dect
/
linux-2.6
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
linux-2.6/drivers/input/joystick/db9.c

721 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 1999-2001 Vojtech Pavlik
*
* Based on the work of:
* Andree Borrmann Mats Sjövall
*/
/*
* Atari, Amstrad, Commodore, Amiga, Sega, etc. joystick driver for Linux
*/
/*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Should you need to contact me, the author, you can do so either by
* e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
* Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/parport.h>
#include <linux/input.h>
#include <linux/mutex.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
MODULE_AUTHOR("Vojtech Pavlik <vojtech@ucw.cz>");
MODULE_DESCRIPTION("Atari, Amstrad, Commodore, Amiga, Sega, etc. joystick driver");
MODULE_LICENSE("GPL");
struct db9_config {
int args[2];
unsigned int nargs;
};
#define DB9_MAX_PORTS 3
static struct db9_config db9_cfg[DB9_MAX_PORTS] __initdata;
module_param_array_named(dev, db9_cfg[0].args, int, &db9_cfg[0].nargs, 0);
MODULE_PARM_DESC(dev, "Describes first attached device (<parport#>,<type>)");
module_param_array_named(dev2, db9_cfg[1].args, int, &db9_cfg[1].nargs, 0);
MODULE_PARM_DESC(dev2, "Describes second attached device (<parport#>,<type>)");
module_param_array_named(dev3, db9_cfg[2].args, int, &db9_cfg[2].nargs, 0);
MODULE_PARM_DESC(dev3, "Describes third attached device (<parport#>,<type>)");
#define DB9_ARG_PARPORT 0
#define DB9_ARG_MODE 1
#define DB9_MULTI_STICK 0x01
#define DB9_MULTI2_STICK 0x02
#define DB9_GENESIS_PAD 0x03
#define DB9_GENESIS5_PAD 0x05
#define DB9_GENESIS6_PAD 0x06
#define DB9_SATURN_PAD 0x07
#define DB9_MULTI_0802 0x08
#define DB9_MULTI_0802_2 0x09
#define DB9_CD32_PAD 0x0A
#define DB9_SATURN_DPP 0x0B
#define DB9_SATURN_DPP_2 0x0C
#define DB9_MAX_PAD 0x0D
#define DB9_UP 0x01
#define DB9_DOWN 0x02
#define DB9_LEFT 0x04
#define DB9_RIGHT 0x08
#define DB9_FIRE1 0x10
#define DB9_FIRE2 0x20
#define DB9_FIRE3 0x40
#define DB9_FIRE4 0x80
#define DB9_NORMAL 0x0a
#define DB9_NOSELECT 0x08
#define DB9_GENESIS6_DELAY 14
#define DB9_REFRESH_TIME HZ/100
#define DB9_MAX_DEVICES 2
struct db9_mode_data {
const char *name;
const short *buttons;
int n_buttons;
int n_pads;
int n_axis;
int bidirectional;
int reverse;
};
struct db9 {
struct input_dev *dev[DB9_MAX_DEVICES];
struct timer_list timer;
struct pardevice *pd;
int mode;
int used;
struct mutex mutex;
char phys[DB9_MAX_DEVICES][32];
};
static struct db9 *db9_base[3];
static const short db9_multi_btn[] = { BTN_TRIGGER, BTN_THUMB };
static const short db9_genesis_btn[] = { BTN_START, BTN_A, BTN_B, BTN_C, BTN_X, BTN_Y, BTN_Z, BTN_MODE };
static const short db9_cd32_btn[] = { BTN_A, BTN_B, BTN_C, BTN_X, BTN_Y, BTN_Z, BTN_TL, BTN_TR, BTN_START };
