dect
/
libpcap
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
libpcap/gencode.c

3697 lines
76 KiB
C
Raw Normal View History

/*#define CHASE_CHAIN*/
1999-10-07 23:46:40 +00:00
/*
* Copyright (c) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that: (1) source code distributions
* retain the above copyright notice and this paragraph in its entirety, (2)
* distributions including binary code include the above copyright notice and
* this paragraph in its entirety in the documentation or other materials
* provided with the distribution, and (3) all advertising materials mentioning
* features or use of this software display the following acknowledgement:
* ``This product includes software developed by the University of California,
* Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
* the University nor the names of its contributors may be used to endorse
* or promote products derived from this software without specific prior
* written permission.
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*/
#ifndef lint
static const char rcsid[] =
"@(#) $Header: /tcpdump/master/libpcap/gencode.c,v 1.147 2001-01-28 09:44:48 guy Exp $ (LBL)";
#endif
#ifdef HAVE_CONFIG_H
#include "config.h"
1999-10-07 23:46:40 +00:00
#endif
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/time.h>
#ifdef __NetBSD__
#include <sys/param.h>
#endif
1999-10-07 23:46:40 +00:00
struct mbuf;
struct rtentry;
#include <net/if.h>
#include <netinet/in.h>
#include <stdlib.h>
#include <string.h>
1999-10-07 23:46:40 +00:00
#include <memory.h>
#include <setjmp.h>
#include <stdarg.h>
#include "pcap-int.h"
#include "ethertype.h"
#include "nlpid.h"
#include "llc.h"
1999-10-07 23:46:40 +00:00
#include "gencode.h"
#include "ppp.h"
#include "sll.h"
1999-10-07 23:46:40 +00:00
#include <pcap-namedb.h>
#ifdef INET6
#include <netdb.h>
#include <sys/socket.h>
#endif /*INET6*/
1999-10-07 23:46:40 +00:00
#define ETHERMTU 1500
1999-10-07 23:46:40 +00:00
#ifdef HAVE_OS_PROTO_H
#include "os-proto.h"
#endif
#define JMP(c) ((c)|BPF_JMP|BPF_K)
/* Locals */
static jmp_buf top_ctx;
static pcap_t *bpf_pcap;
/* XXX */
#ifdef PCAP_FDDIPAD
int pcap_fddipad = PCAP_FDDIPAD;
#else
int pcap_fddipad;
#endif
/* VARARGS */
void
1999-10-07 23:46:40 +00:00
bpf_error(const char *fmt, ...)
1999-10-07 23:46:40 +00:00
{
va_list ap;
va_start(ap, fmt);
if (bpf_pcap != NULL)
(void)vsnprintf(pcap_geterr(bpf_pcap), PCAP_ERRBUF_SIZE,
fmt, ap);
1999-10-07 23:46:40 +00:00
va_end(ap);
longjmp(top_ctx, 1);
/* NOTREACHED */
}
static void init_linktype(int);
static int alloc_reg(void);
static void free_reg(int);
static struct block *root;
/*
* We divy out chunks of memory rather than call malloc each time so
* we don't have to worry about leaking memory. It's probably
* not a big deal if all this memory was wasted but it this ever
* goes into a library that would probably not be a good idea.
*/
#define NCHUNKS 16
#define CHUNK0SIZE 1024
struct chunk {
u_int n_left;
void *m;
};
static struct chunk chunks[NCHUNKS];
static int cur_chunk;
static void *newchunk(u_int);
static void freechunks(void);
static inline struct block *new_block(int);
static inline struct slist *new_stmt(int);
static struct block *gen_retblk(int);
static inline void syntax(void);
static void backpatch(struct block *, struct block *);
static void merge(struct block *, struct block *);
static struct block *gen_cmp(u_int, u_int, bpf_int32);
static struct block *gen_cmp_gt(u_int, u_int, bpf_int32);
1999-10-07 23:46:40 +00:00
static struct block *gen_mcmp(u_int, u_int, bpf_int32, bpf_u_int32);
static struct block *gen_bcmp(u_int, u_int, const u_char *);
static struct block *gen_uncond(int);
static inline struct block *gen_true(void);
static inline struct block *gen_false(void);
static struct block *gen_linktype(int);
static struct block *gen_snap(bpf_u_int32, bpf_u_int32, u_int);
1999-10-07 23:46:40 +00:00
static struct block *gen_hostop(bpf_u_int32, bpf_u_int32, int, int, u_int, u_int);
#ifdef INET6
static struct block *gen_hostop6(struct in6_addr *, struct in6_addr *, int, int, u_int, u_int);
#endif
1999-10-07 23:46:40 +00:00
static struct block *gen_ehostop(const u_char *, int);
static struct block *gen_fhostop(const u_char *, int);
static struct block *gen_thostop(const u_char *, int);
1999-10-07 23:46:40 +00:00
static struct block *gen_dnhostop(bpf_u_int32, int, u_int);
static struct block *gen_host(bpf_u_int32, bpf_u_int32, int, int);
#ifdef INET6
static struct block *gen_host6(struct in6_addr *, struct in6_addr *, int, int);
#endif
2000-06-03 16:29:42 +00:00
#ifndef INET6
1999-10-07 23:46:40 +00:00
static struct block *gen_gateway(const u_char *, bpf_u_int32 **, int, int);
2000-06-03 16:29:42 +00:00
#endif
1999-10-07 23:46:40 +00:00
static struct block *gen_ipfrag(void);
static struct block *gen_portatom(int, bpf_int32);
#ifdef INET6
static struct block *gen_portatom6(int, bpf_int32);
#endif
1999-10-07 23:46:40 +00:00
struct block *gen_portop(int, int, int);
static struct block *gen_port(int, int, int);
#ifdef INET6
struct block *gen_portop6(int, int, int);
static struct block *gen_port6(int, int, int);
#endif
1999-10-07 23:46:40 +00:00
static int lookup_proto(const char *, int);
static struct block *gen_protochain(int, int, int);
1999-10-07 23:46:40 +00:00
static struct block *gen_proto(int, int, int);
static struct slist *xfer_to_x(struct arth *);
static struct slist *xfer_to_a(struct arth *);
static struct block *gen_len(int, int);
static void *
newchunk(n)
u_int n;
{
struct chunk *cp;
int k, size;
#ifndef __NetBSD__
1999-10-07 23:46:40 +00:00
/* XXX Round up to nearest long. */
n = (n + sizeof(long) - 1) & ~(sizeof(long) - 1);
#else
/* XXX Round up to structure boundary. */
n = ALIGN(n);
#endif
1999-10-07 23:46:40 +00:00
cp = &chunks[cur_chunk];
if (n > cp->n_left) {
++cp, k = ++cur_chunk;
if (k >= NCHUNKS)
bpf_error("out of memory");
size = CHUNK0SIZE << k;
cp->m = (void *)malloc(size);
memset((char *)cp->m, 0, size);
cp->n_left = size;
if (n > size)
bpf_error("out of memory");
}
cp->n_left -= n;
return (void *)((char *)cp->m + cp->n_left);
}
static void
freechunks()
{
int i;
cur_chunk = 0;
for (i = 0; i < NCHUNKS; ++i)
if (chunks[i].m != NULL) {
free(chunks[i].m);
chunks[i].m = NULL;
}
}
/*
* A strdup whose allocations are freed after code generation is over.
