dect
/
libpcap
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
libpcap/savefile.c

402 lines
11 KiB
C
Raw Normal View History

1999-10-07 23:46:40 +00:00
/*
* Copyright (c) 1993, 1994, 1995, 1996, 1997
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* savefile.c - supports offline use of tcpdump
* Extraction/creation by Jeffrey Mogul, DECWRL
* Modified by Steve McCanne, LBL.
*
* Used to save the received packet headers, after filtering, to
* a file, and then read them later.
* The first record in the file contains saved values for the machine
* dependent values so we can print the dump file on any architecture.
*/
#ifndef lint
static const char rcsid[] =
"@(#) $Header: /tcpdump/master/libpcap/savefile.c,v 1.43 2000-10-10 04:53:09 guy Exp $ (LBL)";
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
1999-10-07 23:46:40 +00:00
#endif
#include <sys/types.h>
#include <sys/time.h>
#include <errno.h>
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
1999-10-07 23:46:40 +00:00
#include <unistd.h>
#include "pcap-int.h"
#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif
#define TCPDUMP_MAGIC 0xa1b2c3d4
#define PATCHED_TCPDUMP_MAGIC 0xa1b2cd34
1999-10-07 23:46:40 +00:00
/*
* We use the "receiver-makes-right" approach to byte order,
* because time is at a premium when we are writing the file.
* In other words, the pcap_file_header and pcap_pkthdr,
* records are written in host byte order.
* Note that the packets are always written in network byte order.
*
* ntoh[ls] aren't sufficient because we might need to swap on a big-endian
* machine (if the file was written in little-end order).
*/
#define SWAPLONG(y) \
((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
#define SWAPSHORT(y) \
( (((y)&0xff)<<8) | ((u_short)((y)&0xff00)>>8) )
#define SFERR_TRUNC 1
#define SFERR_BADVERSION 2
#define SFERR_BADF 3
#define SFERR_EOF 4 /* not really an error, just a status */
static int
sf_write_header(FILE *fp, int linktype, int thiszone, int snaplen)
{
struct pcap_file_header hdr;
hdr.magic = TCPDUMP_MAGIC;
hdr.version_major = PCAP_VERSION_MAJOR;
hdr.version_minor = PCAP_VERSION_MINOR;
hdr.thiszone = thiszone;
hdr.snaplen = snaplen;
hdr.sigfigs = 0;
hdr.linktype = linktype;
if (fwrite((char *)&hdr, sizeof(hdr), 1, fp) != 1)
return (-1);
return (0);
}
static void
swap_hdr(struct pcap_file_header *hp)
{
hp->version_major = SWAPSHORT(hp->version_major);
hp->version_minor = SWAPSHORT(hp->version_minor);
hp->thiszone = SWAPLONG(hp->thiszone);
hp->sigfigs = SWAPLONG(hp->sigfigs);
hp->snaplen = SWAPLONG(hp->snaplen);
hp->linktype = SWAPLONG(hp->linktype);
}
pcap_t *
pcap_open_offline(const char *fname, char *errbuf)
{
register pcap_t *p;
register FILE *fp;
struct pcap_file_header hdr;
bpf_u_int32 magic;
1999-10-07 23:46:40 +00:00
int linklen;
p = (pcap_t *)malloc(sizeof(*p));
if (p == NULL) {
strlcpy(errbuf, "out of swap", PCAP_ERRBUF_SIZE);
1999-10-07 23:46:40 +00:00
return (NULL);
}
memset((char *)p, 0, sizeof(*p));
/*
* Set this field so we don't close stdin in pcap_close!