static const short db9_abs[] = { ABS_X, ABS_Y, ABS_RX, ABS_RY, ABS_RZ, ABS_Z, ABS_HAT0X, ABS_HAT0Y, ABS_HAT1X, ABS_HAT1Y };
static const struct db9_mode_data db9_modes[] = {
{ NULL, NULL, 0, 0, 0, 0, 0 },
{ "Multisystem joystick", db9_multi_btn, 1, 1, 2, 1, 1 },
{ "Multisystem joystick (2 fire)", db9_multi_btn, 2, 1, 2, 1, 1 },
{ "Genesis pad", db9_genesis_btn, 4, 1, 2, 1, 1 },
{ NULL, NULL, 0, 0, 0, 0, 0 },
{ "Genesis 5 pad", db9_genesis_btn, 6, 1, 2, 1, 1 },
{ "Genesis 6 pad", db9_genesis_btn, 8, 1, 2, 1, 1 },
{ "Saturn pad", db9_cd32_btn, 9, 6, 7, 0, 1 },
{ "Multisystem (0.8.0.2) joystick", db9_multi_btn, 1, 1, 2, 1, 1 },
{ "Multisystem (0.8.0.2-dual) joystick", db9_multi_btn, 1, 2, 2, 1, 1 },
{ "Amiga CD-32 pad", db9_cd32_btn, 7, 1, 2, 1, 1 },
{ "Saturn dpp", db9_cd32_btn, 9, 6, 7, 0, 0 },
{ "Saturn dpp dual", db9_cd32_btn, 9, 12, 7, 0, 0 },
};
/*
* Saturn controllers
*/
#define DB9_SATURN_DELAY 300
static const int db9_saturn_byte[] = { 1, 1, 1, 2, 2, 2, 2, 2, 1 };
static const unsigned char db9_saturn_mask[] = { 0x04, 0x01, 0x02, 0x40, 0x20, 0x10, 0x08, 0x80, 0x08 };
/*
* db9_saturn_write_sub() writes 2 bit data.
*/
static void db9_saturn_write_sub(struct parport *port, int type, unsigned char data, int powered, int pwr_sub)
{
unsigned char c;
switch (type) {
case 1: /* DPP1 */
c = 0x80 | 0x30 | (powered ? 0x08 : 0) | (pwr_sub ? 0x04 : 0) | data;
parport_write_data(port, c);
break;
case 2: /* DPP2 */
c = 0x40 | data << 4 | (powered ? 0x08 : 0) | (pwr_sub ? 0x04 : 0) | 0x03;
parport_write_data(port, c);
break;
case 0: /* DB9 */
c = ((((data & 2) ? 2 : 0) | ((data & 1) ? 4 : 0)) ^ 0x02) | !powered;
parport_write_control(port, c);
break;
}
}
/*
* gc_saturn_read_sub() reads 4 bit data.
*/
static unsigned char db9_saturn_read_sub(struct parport *port, int type)
{
unsigned char data;
if (type) {
/* DPP */
data = parport_read_status(port) ^ 0x80;
return (data & 0x80 ? 1 : 0) | (data & 0x40 ? 2 : 0)
| (data & 0x20 ? 4 : 0) | (data & 0x10 ? 8 : 0);
} else {
/* DB9 */
data = parport_read_data(port) & 0x0f;
return (data & 0x8 ? 1 : 0) | (data & 0x4 ? 2 : 0)
| (data & 0x2 ? 4 : 0) | (data & 0x1 ? 8 : 0);
}
}
/*
* db9_saturn_read_analog() sends clock and reads 8 bit data.
*/
static unsigned char db9_saturn_read_analog(struct parport *port, int type, int powered)
{
unsigned char data;
db9_saturn_write_sub(port, type, 0, powered, 0);
udelay(DB9_SATURN_DELAY);
data = db9_saturn_read_sub(port, type) << 4;
db9_saturn_write_sub(port, type, 2, powered, 0);
udelay(DB9_SATURN_DELAY);
data |= db9_saturn_read_sub(port, type);
return data;
}
/*
* db9_saturn_read_packet() reads whole saturn packet at connector
* and returns device identifier code.