*/
char *
sdup(s)
register const char *s;
{
int n = strlen(s) + 1;
char *cp = newchunk(n);
2000-04-27 11:16:54 +00:00
strlcpy(cp, s, n);
1999-10-07 23:46:40 +00:00
return (cp);
}
static inline struct block *
new_block(code)
int code;
{
struct block *p;
p = (struct block *)newchunk(sizeof(*p));
p->s.code = code;
p->head = p;
return p;
}
static inline struct slist *
new_stmt(code)
int code;
{
struct slist *p;
p = (struct slist *)newchunk(sizeof(*p));
p->s.code = code;
return p;
}
static struct block *
gen_retblk(v)
int v;
{
struct block *b = new_block(BPF_RET|BPF_K);
b->s.k = v;
return b;
}
static inline void
syntax()
{
bpf_error("syntax error in filter expression");
}
static bpf_u_int32 netmask;
static int snaplen;
int no_optimize;
1999-10-07 23:46:40 +00:00
int
pcap_compile(pcap_t *p, struct bpf_program *program,
char *buf, int optimize, bpf_u_int32 mask)
{
extern int n_errors;
int len;
no_optimize = 0;
1999-10-07 23:46:40 +00:00
n_errors = 0;
root = NULL;
bpf_pcap = p;
if (setjmp(top_ctx)) {
lex_cleanup();
1999-10-07 23:46:40 +00:00
freechunks();
return (-1);
}
netmask = mask;
1999-10-07 23:46:40 +00:00
snaplen = pcap_snapshot(p);
if (snaplen == 0) {
snprintf(p->errbuf, PCAP_ERRBUF_SIZE,
"snaplen of 0 rejects all packets");
return -1;
}
1999-10-07 23:46:40 +00:00
lex_init(buf ? buf : "");
init_linktype(pcap_datalink(p));
(void)pcap_parse();
if (n_errors)
syntax();
if (root == NULL)
root = gen_retblk(snaplen);
if (optimize && !no_optimize) {
1999-10-07 23:46:40 +00:00
bpf_optimize(&root);
if (root == NULL ||
(root->s.code == (BPF_RET|BPF_K) && root->s.k == 0))
bpf_error("expression rejects all packets");
}
program->bf_insns = icode_to_fcode(root, &len);
program->bf_len = len;
lex_cleanup();
freechunks();
return (0);
}
/*
* entry point for using the compiler with no pcap open
* pass in all the stuff that is needed explicitly instead.
*/
int
pcap_compile_nopcap(int snaplen_arg, int linktype_arg,
struct bpf_program *program,
char *buf, int optimize, bpf_u_int32 mask)
{
pcap_t *p;
int ret;
p = pcap_open_dead(linktype_arg, snaplen_arg);
if (p == NULL)
return (-1);
ret = pcap_compile(p, program, buf, optimize, mask);
pcap_close(p);
return (ret);
1999-10-07 23:46:40 +00:00
}
/*
* Clean up a "struct bpf_program" by freeing all the memory allocated
* in it.
*/
void
pcap_freecode(struct bpf_program *program)
{
program->bf_len = 0;
if (program->bf_insns != NULL) {
free((char *)program->bf_insns);
program->bf_insns = NULL;
}
}
1999-10-07 23:46:40 +00:00
/*
* Backpatch the blocks in 'list' to 'target'. The 'sense' field indicates
* which of the jt and jf fields has been resolved and which is a pointer
* back to another unresolved block (or nil). At least one of the fields
* in each block is already resolved.
*/
static void
backpatch(list, target)
struct block *list, *target;
{
struct block *next;
while (list) {
if (!list->sense) {
next = JT(list);
JT(list) = target;
} else {
next = JF(list);
JF(list) = target;
}
list = next;
}
}
/*
* Merge the lists in b0 and b1, using the 'sense' field to indicate
* which of jt and jf is the link.
*/
static void
merge(b0, b1)
struct block *b0, *b1;
{
register struct block **p = &b0;
/* Find end of list. */
while (*p)
p = !((*p)->sense) ? &JT(*p) : &JF(*p);
/* Concatenate the lists. */
*p = b1;
}
void
finish_parse(p)
struct block *p;
{
backpatch(p, gen_retblk(snaplen));
p->sense = !p->sense;
backpatch(p, gen_retblk(0));
root = p->head;
}
void
gen_and(b0, b1)
struct block *b0, *b1;
{
backpatch(b0, b1->head);
b0->sense = !b0->sense;
b1->sense = !b1->sense;
merge(b1, b0);
b1->sense = !b1->sense;
b1->head = b0->head;
}
void
gen_or(b0, b1)
struct block *b0, *b1;
{
b0->sense = !b0->sense;
backpatch(b0, b1->head);
b0->sense = !b0->sense;
merge(b1, b0);
b1->head = b0->head;
}
void
gen_not(b)
struct block *b;
{
b->sense = !b->sense;
}
static struct block *
gen_cmp(offset, size, v)
u_int offset, size;
bpf_int32 v;
{
struct slist *s;
struct block *b;
s = new_stmt(BPF_LD|BPF_ABS|size);
s->s.k = offset;
b = new_block(JMP(BPF_JEQ));
b->stmts = s;
b->s.k = v;
return b;
}
static struct block *
gen_cmp_gt(offset, size, v)
u_int offset, size;
bpf_int32 v;
{
struct slist *s;
struct block *b;
s = new_stmt(BPF_LD|BPF_ABS|size);
s->s.k = offset;
b = new_block(JMP(BPF_JGT));
b->stmts = s;
b->s.k = v;
return b;
}
1999-10-07 23:46:40 +00:00
static struct block *
gen_mcmp(offset, size, v, mask)
u_int offset, size;
bpf_int32 v;
bpf_u_int32 mask;
{
struct block *b = gen_cmp(offset, size, v);
struct slist *s;
if (mask != 0xffffffff) {
s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
s->s.k = mask;
b->stmts->next = s;
}
return b;
}
static struct block *
gen_bcmp(offset, size, v)
register u_int offset, size;
register const u_char *v;
{
register struct block *b, *tmp;
b = NULL;
while (size >= 4) {
register const u_char *p = &v[size - 4];
bpf_int32 w = ((bpf_int32)p[0] << 24) |
((bpf_int32)p[1] << 16) | ((bpf_int32)p[2] << 8) | p[3];
tmp = gen_cmp(offset + size - 4, BPF_W, w);
if (b != NULL)
gen_and(b, tmp);
b = tmp;
size -= 4;
}
while (size >= 2) {
register const u_char *p = &v[size - 2];
bpf_int32 w = ((bpf_int32)p[0] << 8) | p[1];
tmp = gen_cmp(offset + size - 2, BPF_H, w);
if (b != NULL)
gen_and(b, tmp);
b = tmp;
size -= 2;
}
if (size > 0) {
tmp = gen_cmp(offset, BPF_B, (bpf_int32)v[0]);
if (b != NULL)
gen_and(b, tmp);
b = tmp;
}
return b;
}
/*
* Various code constructs need to know the layout of the data link
* layer. These variables give the necessary offsets. off_linktype
* is set to -1 for no encapsulation, in which case, IP is assumed.