*/
p->fd = -1;
if (fname[0] == '-' && fname[1] == '\0')
fp = stdin;
else {
fp = fopen(fname, "r");
if (fp == NULL) {
snprintf(errbuf, PCAP_ERRBUF_SIZE, "%s: %s", fname,
pcap_strerror(errno));
1999-10-07 23:46:40 +00:00
goto bad;
}
}
if (fread((char *)&hdr, sizeof(hdr), 1, fp) != 1) {
snprintf(errbuf, PCAP_ERRBUF_SIZE, "fread: %s",
pcap_strerror(errno));
1999-10-07 23:46:40 +00:00
goto bad;
}
magic = hdr.magic;
if (magic != TCPDUMP_MAGIC && magic != PATCHED_TCPDUMP_MAGIC) {
magic = SWAPLONG(magic);
if (magic != TCPDUMP_MAGIC && magic != PATCHED_TCPDUMP_MAGIC) {
snprintf(errbuf, PCAP_ERRBUF_SIZE,
"bad dump file format");
1999-10-07 23:46:40 +00:00
goto bad;
}
p->sf.swapped = 1;
swap_hdr(&hdr);
}
if (magic == PATCHED_TCPDUMP_MAGIC) {
/*
* XXX - the patch that's in some versions of libpcap
* changes the packet header but not the magic number;
* we'd have to use some hacks^H^H^H^H^Hheuristics to
* detect that.
*/
p->sf.hdrsize = sizeof(struct pcap_sf_patched_pkthdr);
} else
p->sf.hdrsize = sizeof(struct pcap_sf_pkthdr);
1999-10-07 23:46:40 +00:00
if (hdr.version_major < PCAP_VERSION_MAJOR) {
snprintf(errbuf, PCAP_ERRBUF_SIZE, "archaic file format");
1999-10-07 23:46:40 +00:00
goto bad;
}
p->tzoff = hdr.thiszone;
p->snapshot = hdr.snaplen;
p->linktype = hdr.linktype;
p->sf.rfile = fp;
p->bufsize = hdr.snaplen;
/* Align link header as required for proper data alignment */
/* XXX should handle all types */
switch (p->linktype) {
Introduce a set of PCAP_ENCAP_ codes to specify packet encapsulations. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that are (believed to be) the same in all BSDs, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that were added in libpcap 0.5 as "non-kernel" DLT_ codes, or had their values changed in libpcap 0.5 in order to cope with the fact that those DLT_ codes have different values in different systems, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. We add some additional PCAP_ENCAP_ codes to handle IEEE 802.11 (which currently has its link-layer information turned into an Ethernet header by at least some of the BSDs, but John Hawkinson at MIT wants to add a DLT_ value for 802.11 and pass up the full link-layer header) and the Classical IP encapsulation for ATM on Linux (which isn't always the same as DLT_ATM_RFC1483, from what I can tell, alas). "pcap-bpf.c" maps DLT_ codes to PCAP_ENCAP_ codes, so as not to supply to libpcap's callers any DLT_ codes other than the ones that have the same values on all platforms; it supplies PCAP_ENCAP_ codes for all others. In libpcap's "bpf/net/bpf.h", we define the DLT_ values that aren't the same on all platforms with the new values starting at 100 (to keep them out of the way of the values various BSDs might assign to them), as we did in 0.5, but do so only if they're not already defined; platforms with <net/bpf.h> headers that come with the kernel (e.g., the BSDs) should define them with the values that they have always had on that platform, *not* with the values we used in 0.5. (Code using this version of libpcap should check for the new PCAP_ENCAP_ codes; those are given the values that the corresponding DLT_ values had in 0.5, so code that checks for them will handle 0.5 libpcap files correctly even if the platform defines DLT_RAW, say, as something other than 101. If that code also checks for DLT_RAW - which means it can't just use a switch statement, as DLT_RAW might be defined as 101 if the platform doesn't itself define DLT_RAW with some other value - then it will also handle old DLT_RAW captures, as long as they were made on the same platform or on another platform that used the same value for DLT_RAW. It can't handle captures from a platform that uses that value for another DLT_ code, but that's always been the case, and isn't easily fixable.) The intent here is to decouple the values that are returned by "pcap_datalink()" and put into the header of tcpdump/libpcap save files from the DLT_ values returned by BIOCGDLT in BSD kernels, allowing the BSDs to assign values to DLT_ codes, in their kernels, as they choose, without creating more incompatibilities between tcpdump/libpcap save files from different platforms.
