_chip *chip = i2c_get_clientdata(client);
if (!chip->int_enabled)
cancel_delayed_work(&chip->poweroff_work);
/* Ensure that interrupts are disabled - then flush any bottom halves */
chip->intr |= ~0x30;
tsl2563_write(chip->client, TSL2563_REG_INT, chip->intr);
flush_scheduled_work();
tsl2563_set_power(chip, 0);
if (client->irq)
iio_unregister_interrupt_line(chip->indio_dev, 0);
iio_device_unregister(chip->indio_dev);
kfree(chip);
return 0;
}
static int tsl2563_suspend(struct i2c_client *client, pm_message_t state)
{
struct tsl2563_chip *chip = i2c_get_clientdata(client);
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_set_power(chip, 0);
if (ret)
goto out;
chip->state = state;
out:
mutex_unlock(&chip->lock);
return ret;
}
static int tsl2563_resume(struct i2c_client *client)
{
struct tsl2563_chip *chip = i2c_get_clientdata(client);
int ret;
mutex_lock(&chip->lock);
ret = tsl2563_set_power(chip, 1);
if (ret)
goto out;
ret = tsl2563_configure(chip);
if (ret)
goto out;
chip->state.event = PM_EVENT_ON;
out:
mutex_unlock(&chip->lock);
return ret;
}
static const struct i2c_device_id tsl2563_id[] = {
{ "tsl2560", 0 },
{ "tsl2561", 1 },
{ "tsl2562", 2 },
{ "tsl2563", 3 },
{}
};
MODULE_DEVICE_TABLE(i2c, tsl2563_id);
static struct i2c_driver tsl2563_i2c_driver = {
.driver = {
.name = "tsl2563",
},
.suspend = tsl2563_suspend,
.resume = tsl2563_resume,
.probe = tsl2563_probe,
.remove = __devexit_p(tsl2563_remove),
.id_table = tsl2563_id,
};
static int __init tsl2563_init(void)
{
return i2c_add_driver(&tsl2563_i2c_driver);
}
static void __exit tsl2563_exit(void)
{
i2c_del_driver(&tsl2563_i2c_driver);
}
MODULE_AUTHOR("Nokia Corporation");
MODULE_DESCRIPTION("tsl2563 light sensor driver");
MODULE_LICENSE("GPL");
module_init(tsl2563_init);
module_exit(tsl2563_exit);