*/
static u_int off_linktype;
static u_int off_nl;
static int linktype;
static void
init_linktype(type)
int type;
{
linktype = type;
switch (type) {
case DLT_EN10MB:
1999-10-07 23:46:40 +00:00
off_linktype = 12;
off_nl = 14;
return;
case DLT_SLIP:
1999-10-07 23:46:40 +00:00
/*
* SLIP doesn't have a link level type. The 16 byte
* header is hacked into our SLIP driver.
*/
off_linktype = -1;
off_nl = 16;
return;
case DLT_SLIP_BSDOS:
/* XXX this may be the same as the DLT_PPP_BSDOS case */
1999-10-07 23:46:40 +00:00
off_linktype = -1;
/* XXX end */
off_nl = 24;
return;
case DLT_NULL:
case DLT_LOOP:
1999-10-07 23:46:40 +00:00
off_linktype = 0;
off_nl = 4;
return;
case DLT_PPP:
case DLT_C_HDLC:
case DLT_PPP_SERIAL:
1999-10-07 23:46:40 +00:00
off_linktype = 2;
off_nl = 4;
return;
case DLT_PPP_BSDOS:
1999-10-07 23:46:40 +00:00
off_linktype = 5;
off_nl = 24;
return;
case DLT_FDDI:
1999-10-07 23:46:40 +00:00
/*
* FDDI doesn't really have a link-level type field.
* We set "off_linktype" to the offset of the LLC header.
*
* To check for Ethernet types, we assume that SSAP = SNAP
* is being used and pick out the encapsulated Ethernet type.
* XXX - should we generate code to check for SNAP?
1999-10-07 23:46:40 +00:00
*/
off_linktype = 13;
1999-10-07 23:46:40 +00:00
#ifdef PCAP_FDDIPAD
off_linktype += pcap_fddipad;
#endif
off_nl = 21;
#ifdef PCAP_FDDIPAD
off_nl += pcap_fddipad;
#endif
return;
case DLT_IEEE802:
/*
* Token Ring doesn't really have a link-level type field.
* We set "off_linktype" to the offset of the LLC header.
*
* To check for Ethernet types, we assume that SSAP = SNAP
* is being used and pick out the encapsulated Ethernet type.
* XXX - should we generate code to check for SNAP?
*
* XXX - the header is actually variable-length.
* Some various Linux patched versions gave 38
* as "off_linktype" and 40 as "off_nl"; however,
* if a token ring packet has *no* routing
* information, i.e. is not source-routed, the correct
* values are 20 and 22, as they are in the vanilla code.
*
* A packet is source-routed iff the uppermost bit
* of the first byte of the source address, at an
* offset of 8, has the uppermost bit set. If the
* packet is source-routed, the total number of bytes
* of routing information is 2 plus bits 0x1F00 of
* the 16-bit value at an offset of 14 (shifted right
* 8 - figure out which byte that is).
*/
off_linktype = 14;
1999-10-07 23:46:40 +00:00
off_nl = 22;
return;
case DLT_ATM_RFC1483:
1999-10-07 23:46:40 +00:00
/*
* assume routed, non-ISO PDUs
* (i.e., LLC = 0xAA-AA-03, OUT = 0x00-00-00)
*/
off_linktype = 6;
off_nl = 8;
return;
case DLT_RAW:
1999-10-07 23:46:40 +00:00
off_linktype = -1;
off_nl = 0;
return;
Introduce a set of PCAP_ENCAP_ codes to specify packet encapsulations. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that are (believed to be) the same in all BSDs, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that were added in libpcap 0.5 as "non-kernel" DLT_ codes, or had their values changed in libpcap 0.5 in order to cope with the fact that those DLT_ codes have different values in different systems, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. We add some additional PCAP_ENCAP_ codes to handle IEEE 802.11 (which currently has its link-layer information turned into an Ethernet header by at least some of the BSDs, but John Hawkinson at MIT wants to add a DLT_ value for 802.11 and pass up the full link-layer header) and the Classical IP encapsulation for ATM on Linux (which isn't always the same as DLT_ATM_RFC1483, from what I can tell, alas). "pcap-bpf.c" maps DLT_ codes to PCAP_ENCAP_ codes, so as not to supply to libpcap's callers any DLT_ codes other than the ones that have the same values on all platforms; it supplies PCAP_ENCAP_ codes for all others. In libpcap's "bpf/net/bpf.h", we define the DLT_ values that aren't the same on all platforms with the new values starting at 100 (to keep them out of the way of the values various BSDs might assign to them), as we did in 0.5, but do so only if they're not already defined; platforms with <net/bpf.h> headers that come with the kernel (e.g., the BSDs) should define them with the values that they have always had on that platform, *not* with the values we used in 0.5. (Code using this version of libpcap should check for the new PCAP_ENCAP_ codes; those are given the values that the corresponding DLT_ values had in 0.5, so code that checks for them will handle 0.5 libpcap files correctly even if the platform defines DLT_RAW, say, as something other than 101. If that code also checks for DLT_RAW - which means it can't just use a switch statement, as DLT_RAW might be defined as 101 if the platform doesn't itself define DLT_RAW with some other value - then it will also handle old DLT_RAW captures, as long as they were made on the same platform or on another platform that used the same value for DLT_RAW. It can't handle captures from a platform that uses that value for another DLT_ code, but that's always been the case, and isn't easily fixable.) The intent here is to decouple the values that are returned by "pcap_datalink()" and put into the header of tcpdump/libpcap save files from the DLT_ values returned by BIOCGDLT in BSD kernels, allowing the BSDs to assign values to DLT_ codes, in their kernels, as they choose, without creating more incompatibilities between tcpdump/libpcap save files from different platforms.