*/
static unsigned char db9_saturn_read_packet(struct parport *port, unsigned char *data, int type, int powered)
{
int i, j;
unsigned char tmp;
db9_saturn_write_sub(port, type, 3, powered, 0);
data[0] = db9_saturn_read_sub(port, type);
switch (data[0] & 0x0f) {
case 0xf:
/* 1111 no pad */
return data[0] = 0xff;
case 0x4: case 0x4 | 0x8:
/* ?100 : digital controller */
db9_saturn_write_sub(port, type, 0, powered, 1);
data[2] = db9_saturn_read_sub(port, type) << 4;
db9_saturn_write_sub(port, type, 2, powered, 1);
data[1] = db9_saturn_read_sub(port, type) << 4;
db9_saturn_write_sub(port, type, 1, powered, 1);
data[1] |= db9_saturn_read_sub(port, type);
db9_saturn_write_sub(port, type, 3, powered, 1);
/* data[2] |= db9_saturn_read_sub(port, type); */
data[2] |= data[0];
return data[0] = 0x02;
case 0x1:
/* 0001 : analog controller or multitap */
db9_saturn_write_sub(port, type, 2, powered, 0);
udelay(DB9_SATURN_DELAY);
data[0] = db9_saturn_read_analog(port, type, powered);
if (data[0] != 0x41) {
/* read analog controller */
for (i = 0; i < (data[0] & 0x0f); i++)
data[i + 1] = db9_saturn_read_analog(port, type, powered);
db9_saturn_write_sub(port, type, 3, powered, 0);
return data[0];
} else {
/* read multitap */
if (db9_saturn_read_analog(port, type, powered) != 0x60)
return data[0] = 0xff;
for (i = 0; i < 60; i += 10) {
data[i] = db9_saturn_read_analog(port, type, powered);
if (data[i] != 0xff)
/* read each pad */
for (j = 0; j < (data[i] & 0x0f); j++)
data[i + j + 1] = db9_saturn_read_analog(port, type, powered);
}
db9_saturn_write_sub(port, type, 3, powered, 0);
return 0x41;
}
case 0x0:
/* 0000 : mouse */
db9_saturn_write_sub(port, type, 2, powered, 0);
udelay(DB9_SATURN_DELAY);
tmp = db9_saturn_read_analog(port, type, powered);
if (tmp == 0xff) {
for (i = 0; i < 3; i++)
data[i + 1] = db9_saturn_read_analog(port, type, powered);
db9_saturn_write_sub(port, type, 3, powered, 0);
return data[0] = 0xe3;
}
default:
return data[0];
}
}
/*
* db9_saturn_report() analyzes packet and reports.
*/
static int db9_saturn_report(unsigned char id, unsigned char data[60], struct input_dev *devs[], int n, int max_pads)
{
struct input_dev *dev;
int tmp, i, j;
tmp = (id == 0x41) ? 60 : 10;
for (j = 0; j < tmp && n < max_pads; j += 10, n++) {
dev = devs[n];
switch (data[j]) {
case 0x16: /* multi controller (analog 4 axis) */
input_report_abs(dev, db9_abs[5], data[j + 6]);
case 0x15: /* mission stick (analog 3 axis) */
input_report_abs(dev, db9_abs[3], data[j + 4]);
input_report_abs(dev, db9_abs[4], data[j + 5]);
case 0x13: /* racing controller (analog 1 axis) */
input_report_abs(dev, db9_abs[2], data[j + 3]);
case 0x34: /* saturn keyboard (udlr ZXC ASD QE Esc) */
case 0x02: /* digital pad (digital 2 axis + buttons) */
input_report_abs(dev, db9_abs[0], !(data[j + 1] & 128) - !(data[j + 1] & 64));
input_report_abs(dev, db9_abs[1], !(data[j + 1] & 32) - !(data[j + 1] & 16));
for (i = 0; i < 9; i++)
input_report_key(dev, db9_cd32_btn[i], ~data[j + db9_saturn_byte[i]] & db9_saturn_mask[i]);
break;
case 0x19: /* mission stick x2 (analog 6 axis + buttons) */
input_report_abs(dev, db9_abs[0], !(data[j + 1] & 128) - !(data[j + 1] & 64));
input_report_abs(dev, db9_abs[1], !(data[j + 1] & 32) - !(data[j + 1] & 16));
for (i = 0; i < 9; i++)