2000-09-17 04:04:36 +00:00
case PCAP_ENCAP_ETHERNET:
1999-10-07 23:46:40 +00:00
linklen = 14;
break;
Introduce a set of PCAP_ENCAP_ codes to specify packet encapsulations. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that are (believed to be) the same in all BSDs, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that were added in libpcap 0.5 as "non-kernel" DLT_ codes, or had their values changed in libpcap 0.5 in order to cope with the fact that those DLT_ codes have different values in different systems, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. We add some additional PCAP_ENCAP_ codes to handle IEEE 802.11 (which currently has its link-layer information turned into an Ethernet header by at least some of the BSDs, but John Hawkinson at MIT wants to add a DLT_ value for 802.11 and pass up the full link-layer header) and the Classical IP encapsulation for ATM on Linux (which isn't always the same as DLT_ATM_RFC1483, from what I can tell, alas). "pcap-bpf.c" maps DLT_ codes to PCAP_ENCAP_ codes, so as not to supply to libpcap's callers any DLT_ codes other than the ones that have the same values on all platforms; it supplies PCAP_ENCAP_ codes for all others. In libpcap's "bpf/net/bpf.h", we define the DLT_ values that aren't the same on all platforms with the new values starting at 100 (to keep them out of the way of the values various BSDs might assign to them), as we did in 0.5, but do so only if they're not already defined; platforms with <net/bpf.h> headers that come with the kernel (e.g., the BSDs) should define them with the values that they have always had on that platform, *not* with the values we used in 0.5. (Code using this version of libpcap should check for the new PCAP_ENCAP_ codes; those are given the values that the corresponding DLT_ values had in 0.5, so code that checks for them will handle 0.5 libpcap files correctly even if the platform defines DLT_RAW, say, as something other than 101. If that code also checks for DLT_RAW - which means it can't just use a switch statement, as DLT_RAW might be defined as 101 if the platform doesn't itself define DLT_RAW with some other value - then it will also handle old DLT_RAW captures, as long as they were made on the same platform or on another platform that used the same value for DLT_RAW. It can't handle captures from a platform that uses that value for another DLT_ code, but that's always been the case, and isn't easily fixable.) The intent here is to decouple the values that are returned by "pcap_datalink()" and put into the header of tcpdump/libpcap save files from the DLT_ values returned by BIOCGDLT in BSD kernels, allowing the BSDs to assign values to DLT_ codes, in their kernels, as they choose, without creating more incompatibilities between tcpdump/libpcap save files from different platforms.
2000-09-17 04:04:36 +00:00
case PCAP_ENCAP_FDDI:
1999-10-07 23:46:40 +00:00
linklen = 13 + 8; /* fddi_header + llc */
break;
Introduce a set of PCAP_ENCAP_ codes to specify packet encapsulations. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that are (believed to be) the same in all BSDs, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that were added in libpcap 0.5 as "non-kernel" DLT_ codes, or had their values changed in libpcap 0.5 in order to cope with the fact that those DLT_ codes have different values in different systems, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. We add some additional PCAP_ENCAP_ codes to handle IEEE 802.11 (which currently has its link-layer information turned into an Ethernet header by at least some of the BSDs, but John Hawkinson at MIT wants to add a DLT_ value for 802.11 and pass up the full link-layer header) and the Classical IP encapsulation for ATM on Linux (which isn't always the same as DLT_ATM_RFC1483, from what I can tell, alas). "pcap-bpf.c" maps DLT_ codes to PCAP_ENCAP_ codes, so as not to supply to libpcap's callers any DLT_ codes other than the ones that have the same values on all platforms; it supplies PCAP_ENCAP_ codes for all others. In libpcap's "bpf/net/bpf.h", we define the DLT_ values that aren't the same on all platforms with the new values starting at 100 (to keep them out of the way of the values various BSDs might assign to them), as we did in 0.5, but do so only if they're not already defined; platforms with <net/bpf.h> headers that come with the kernel (e.g., the BSDs) should define them with the values that they have always had on that platform, *not* with the values we used in 0.5. (Code using this version of libpcap should check for the new PCAP_ENCAP_ codes; those are given the values that the corresponding DLT_ values had in 0.5, so code that checks for them will handle 0.5 libpcap files correctly even if the platform defines DLT_RAW, say, as something other than 101. If that code also checks for DLT_RAW - which means it can't just use a switch statement, as DLT_RAW might be defined as 101 if the platform doesn't itself define DLT_RAW with some other value - then it will also handle old DLT_RAW captures, as long as they were made on the same platform or on another platform that used the same value for DLT_RAW. It can't handle captures from a platform that uses that value for another DLT_ code, but that's always been the case, and isn't easily fixable.) The intent here is to decouple the values that are returned by "pcap_datalink()" and put into the header of tcpdump/libpcap save files from the DLT_ values returned by BIOCGDLT in BSD kernels, allowing the BSDs to assign values to DLT_ codes, in their kernels, as they choose, without creating more incompatibilities between tcpdump/libpcap save files from different platforms.