2000-09-17 04:04:36 +00:00
case DLT_ATM_CLIP: /* Linux ATM defines this */
Introduce a set of PCAP_ENCAP_ codes to specify packet encapsulations. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that are (believed to be) the same in all BSDs, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. For those PCAP_ENCAP_ codes corresponding to DLT_ codes that were added in libpcap 0.5 as "non-kernel" DLT_ codes, or had their values changed in libpcap 0.5 in order to cope with the fact that those DLT_ codes have different values in different systems, the PCAP_ENCAP_ codes have the same values as the corresponding DLT_ codes. We add some additional PCAP_ENCAP_ codes to handle IEEE 802.11 (which currently has its link-layer information turned into an Ethernet header by at least some of the BSDs, but John Hawkinson at MIT wants to add a DLT_ value for 802.11 and pass up the full link-layer header) and the Classical IP encapsulation for ATM on Linux (which isn't always the same as DLT_ATM_RFC1483, from what I can tell, alas). "pcap-bpf.c" maps DLT_ codes to PCAP_ENCAP_ codes, so as not to supply to libpcap's callers any DLT_ codes other than the ones that have the same values on all platforms; it supplies PCAP_ENCAP_ codes for all others. In libpcap's "bpf/net/bpf.h", we define the DLT_ values that aren't the same on all platforms with the new values starting at 100 (to keep them out of the way of the values various BSDs might assign to them), as we did in 0.5, but do so only if they're not already defined; platforms with <net/bpf.h> headers that come with the kernel (e.g., the BSDs) should define them with the values that they have always had on that platform, *not* with the values we used in 0.5. (Code using this version of libpcap should check for the new PCAP_ENCAP_ codes; those are given the values that the corresponding DLT_ values had in 0.5, so code that checks for them will handle 0.5 libpcap files correctly even if the platform defines DLT_RAW, say, as something other than 101. If that code also checks for DLT_RAW - which means it can't just use a switch statement, as DLT_RAW might be defined as 101 if the platform doesn't itself define DLT_RAW with some other value - then it will also handle old DLT_RAW captures, as long as they were made on the same platform or on another platform that used the same value for DLT_RAW. It can't handle captures from a platform that uses that value for another DLT_ code, but that's always been the case, and isn't easily fixable.) The intent here is to decouple the values that are returned by "pcap_datalink()" and put into the header of tcpdump/libpcap save files from the DLT_ values returned by BIOCGDLT in BSD kernels, allowing the BSDs to assign values to DLT_ codes, in their kernels, as they choose, without creating more incompatibilities between tcpdump/libpcap save files from different platforms.
2000-09-17 04:04:36 +00:00
off_linktype = 6;
off_nl = 8;
return;
case DLT_LINUX_SLL: /* fake header for Linux cooked socket */
off_linktype = 14;
off_nl = 16;
return;
1999-10-07 23:46:40 +00:00
}
bpf_error("unknown data link type %d", linktype);
1999-10-07 23:46:40 +00:00
/* NOTREACHED */
}
static struct block *
gen_uncond(rsense)
int rsense;
{
struct block *b;
struct slist *s;
s = new_stmt(BPF_LD|BPF_IMM);
s->s.k = !rsense;
b = new_block(JMP(BPF_JEQ));
b->stmts = s;
return b;
}
static inline struct block *
gen_true()
{
return gen_uncond(1);
}
static inline struct block *
gen_false()
{
return gen_uncond(0);
}
/*
* Byte-swap a 32-bit number.
* ("htonl()" or "ntohl()" won't work - we want to byte-swap even on
* big-endian platforms.)
*/
#define SWAPLONG(y) \
((((y)&0xff)<<24) | (((y)&0xff00)<<8) | (((y)&0xff0000)>>8) | (((y)>>24)&0xff))
1999-10-07 23:46:40 +00:00
static struct block *
gen_linktype(proto)
register int proto;
{
struct block *b0, *b1;
switch (linktype) {
case DLT_EN10MB:
switch (proto) {
case LLCSAP_ISONS:
/*
* OSI protocols always use 802.2 encapsulation.
* XXX - should we check both the DSAP and the
* SSAP, like this, or should we check just the
* DSAP?
*/
b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
gen_not(b0);
b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
((LLCSAP_ISONS << 8) | LLCSAP_ISONS));
gen_and(b0, b1);
return b1;
case LLCSAP_NETBEUI:
/*
* NetBEUI always uses 802.2 encapsulation.
* XXX - should we check both the DSAP and the
* SSAP, like this, or should we check just the
* DSAP?
*/
b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
gen_not(b0);
b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
((LLCSAP_NETBEUI << 8) | LLCSAP_NETBEUI));
gen_and(b0, b1);
return b1;
case LLCSAP_IPX:
/*
* Check for;
*
* Ethernet_II frames, which are Ethernet
* frames with a frame type of ETHERTYPE_IPX;
*
* Ethernet_802.3 frames, which are 802.3
* frames (i.e., the type/length field is
* a length field, <= ETHERMTU, rather than
* a type field) with the first two bytes
* after the Ethernet/802.3 header being
* 0xFFFF;
*
* Ethernet_802.2 frames, which are 802.3
* frames with an 802.2 LLC header and
* with the IPX LSAP as the DSAP in the LLC
* header;
*
* Ethernet_SNAP frames, which are 802.3
* frames with an LLC header and a SNAP
* header and with an OUI of 0x000000
* (encapsulated Ethernet) and a protocol
* ID of ETHERTYPE_IPX in the SNAP header.
*
* XXX - should we generate the same code both
* for tests for LLCSAP_IPX and for ETHERTYPE_IPX?
*/
/*
* This generates code to check both for the
* IPX LSAP (Ethernet_802.2) and for Ethernet_802.3.
*/
b0 = gen_cmp(off_linktype + 2, BPF_B,
(bpf_int32)LLCSAP_IPX);
b1 = gen_cmp(off_linktype + 2, BPF_H,
(bpf_int32)0xFFFF);
gen_or(b0, b1);
/*
* Now we add code to check for SNAP frames with
* ETHERTYPE_IPX, i.e. Ethernet_SNAP.
*/
b0 = gen_snap(0x000000, ETHERTYPE_IPX, 14);
gen_or(b0, b1);
/*
* Now we generate code to check for 802.3
* frames in general.
*/
b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
gen_not(b0);
/*
* Now add the check for 802.3 frames before the
* check for Ethernet_802.2 and Ethernet_802.3,
* as those checks should only be done on 802.3
* frames, not on Ethernet frames.
*/
gen_and(b0, b1);
/*
* Now add the check for Ethernet_II frames, and
* do that before checking for the other frame
* types.
*/
b0 = gen_cmp(off_linktype, BPF_H,
(bpf_int32)ETHERTYPE_IPX);
gen_or(b0, b1);
return b1;
case ETHERTYPE_ATALK:
case ETHERTYPE_AARP:
/*
* EtherTalk (AppleTalk protocols on Ethernet link
* layer) may use 802.2 encapsulation.
*/
/*
* Check for 802.2 encapsulation (EtherTalk phase 2?);
* we check for an Ethernet type field less than
* 1500, which means it's an 802.3 length field.
*/
b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
gen_not(b0);
/*
* 802.2-encapsulated ETHERTYPE_ATALK packets are
* SNAP packets with an organization code of
* 0x080007 (Apple, for Appletalk) and a protocol
* type of ETHERTYPE_ATALK (Appletalk).
*
* 802.2-encapsulated ETHERTYPE_AARP packets are
* SNAP packets with an organization code of
* 0x000000 (encapsulated Ethernet) and a protocol
* type of ETHERTYPE_AARP (Appletalk ARP).