input_report_key(dev, db9_cd32_btn[i], ~data[j + db9_saturn_byte[i]] & db9_saturn_mask[i]);
input_report_abs(dev, db9_abs[2], data[j + 3]);
input_report_abs(dev, db9_abs[3], data[j + 4]);
input_report_abs(dev, db9_abs[4], data[j + 5]);
/*
input_report_abs(dev, db9_abs[8], (data[j + 6] & 128 ? 0 : 1) - (data[j + 6] & 64 ? 0 : 1));
input_report_abs(dev, db9_abs[9], (data[j + 6] & 32 ? 0 : 1) - (data[j + 6] & 16 ? 0 : 1));
*/
input_report_abs(dev, db9_abs[6], data[j + 7]);
input_report_abs(dev, db9_abs[7], data[j + 8]);
input_report_abs(dev, db9_abs[5], data[j + 9]);
break;
case 0xd3: /* sankyo ff (analog 1 axis + stop btn) */
input_report_key(dev, BTN_A, data[j + 3] & 0x80);
input_report_abs(dev, db9_abs[2], data[j + 3] & 0x7f);
break;
case 0xe3: /* shuttle mouse (analog 2 axis + buttons. signed value) */
input_report_key(dev, BTN_START, data[j + 1] & 0x08);
input_report_key(dev, BTN_A, data[j + 1] & 0x04);
input_report_key(dev, BTN_C, data[j + 1] & 0x02);
input_report_key(dev, BTN_B, data[j + 1] & 0x01);
input_report_abs(dev, db9_abs[2], data[j + 2] ^ 0x80);
input_report_abs(dev, db9_abs[3], (0xff-(data[j + 3] ^ 0x80))+1); /* */
break;
case 0xff:
default: /* no pad */
input_report_abs(dev, db9_abs[0], 0);
input_report_abs(dev, db9_abs[1], 0);
for (i = 0; i < 9; i++)
input_report_key(dev, db9_cd32_btn[i], 0);
break;
}
}
return n;
}
static int db9_saturn(int mode, struct parport *port, struct input_dev *devs[])
{
unsigned char id, data[60];
int type, n, max_pads;
int tmp, i;
switch (mode) {
case DB9_SATURN_PAD:
type = 0;
n = 1;
break;
case DB9_SATURN_DPP:
type = 1;
n = 1;
break;
case DB9_SATURN_DPP_2:
type = 1;
n = 2;
break;
default:
return -1;
}
max_pads = min(db9_modes[mode].n_pads, DB9_MAX_DEVICES);
for (tmp = 0, i = 0; i < n; i++) {
id = db9_saturn_read_packet(port, data, type + i, 1);
tmp = db9_saturn_report(id, data, devs, tmp, max_pads);
}
return 0;
}
static void db9_timer(unsigned long private)
{
struct db9 *db9 = (void *) private;
struct parport *port = db9->pd->port;
struct input_dev *dev = db9->dev[0];
struct input_dev *dev2 = db9->dev[1];
int data, i;
switch (db9->mode) {
case DB9_MULTI_0802_2:
data = parport_read_data(port) >> 3;
input_report_abs(dev2, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev2, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev2, BTN_TRIGGER, ~data & DB9_FIRE1);
case DB9_MULTI_0802:
data = parport_read_status(port) >> 3;
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev, BTN_TRIGGER, data & DB9_FIRE1);
break;
case DB9_MULTI_STICK:
data = parport_read_data(port);
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev, BTN_TRIGGER, ~data & DB9_FIRE1);
break;
case DB9_MULTI2_STICK:
data = parport_read_data(port);
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev, BTN_TRIGGER, ~data & DB9_FIRE1);
input_report_key(dev, BTN_THUMB, ~data & DB9_FIRE2);
break;
case DB9_GENESIS_PAD:
parport_write_control(port, DB9_NOSELECT);
data = parport_read_data(port);
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev, BTN_B, ~data & DB9_FIRE1);
input_report_key(dev, BTN_C, ~data & DB9_FIRE2);
parport_write_control(port, DB9_NORMAL);
data = parport_read_data(port);
input_report_key(dev, BTN_A, ~data & DB9_FIRE1);
input_report_key(dev, BTN_START, ~data & DB9_FIRE2);