2000-09-17 04:04:36 +00:00
case PCAP_ENCAP_NULL:
1999-10-07 23:46:40 +00:00
default:
linklen = 0;
break;
}
if (p->bufsize < 0)
p->bufsize = BPF_MAXBUFSIZE;
1999-10-07 23:46:40 +00:00
p->sf.base = (u_char *)malloc(p->bufsize + BPF_ALIGNMENT);
if (p->sf.base == NULL) {
strlcpy(errbuf, "out of swap", PCAP_ERRBUF_SIZE);
goto bad;
}
1999-10-07 23:46:40 +00:00
p->buffer = p->sf.base + BPF_ALIGNMENT - (linklen % BPF_ALIGNMENT);
p->sf.version_major = hdr.version_major;
p->sf.version_minor = hdr.version_minor;
#ifdef PCAP_FDDIPAD
/* XXX padding only needed for kernel fcode */
pcap_fddipad = 0;
#endif
return (p);
bad:
free(p);
return (NULL);
}
/*
* Read sf_readfile and return the next packet. Return the header in hdr
* and the contents in buf. Return 0 on success, SFERR_EOF if there were
* no more packets, and SFERR_TRUNC if a partial packet was encountered.
*/
static int
sf_next_packet(pcap_t *p, struct pcap_pkthdr *hdr, u_char *buf, int buflen)
{
struct pcap_sf_patched_pkthdr sf_hdr;
1999-10-07 23:46:40 +00:00
FILE *fp = p->sf.rfile;
/*
* Read the packet header; the structure we use as a buffer
* is the longer structure for files generated by the patched
* libpcap, but if the file has the magic number for an
* unpatched libpcap we only read as many bytes as the regular
* header has.
*/
if (fread(&sf_hdr, p->sf.hdrsize, 1, fp) != 1) {
1999-10-07 23:46:40 +00:00
/* probably an EOF, though could be a truncated packet */
return (1);
}
if (p->sf.swapped) {
/* these were written in opposite byte order */
hdr->caplen = SWAPLONG(sf_hdr.caplen);
hdr->len = SWAPLONG(sf_hdr.len);
hdr->ts.tv_sec = SWAPLONG(sf_hdr.ts.tv_sec);
hdr->ts.tv_usec = SWAPLONG(sf_hdr.ts.tv_usec);
} else {
hdr->caplen = sf_hdr.caplen;
hdr->len = sf_hdr.len;
hdr->ts.tv_sec = sf_hdr.ts.tv_sec;
hdr->ts.tv_usec = sf_hdr.ts.tv_usec;
1999-10-07 23:46:40 +00:00
}
/*
* We interchanged the caplen and len fields at version 2.3,
* in order to match the bpf header layout. But unfortunately
* some files were written with version 2.3 in their headers
* but without the interchanged fields.
*/
if (p->sf.version_minor < 3 ||
(p->sf.version_minor == 3 && hdr->caplen > hdr->len)) {
int t = hdr->caplen;
hdr->caplen = hdr->len;
hdr->len = t;
}
if (hdr->caplen > buflen) {
/*
* This can happen due to Solaris 2.3 systems tripping
* over the BUFMOD problem and not setting the snapshot
* correctly in the savefile header. If the caplen isn't
* grossly wrong, try to salvage.