*/
if (proto == ETHERTYPE_ATALK)
b1 = gen_snap(0x080007, ETHERTYPE_ATALK, 14);
else /* proto == ETHERTYPE_AARP */
b1 = gen_snap(0x000000, ETHERTYPE_AARP, 14);
gen_and(b0, b1);
/*
* Check for Ethernet encapsulation (Ethertalk
* phase 1?); we just check for the Ethernet
* protocol type.
*/
b0 = gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
gen_or(b0, b1);
return b1;
default:
if (proto <= ETHERMTU) {
/*
* This is an LLC SAP value, so the frames
* that match would be 802.2 frames.
* Check that the frame is an 802.2 frame
* (i.e., that the length/type field is
* a length field, <= ETHERMTU) and
* then check the DSAP.
*/
b0 = gen_cmp_gt(off_linktype, BPF_H, ETHERMTU);
gen_not(b0);
b1 = gen_cmp(off_linktype + 2, BPF_B,
(bpf_int32)proto);
gen_and(b0, b1);
return b1;
} else {
/*
* This is an Ethernet type, so compare
* the length/type field with it (if
* the frame is an 802.2 frame, the length
* field will be <= ETHERMTU, and, as
* "proto" is > ETHERMTU, this test
* will fail and the frame won't match,
* which is what we want).
*/
return gen_cmp(off_linktype, BPF_H,
(bpf_int32)proto);
}
}
break;
case DLT_FDDI:
case DLT_IEEE802:
case DLT_ATM_RFC1483:
case DLT_ATM_CLIP:
/*
* XXX - handle token-ring variable-length header.
*/
switch (proto) {
case LLCSAP_ISONS:
return gen_cmp(off_linktype, BPF_H, (long)
((LLCSAP_ISONS << 8) | LLCSAP_ISONS));
case LLCSAP_NETBEUI:
return gen_cmp(off_linktype, BPF_H, (long)
((LLCSAP_NETBEUI << 8) | LLCSAP_NETBEUI));
case LLCSAP_IPX:
/*
* XXX - are there ever SNAP frames for IPX on
* non-Ethernet 802.x networks?
*/
return gen_cmp(off_linktype, BPF_B,
(bpf_int32)LLCSAP_IPX);
case ETHERTYPE_ATALK:
/*
* 802.2-encapsulated ETHERTYPE_ATALK packets are
* SNAP packets with an organization code of
* 0x080007 (Apple, for Appletalk) and a protocol
* type of ETHERTYPE_ATALK (Appletalk).
*
* XXX - check for an organization code of
* encapsulated Ethernet as well?
*/
return gen_snap(0x080007, ETHERTYPE_ATALK,
off_linktype);
break;
default:
/*
* XXX - we don't have to check for IPX 802.3
* here, but should we check for the IPX Ethertype?
*/
if (proto <= ETHERMTU) {
/*
* This is an LLC SAP value, so check
* the DSAP.
*/
return gen_cmp(off_linktype, BPF_B,
(bpf_int32)proto);
} else {
/*
* This is an Ethernet type; we assume
* that it's unlikely that it'll
* appear in the right place at random,
* and therefore check only the
* location that would hold the Ethernet
* type in a SNAP frame with an organization
* code of 0x000000 (encapsulated Ethernet).
*
* XXX - if we were to check for the SNAP DSAP
* and LSAP, as per XXX, and were also to check
* for an organization code of 0x000000
* (encapsulated Ethernet), we'd do
*
* return gen_snap(0x000000, proto,
* off_linktype);
*
* here; for now, we don't, as per the above.
* I don't know whether it's worth the
* extra CPU time to do the right check
* or not.
*/
return gen_cmp(off_linktype+6, BPF_H,
(bpf_int32)proto);
}
}
break;
case DLT_LINUX_SLL:
switch (proto) {
case LLCSAP_ISONS:
/*
* OSI protocols always use 802.2 encapsulation.
* XXX - should we check both the DSAP and the
* LSAP, like this, or should we check just the
* DSAP?
*/
b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
((LLCSAP_ISONS << 8) | LLCSAP_ISONS));
gen_and(b0, b1);
return b1;
case LLCSAP_NETBEUI:
/*
* NetBEUI always uses 802.2 encapsulation.
* XXX - should we check both the DSAP and the
* LSAP, like this, or should we check just the
* DSAP?
*/
b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
b1 = gen_cmp(off_linktype + 2, BPF_H, (bpf_int32)
((LLCSAP_NETBEUI << 8) | LLCSAP_NETBEUI));
gen_and(b0, b1);
return b1;
case LLCSAP_IPX:
/*
* Ethernet_II frames, which are Ethernet
* frames with a frame type of ETHERTYPE_IPX;
*
* Ethernet_802.3 frames, which have a frame
* type of LINUX_SLL_P_802_3;
*
* Ethernet_802.2 frames, which are 802.3
* frames with an 802.2 LLC header (i.e, have
* a frame type of LINUX_SLL_P_802_2) and
* with the IPX LSAP as the DSAP in the LLC
* header;
*
* Ethernet_SNAP frames, which are 802.3
* frames with an LLC header and a SNAP
* header and with an OUI of 0x000000
* (encapsulated Ethernet) and a protocol
* ID of ETHERTYPE_IPX in the SNAP header.
*
* First, do the checks on LINUX_SLL_P_802_2
* frames; generate the check for either
* Ethernet_802.2 or Ethernet_SNAP frames, and
* then put a check for LINUX_SLL_P_802_2 frames
* before it.
*/
b0 = gen_cmp(off_linktype + 2, BPF_B,
(bpf_int32)LLCSAP_IPX);
b1 = gen_snap(0x000000, ETHERTYPE_IPX,
off_linktype + 2);
gen_or(b0, b1);
b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
gen_and(b0, b1);
/*
* Now check for 802.3 frames and OR that with
* the previous test.
*/
b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_3);
gen_or(b0, b1);
/*
* Now add the check for Ethernet_II frames, and
* do that before checking for the other frame
* types.
*/
b0 = gen_cmp(off_linktype, BPF_H,
(bpf_int32)ETHERTYPE_IPX);
gen_or(b0, b1);
return b1;
case ETHERTYPE_ATALK:
case ETHERTYPE_AARP:
/*
* EtherTalk (AppleTalk protocols on Ethernet link
* layer) may use 802.2 encapsulation.
*/
/*
* Check for 802.2 encapsulation (EtherTalk phase 2?);
* we check for the 802.2 protocol type in the
* "Ethernet type" field.
*/
b0 = gen_cmp(off_linktype, BPF_H, LINUX_SLL_P_802_2);
/*
* 802.2-encapsulated ETHERTYPE_ATALK packets are
* SNAP packets with an organization code of
* 0x080007 (Apple, for Appletalk) and a protocol
* type of ETHERTYPE_ATALK (Appletalk).
*
* 802.2-encapsulated ETHERTYPE_AARP packets are
* SNAP packets with an organization code of
* 0x000000 (encapsulated Ethernet) and a protocol
* type of ETHERTYPE_AARP (Appletalk ARP).