break;
case DB9_GENESIS5_PAD:
parport_write_control(port, DB9_NOSELECT);
data = parport_read_data(port);
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev, BTN_B, ~data & DB9_FIRE1);
input_report_key(dev, BTN_C, ~data & DB9_FIRE2);
parport_write_control(port, DB9_NORMAL);
data = parport_read_data(port);
input_report_key(dev, BTN_A, ~data & DB9_FIRE1);
input_report_key(dev, BTN_X, ~data & DB9_FIRE2);
input_report_key(dev, BTN_Y, ~data & DB9_LEFT);
input_report_key(dev, BTN_START, ~data & DB9_RIGHT);
break;
case DB9_GENESIS6_PAD:
parport_write_control(port, DB9_NOSELECT); /* 1 */
udelay(DB9_GENESIS6_DELAY);
data = parport_read_data(port);
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
input_report_key(dev, BTN_B, ~data & DB9_FIRE1);
input_report_key(dev, BTN_C, ~data & DB9_FIRE2);
parport_write_control(port, DB9_NORMAL);
udelay(DB9_GENESIS6_DELAY);
data = parport_read_data(port);
input_report_key(dev, BTN_A, ~data & DB9_FIRE1);
input_report_key(dev, BTN_START, ~data & DB9_FIRE2);
parport_write_control(port, DB9_NOSELECT); /* 2 */
udelay(DB9_GENESIS6_DELAY);
parport_write_control(port, DB9_NORMAL);
udelay(DB9_GENESIS6_DELAY);
parport_write_control(port, DB9_NOSELECT); /* 3 */
udelay(DB9_GENESIS6_DELAY);
data=parport_read_data(port);
input_report_key(dev, BTN_X, ~data & DB9_LEFT);
input_report_key(dev, BTN_Y, ~data & DB9_DOWN);
input_report_key(dev, BTN_Z, ~data & DB9_UP);
input_report_key(dev, BTN_MODE, ~data & DB9_RIGHT);
parport_write_control(port, DB9_NORMAL);
udelay(DB9_GENESIS6_DELAY);
parport_write_control(port, DB9_NOSELECT); /* 4 */
udelay(DB9_GENESIS6_DELAY);
parport_write_control(port, DB9_NORMAL);
break;
case DB9_SATURN_PAD:
case DB9_SATURN_DPP:
case DB9_SATURN_DPP_2:
db9_saturn(db9->mode, port, db9->dev);
break;
case DB9_CD32_PAD:
data = parport_read_data(port);
input_report_abs(dev, ABS_X, (data & DB9_RIGHT ? 0 : 1) - (data & DB9_LEFT ? 0 : 1));
input_report_abs(dev, ABS_Y, (data & DB9_DOWN ? 0 : 1) - (data & DB9_UP ? 0 : 1));
parport_write_control(port, 0x0a);
for (i = 0; i < 7; i++) {
data = parport_read_data(port);
parport_write_control(port, 0x02);
parport_write_control(port, 0x0a);
input_report_key(dev, db9_cd32_btn[i], ~data & DB9_FIRE2);
}
parport_write_control(port, 0x00);
break;
}
input_sync(dev);
mod_timer(&db9->timer, jiffies + DB9_REFRESH_TIME);
}
static int db9_open(struct input_dev *dev)
{
struct db9 *db9 = input_get_drvdata(dev);
struct parport *port = db9->pd->port;
int err;
err = mutex_lock_interruptible(&db9->mutex);
if (err)
return err;
if (!db9->used++) {
parport_claim(db9->pd);
parport_write_data(port, 0xff);
if (db9_modes[db9->mode].reverse) {
parport_data_reverse(port);
parport_write_control(port, DB9_NORMAL);
}
mod_timer(&db9->timer, jiffies + DB9_REFRESH_TIME);
}
mutex_unlock(&db9->mutex);
return 0;
}
static void db9_close(struct input_dev *dev)
{
struct db9 *db9 = input_get_drvdata(dev);
struct parport *port = db9->pd->port;
mutex_lock(&db9->mutex);
if (!--db9->used) {
del_timer_sync(&db9->timer);
parport_write_control(port, 0x00);
parport_data_forward(port);
parport_release(db9->pd);
}
mutex_unlock(&db9->mutex);
}
static struct db9 __init *db9_probe(int parport, int mode)
{
struct db9 *db9;
const struct db9_mode_data *db9_mode;
struct parport *pp;