*/
static u_char *tp = NULL;
static int tsize = 0;
if (hdr->caplen > 65535) {
snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"bogus savefile header");
1999-10-07 23:46:40 +00:00
return (-1);
}
1999-10-07 23:46:40 +00:00
if (tsize < hdr->caplen) {
tsize = ((hdr->caplen + 1023) / 1024) * 1024;
if (tp != NULL)
free((u_char *)tp);
tp = (u_char *)malloc(tsize);
if (tp == NULL) {
tsize = 0;
snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"BUFMOD hack malloc");
1999-10-07 23:46:40 +00:00
return (-1);
}
}
if (fread((char *)tp, hdr->caplen, 1, fp) != 1) {
snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"truncated dump file");
1999-10-07 23:46:40 +00:00
return (-1);
}
/*
* We can only keep up to buflen bytes. Since caplen > buflen
* is exactly how we got here, we know we can only keep the
* first buflen bytes and must drop the remainder. Adjust
* caplen accordingly, so we don't get confused later as
* to how many bytes we have to play with.
*/
hdr->caplen = buflen;
memcpy((char *)buf, (char *)tp, buflen);
} else {
/* read the packet itself */
if (fread((char *)buf, hdr->caplen, 1, fp) != 1) {
snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"truncated dump file");
1999-10-07 23:46:40 +00:00
return (-1);
}
}
return (0);
}
/*
* Print out packets stored in the file initialized by sf_read_init().
* If cnt > 0, return after 'cnt' packets, otherwise continue until eof.
*/
int
pcap_offline_read(pcap_t *p, int cnt, pcap_handler callback, u_char *user)
{
struct bpf_insn *fcode = p->fcode.bf_insns;
int status = 0;
int n = 0;
while (status == 0) {
struct pcap_pkthdr h;
status = sf_next_packet(p, &h, p->buffer, p->bufsize);
if (status) {
if (status == 1)
return (0);
return (status);
}
if (fcode == NULL ||
bpf_filter(fcode, p->buffer, h.len, h.caplen)) {
(*callback)(user, &h, p->buffer);
if (++n >= cnt && cnt > 0)
break;
}
}
/*XXX this breaks semantics tcpslice expects */
return (n);
}
/*
* Output a packet to the initialized dump file.
*/
void
pcap_dump(u_char *user, const struct pcap_pkthdr *h, const u_char *sp)
{
register FILE *f;
struct pcap_sf_pkthdr sf_hdr;
1999-10-07 23:46:40 +00:00
f = (FILE *)user;
sf_hdr.ts.tv_sec = h->ts.tv_sec;
sf_hdr.ts.tv_usec = h->ts.tv_usec;
sf_hdr.caplen = h->caplen;
sf_hdr.len = h->len;
1999-10-07 23:46:40 +00:00
/* XXX we should check the return status */
(void)fwrite(&sf_hdr, sizeof(sf_hdr), 1, f);
1999-10-07 23:46:40 +00:00
(void)fwrite((char *)sp, h->caplen, 1, f);
}
/*
* Initialize so that sf_write() will output to the file named 'fname'.
*/
pcap_dumper_t *
pcap_dump_open(pcap_t *p, const char *fname)
{
FILE *f;
if (fname[0] == '-' && fname[1] == '\0')
f = stdout;
else {
f = fopen(fname, "w");
if (f == NULL) {
snprintf(p->errbuf, PCAP_ERRBUF_SIZE, "%s: %s",
1999-10-07 23:46:40 +00:00
fname, pcap_strerror(errno));
return (NULL);
}
}
(void)sf_write_header(f, p->linktype, p->tzoff, p->snapshot);
return ((pcap_dumper_t *)f);
}
void
pcap_dump_close(pcap_dumper_t *p)
{
#ifdef notyet
if (ferror((FILE *)p))
return-an-error;
/* XXX should check return from fclose() too */
#endif
(void)fclose((FILE *)p);
}