*/
if (proto == ETHERTYPE_ATALK)
b1 = gen_snap(0x080007, ETHERTYPE_ATALK,
off_linktype + 2);
else /* proto == ETHERTYPE_AARP */
b1 = gen_snap(0x000000, ETHERTYPE_AARP,
off_linktype + 2);
gen_and(b0, b1);
/*
* Check for Ethernet encapsulation (Ethertalk
* phase 1?); we just check for the Ethernet
* protocol type.
*/
b0 = gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
gen_or(b0, b1);
return b1;
default:
if (proto <= ETHERMTU) {
/*
* This is an LLC SAP value, so the frames
* that match would be 802.2 frames.
* Check for the 802.2 protocol type
* in the "Ethernet type" field, and
* then check the DSAP.
*/
b0 = gen_cmp(off_linktype, BPF_H,
LINUX_SLL_P_802_2);
b1 = gen_cmp(off_linktype + 2, BPF_B,
(bpf_int32)proto);
gen_and(b0, b1);
return b1;
} else {
/*
* This is an Ethernet type, so compare
* the length/type field with it (if
* the frame is an 802.2 frame, the length
* field will be <= ETHERMTU, and, as
* "proto" is > ETHERMTU, this test
* will fail and the frame won't match,
* which is what we want).
*/
return gen_cmp(off_linktype, BPF_H,
(bpf_int32)proto);
}
}
break;
case DLT_SLIP:
case DLT_SLIP_BSDOS:
case DLT_RAW:
/*
* These types don't provide any type field; packets
* are always IP.
*
* XXX - for IPv4, check for a version number of 4, and,
* for IPv6, check for a version number of 6?
*/
switch (proto) {
case ETHERTYPE_IP:
#ifdef INET6
case ETHERTYPE_IPV6:
#endif
return gen_true(); /* always true */
default:
return gen_false(); /* always false */
}
break;
1999-10-07 23:46:40 +00:00
case DLT_PPP:
case DLT_PPP_SERIAL:
/*
* We use Ethernet protocol types inside libpcap;
* map them to the corresponding PPP protocol types.
*/
switch (proto) {
case ETHERTYPE_IP:
1999-10-07 23:46:40 +00:00
proto = PPP_IP; /* XXX was 0x21 */
break;
#ifdef INET6
case ETHERTYPE_IPV6:
proto = PPP_IPV6;
break;
#endif
case ETHERTYPE_DN:
proto = PPP_DECNET;
break;
case ETHERTYPE_ATALK:
proto = PPP_APPLE;
break;
case ETHERTYPE_NS:
proto = PPP_NS;
break;
2000-10-28 10:28:15 +00:00
case LLCSAP_ISONS:
2000-10-28 10:28:15 +00:00
proto = PPP_OSI;
break;
case LLCSAP_8021D:
/*
* I'm assuming the "Bridging PDU"s that go
* over PPP are Spanning Tree Protocol
* Bridging PDUs.
*/
proto = PPP_BRPDU;
break;
case LLCSAP_IPX:
proto = PPP_IPX;
break;
}
1999-10-07 23:46:40 +00:00
break;
case DLT_PPP_BSDOS:
/*
* We use Ethernet protocol types inside libpcap;
* map them to the corresponding PPP protocol types.
*/
1999-10-07 23:46:40 +00:00
switch (proto) {
case ETHERTYPE_IP:
b0 = gen_cmp(off_linktype, BPF_H, PPP_IP);
b1 = gen_cmp(off_linktype, BPF_H, PPP_VJC);
gen_or(b0, b1);
b0 = gen_cmp(off_linktype, BPF_H, PPP_VJNC);
gen_or(b1, b0);
return b0;
#ifdef INET6
case ETHERTYPE_IPV6:
proto = PPP_IPV6;
/* more to go? */
break;
#endif
1999-10-07 23:46:40 +00:00
case ETHERTYPE_DN:
proto = PPP_DECNET;
break;
case ETHERTYPE_ATALK:
proto = PPP_APPLE;
break;
case ETHERTYPE_NS:
proto = PPP_NS;
break;
2000-10-28 10:28:15 +00:00
case LLCSAP_ISONS:
2000-10-28 10:28:15 +00:00
proto = PPP_OSI;
break;
case LLCSAP_8021D:
/*
* I'm assuming the "Bridging PDU"s that go
* over PPP are Spanning Tree Protocol
* Bridging PDUs.
*/
proto = PPP_BRPDU;
break;
case LLCSAP_IPX:
proto = PPP_IPX;
break;
1999-10-07 23:46:40 +00:00
}
break;
case DLT_NULL:
case DLT_LOOP:
/*
* For DLT_NULL, the link-layer header is a 32-bit
* word containing an AF_ value in *host* byte order.
*
* In addition, if we're reading a saved capture file,
* the host byte order in the capture may not be the
* same as the host byte order on this machine.
*
* For DLT_LOOP, the link-layer header is a 32-bit
* word containing an AF_ value in *network* byte order.
*
* XXX - AF_ values may, unfortunately, be platform-
* dependent; for example, FreeBSD's AF_INET6 is 24
* whilst NetBSD's and OpenBSD's is 26.
*
* This means that, when reading a capture file, just
* checking for our AF_INET6 value won't work if the
* capture file came from another OS.
*/
switch (proto) {
case ETHERTYPE_IP:
proto = AF_INET;
break;
#ifdef INET6
case ETHERTYPE_IPV6:
proto = AF_INET6;
break;
#endif
default:
/*
* Not a type on which we support filtering.
* XXX - support those that have AF_ values
* #defined on this platform, at least?
*/
1999-10-07 23:46:40 +00:00
return gen_false();
}
if (linktype == DLT_NULL) {
/*
* The AF_ value is in host byte order, but
* the BPF interpreter will convert it to
* network byte order.
*
* If this is a save file, and it's from a
* machine with the opposite byte order to
* ours, we byte-swap the AF_ value.
*
* Then we run it through "htonl()", and
* generate code to compare against the result.
*/
if (bpf_pcap->sf.rfile != NULL &&
bpf_pcap->sf.swapped)
proto = SWAPLONG(proto);
proto = htonl(proto);
}
return (gen_cmp(0, BPF_W, (bpf_int32)proto));
1999-10-07 23:46:40 +00:00
}
/*
* All the types that have no encapsulation should either be
* handled as DLT_SLIP, DLT_SLIP_BSDOS, and DLT_RAW are, if
* all packets are IP packets, or should be handled in some
* special case, if none of them are (if some are and some
* aren't, the lack of encapsulation is a problem, as we'd
* have to find some other way of determining the packet type).
*
* Therefore, if "off_linktype" is -1, there's an error.
*/
if (off_linktype == -1)
abort();
/*
* Any type not handled above should always have an Ethernet
* type at an offset of "off_linktype". (PPP is partially
* handled above - the protocol type is mapped from the
* Ethernet and LLC types we use internally to the corresponding
* PPP type - but the PPP type is always specified by a value
* at "off_linktype", so we don't have to do the code generation
* above.)