struct pardevice *pd;
struct input_dev *input_dev;
int i, j;
int err;
if (mode < 1 || mode >= DB9_MAX_PAD || !db9_modes[mode].n_buttons) {
printk(KERN_ERR "db9.c: Bad device type %d\n", mode);
err = -EINVAL;
goto err_out;
}
db9_mode = &db9_modes[mode];
pp = parport_find_number(parport);
if (!pp) {
printk(KERN_ERR "db9.c: no such parport\n");
err = -ENODEV;
goto err_out;
}
if (db9_mode->bidirectional && !(pp->modes & PARPORT_MODE_TRISTATE)) {
printk(KERN_ERR "db9.c: specified parport is not bidirectional\n");
err = -EINVAL;
goto err_put_pp;
}
pd = parport_register_device(pp, "db9", NULL, NULL, NULL, PARPORT_DEV_EXCL, NULL);
if (!pd) {
printk(KERN_ERR "db9.c: parport busy already - lp.o loaded?\n");
err = -EBUSY;
goto err_put_pp;
}
db9 = kzalloc(sizeof(struct db9), GFP_KERNEL);
if (!db9) {
printk(KERN_ERR "db9.c: Not enough memory\n");
err = -ENOMEM;
goto err_unreg_pardev;
}
mutex_init(&db9->mutex);
db9->pd = pd;
db9->mode = mode;
init_timer(&db9->timer);
db9->timer.data = (long) db9;
db9->timer.function = db9_timer;
for (i = 0; i < (min(db9_mode->n_pads, DB9_MAX_DEVICES)); i++) {
db9->dev[i] = input_dev = input_allocate_device();
if (!input_dev) {
printk(KERN_ERR "db9.c: Not enough memory for input device\n");
err = -ENOMEM;
goto err_unreg_devs;
}
snprintf(db9->phys[i], sizeof(db9->phys[i]),
"%s/input%d", db9->pd->port->name, i);
input_dev->name = db9_mode->name;
input_dev->phys = db9->phys[i];
input_dev->id.bustype = BUS_PARPORT;
input_dev->id.vendor = 0x0002;
input_dev->id.product = mode;
input_dev->id.version = 0x0100;
input_set_drvdata(input_dev, db9);
input_dev->open = db9_open;
input_dev->close = db9_close;
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
for (j = 0; j < db9_mode->n_buttons; j++)
set_bit(db9_mode->buttons[j], input_dev->keybit);
for (j = 0; j < db9_mode->n_axis; j++) {
if (j < 2)
input_set_abs_params(input_dev, db9_abs[j], -1, 1, 0, 0);
else
input_set_abs_params(input_dev, db9_abs[j], 1, 255, 0, 0);
}
err = input_register_device(input_dev);
if (err)
goto err_free_dev;
}
parport_put_port(pp);
return db9;
err_free_dev:
input_free_device(db9->dev[i]);
err_unreg_devs:
while (--i >= 0)
input_unregister_device(db9->dev[i]);
kfree(db9);
err_unreg_pardev:
parport_unregister_device(pd);
err_put_pp:
parport_put_port(pp);
err_out:
return ERR_PTR(err);
}
static void db9_remove(struct db9 *db9)
{
int i;
for (i = 0; i < min(db9_modes[db9->mode].n_pads, DB9_MAX_DEVICES); i++)
input_unregister_device(db9->dev[i]);
parport_unregister_device(db9->pd);
kfree(db9);
}
static int __init db9_init(void)
{
int i;
int have_dev = 0;
int err = 0;
for (i = 0; i < DB9_MAX_PORTS; i++) {
if (db9_cfg[i].nargs == 0 || db9_cfg[i].args[DB9_ARG_PARPORT] < 0)
continue;
if (db9_cfg[i].nargs < 2) {
printk(KERN_ERR "db9.c: Device type must be specified.\n");
err = -EINVAL;
break;
}
db9_base[i] = db9_probe(db9_cfg[i].args[DB9_ARG_PARPORT],
db9_cfg[i].args[DB9_ARG_MODE]);
if (IS_ERR(db9_base[i])) {
err = PTR_ERR(db9_base[i]);
break;
}
have_dev = 1;
}
if (err) {
while (--i >= 0)
if (db9_base[i])
db9_remove(db9_base[i]);
return err;
}
return have_dev ? 0 : -ENODEV;
}
static void __exit db9_exit(void)
{
int i;
for (i = 0; i < DB9_MAX_PORTS; i++)
if (db9_base[i])
db9_remove(db9_base[i]);
}
module_init(db9_init);
module_exit(db9_exit);