*/
1999-10-07 23:46:40 +00:00
return gen_cmp(off_linktype, BPF_H, (bpf_int32)proto);
}
/*
* Check for an LLC SNAP packet with a given organization code and
* protocol type; we check the entire contents of the 802.2 LLC and
* snap headers, checking for DSAP and SSAP of SNAP and a control
* field of 0x03 in the LLC header, and for the specified organization
* code and protocol type in the SNAP header.
*/
static struct block *
gen_snap(orgcode, ptype, offset)
bpf_u_int32 orgcode;
bpf_u_int32 ptype;
u_int offset;
{
u_char snapblock[8];
snapblock[0] = LLCSAP_SNAP; /* DSAP = SNAP */
snapblock[1] = LLCSAP_SNAP; /* SSAP = SNAP */
snapblock[2] = 0x03; /* control = UI */
snapblock[3] = (orgcode >> 16); /* upper 8 bits of organization code */
snapblock[4] = (orgcode >> 8); /* middle 8 bits of organization code */
snapblock[5] = (orgcode >> 0); /* lower 8 bits of organization code */
snapblock[6] = (ptype >> 8); /* upper 8 bits of protocol type */
snapblock[7] = (ptype >> 0); /* lower 8 bits of protocol type */
return gen_bcmp(offset, 8, snapblock);
}
1999-10-07 23:46:40 +00:00
static struct block *
gen_hostop(addr, mask, dir, proto, src_off, dst_off)
bpf_u_int32 addr;
bpf_u_int32 mask;
int dir, proto;
u_int src_off, dst_off;
{
struct block *b0, *b1;
u_int offset;
switch (dir) {
case Q_SRC:
offset = src_off;
break;
case Q_DST:
offset = dst_off;
break;
case Q_AND:
b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
gen_and(b0, b1);
return b1;
case Q_OR:
case Q_DEFAULT:
b0 = gen_hostop(addr, mask, Q_SRC, proto, src_off, dst_off);
b1 = gen_hostop(addr, mask, Q_DST, proto, src_off, dst_off);
gen_or(b0, b1);
return b1;
default:
abort();
}
b0 = gen_linktype(proto);
b1 = gen_mcmp(offset, BPF_W, (bpf_int32)addr, mask);
gen_and(b0, b1);
return b1;
}
#ifdef INET6
static struct block *
gen_hostop6(addr, mask, dir, proto, src_off, dst_off)
struct in6_addr *addr;
struct in6_addr *mask;
int dir, proto;
u_int src_off, dst_off;
{
struct block *b0, *b1;
u_int offset;
u_int32_t *a, *m;
switch (dir) {
case Q_SRC:
offset = src_off;
break;
case Q_DST:
offset = dst_off;
break;
case Q_AND:
b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
gen_and(b0, b1);
return b1;
case Q_OR:
case Q_DEFAULT:
b0 = gen_hostop6(addr, mask, Q_SRC, proto, src_off, dst_off);
b1 = gen_hostop6(addr, mask, Q_DST, proto, src_off, dst_off);
gen_or(b0, b1);
return b1;
default:
abort();
}
/* this order is important */
a = (u_int32_t *)addr;
m = (u_int32_t *)mask;
b1 = gen_mcmp(offset + 12, BPF_W, ntohl(a[3]), ntohl(m[3]));
b0 = gen_mcmp(offset + 8, BPF_W, ntohl(a[2]), ntohl(m[2]));
gen_and(b0, b1);
b0 = gen_mcmp(offset + 4, BPF_W, ntohl(a[1]), ntohl(m[1]));
gen_and(b0, b1);
b0 = gen_mcmp(offset + 0, BPF_W, ntohl(a[0]), ntohl(m[0]));
gen_and(b0, b1);
b0 = gen_linktype(proto);
gen_and(b0, b1);
return b1;
}
#endif /*INET6*/
1999-10-07 23:46:40 +00:00
static struct block *
gen_ehostop(eaddr, dir)
register const u_char *eaddr;
register int dir;
{
register struct block *b0, *b1;
switch (dir) {
case Q_SRC:
return gen_bcmp(6, 6, eaddr);
case Q_DST:
return gen_bcmp(0, 6, eaddr);
case Q_AND:
b0 = gen_ehostop(eaddr, Q_SRC);
b1 = gen_ehostop(eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
b0 = gen_ehostop(eaddr, Q_SRC);
b1 = gen_ehostop(eaddr, Q_DST);
gen_or(b0, b1);
return b1;
}
abort();
/* NOTREACHED */
}
/*
* Like gen_ehostop, but for DLT_FDDI
1999-10-07 23:46:40 +00:00
*/
static struct block *
gen_fhostop(eaddr, dir)
register const u_char *eaddr;
register int dir;
{
struct block *b0, *b1;
switch (dir) {
case Q_SRC:
#ifdef PCAP_FDDIPAD
return gen_bcmp(6 + 1 + pcap_fddipad, 6, eaddr);
#else
return gen_bcmp(6 + 1, 6, eaddr);
#endif
case Q_DST:
#ifdef PCAP_FDDIPAD
return gen_bcmp(0 + 1 + pcap_fddipad, 6, eaddr);
#else
return gen_bcmp(0 + 1, 6, eaddr);
#endif
case Q_AND:
b0 = gen_fhostop(eaddr, Q_SRC);
b1 = gen_fhostop(eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
b0 = gen_fhostop(eaddr, Q_SRC);
b1 = gen_fhostop(eaddr, Q_DST);
gen_or(b0, b1);
return b1;
}
abort();
/* NOTREACHED */
}
/*
* Like gen_ehostop, but for DLT_IEEE802 (Token Ring)
*/
static struct block *
gen_thostop(eaddr, dir)
register const u_char *eaddr;
register int dir;
{
register struct block *b0, *b1;
switch (dir) {
case Q_SRC:
return gen_bcmp(8, 6, eaddr);
case Q_DST:
return gen_bcmp(2, 6, eaddr);
case Q_AND:
b0 = gen_thostop(eaddr, Q_SRC);
b1 = gen_thostop(eaddr, Q_DST);
gen_and(b0, b1);
return b1;
case Q_DEFAULT:
case Q_OR:
b0 = gen_thostop(eaddr, Q_SRC);
b1 = gen_thostop(eaddr, Q_DST);
gen_or(b0, b1);
return b1;
}
abort();
/* NOTREACHED */
}
1999-10-07 23:46:40 +00:00
/*
* This is quite tricky because there may be pad bytes in front of the
* DECNET header, and then there are two possible data packet formats that
* carry both src and dst addresses, plus 5 packet types in a format that
* carries only the src node, plus 2 types that use a different format and
* also carry just the src node.
*
* Yuck.
*
* Instead of doing those all right, we just look for data packets with
* 0 or 1 bytes of padding. If you want to look at other packets, that
* will require a lot more hacking.
*
* To add support for filtering on DECNET "areas" (network numbers)
* one would want to add a "mask" argument to this routine. That would
* make the filter even more inefficient, although one could be clever
* and not generate masking instructions if the mask is 0xFFFF.
*/
static struct block *
gen_dnhostop(addr, dir, base_off)
bpf_u_int32 addr;
int dir;
u_int base_off;
{
struct block *b0, *b1, *b2, *tmp;
u_int offset_lh; /* offset if long header is received */
u_int offset_sh; /* offset if short header is received */
switch (dir) {
case Q_DST:
offset_sh = 1; /* follows flags */
offset_lh = 7; /* flgs,darea,dsubarea,HIORD */
break;
case Q_SRC:
offset_sh = 3; /* follows flags, dstnode */
offset_lh = 15; /* flgs,darea,dsubarea,did,sarea,ssub,HIORD */
break;
case Q_AND:
/* Inefficient because we do our Calvinball dance twice */
b0 = gen_dnhostop(addr, Q_SRC, base_off);
b1 = gen_dnhostop(addr, Q_DST, base_off);
gen_and(b0, b1);
return b1;
case Q_OR:
case Q_DEFAULT:
/* Inefficient because we do our Calvinball dance twice */
b0 = gen_dnhostop(addr, Q_SRC, base_off);
b1 = gen_dnhostop(addr, Q_DST, base_off);
gen_or(b0, b1);
return b1;
case Q_ISO:
bpf_error("ISO host filtering not implemented");
1999-10-07 23:46:40 +00:00
default:
abort();
}
b0 = gen_linktype(ETHERTYPE_DN);
/* Check for pad = 1, long header case */
tmp = gen_mcmp(base_off + 2, BPF_H,
(bpf_int32)ntohs(0x0681), (bpf_int32)ntohs(0x07FF));
b1 = gen_cmp(base_off + 2 + 1 + offset_lh,
BPF_H, (bpf_int32)ntohs(addr));
gen_and(tmp, b1);
/* Check for pad = 0, long header case */
tmp = gen_mcmp(base_off + 2, BPF_B, (bpf_int32)0x06, (bpf_int32)0x7);
b2 = gen_cmp(base_off + 2 + offset_lh, BPF_H, (bpf_int32)ntohs(addr));
gen_and(tmp, b2);
gen_or(b2, b1);
/* Check for pad = 1, short header case */
tmp = gen_mcmp(base_off + 2, BPF_H,
(bpf_int32)ntohs(0x0281), (bpf_int32)ntohs(0x07FF));
b2 = gen_cmp(base_off + 2 + 1 + offset_sh,
BPF_H, (bpf_int32)ntohs(addr));
gen_and(tmp, b2);
gen_or(b2, b1);
/* Check for pad = 0, short header case */
tmp = gen_mcmp(base_off + 2, BPF_B, (bpf_int32)0x02, (bpf_int32)0x7);
b2 = gen_cmp(base_off + 2 + offset_sh, BPF_H, (bpf_int32)ntohs(addr));
gen_and(tmp, b2);
gen_or(b2, b1);
/* Combine with test for linktype */
gen_and(b0, b1);
return b1;
}
static struct block *
gen_host(addr, mask, proto, dir)
bpf_u_int32 addr;
bpf_u_int32 mask;
int proto;
int dir;
{
struct block *b0, *b1;
switch (proto) {
case Q_DEFAULT:
b0 = gen_host(addr, mask, Q_IP, dir);
if (off_linktype != -1) {
b1 = gen_host(addr, mask, Q_ARP, dir);
gen_or(b0, b1);
b0 = gen_host(addr, mask, Q_RARP, dir);
gen_or(b1, b0);
}
1999-10-07 23:46:40 +00:00
return b0;
case Q_IP:
return gen_hostop(addr, mask, dir, ETHERTYPE_IP,
off_nl + 12, off_nl + 16);
case Q_RARP:
return gen_hostop(addr, mask, dir, ETHERTYPE_REVARP,
off_nl + 14, off_nl + 24);
case Q_ARP:
return gen_hostop(addr, mask, dir, ETHERTYPE_ARP,
off_nl + 14, off_nl + 24);
case Q_TCP:
bpf_error("'tcp' modifier applied to host");
case Q_UDP:
bpf_error("'udp' modifier applied to host");
case Q_ICMP:
bpf_error("'icmp' modifier applied to host");
case Q_IGMP:
bpf_error("'igmp' modifier applied to host");
case Q_IGRP:
bpf_error("'igrp' modifier applied to host");
case Q_PIM:
bpf_error("'pim' modifier applied to host");
1999-10-07 23:46:40 +00:00
case Q_ATALK:
bpf_error("ATALK host filtering not implemented");
case Q_AARP:
bpf_error("AARP host filtering not implemented");
1999-10-07 23:46:40 +00:00
case Q_DECNET:
return gen_dnhostop(addr, dir, off_nl);
case Q_SCA:
bpf_error("SCA host filtering not implemented");
case Q_LAT:
bpf_error("LAT host filtering not implemented");
case Q_MOPDL:
bpf_error("MOPDL host filtering not implemented");
case Q_MOPRC:
bpf_error("MOPRC host filtering not implemented");
#ifdef INET6
case Q_IPV6:
bpf_error("'ip6' modifier applied to ip host");
case Q_ICMPV6:
bpf_error("'icmp6' modifier applied to host");
#endif /* INET6 */
case Q_AH:
bpf_error("'ah' modifier applied to host");
case Q_ESP:
bpf_error("'esp' modifier applied to host");
case Q_ISO:
bpf_error("ISO host filtering not implemented");
case Q_ESIS:
bpf_error("'esis' modifier applied to host");
case Q_ISIS:
bpf_error("'isis' modifier applied to host");
case Q_CLNP:
bpf_error("'clnp' modifier applied to host");
case Q_STP:
bpf_error("'stp' modifier applied to host");
case Q_IPX:
bpf_error("IPX host filtering not implemented");
case Q_NETBEUI:
bpf_error("'netbeui' modifier applied to host");
1999-10-07 23:46:40 +00:00
default:
abort();
}
/* NOTREACHED */
}
#ifdef INET6
static struct block *
gen_host6(addr, mask, proto, dir)
struct in6_addr *addr;
struct in6_addr *mask;
int proto;
int dir;
{
switch (proto) {
case Q_DEFAULT:
return gen_host6(addr, mask, Q_IPV6, dir);
case Q_IP:
bpf_error("'ip' modifier applied to ip6 host");
case Q_RARP:
bpf_error("'rarp' modifier applied to ip6 host");
case Q_ARP:
bpf_error("'arp' modifier applied to ip6 host");
case Q_TCP:
bpf_error("'tcp' modifier applied to host");
case Q_UDP:
bpf_error("'udp' modifier applied to host");
case Q_ICMP:
bpf_error("'icmp' modifier applied to host");
case Q_IGMP:
bpf_error("'igmp' modifier applied to host");
case Q_IGRP:
bpf_error("'igrp' modifier applied to host");
case Q_PIM:
bpf_error("'pim' modifier applied to host");
case Q_ATALK:
bpf_error("ATALK host filtering not implemented");
case Q_AARP:
bpf_error("AARP host filtering not implemented");
case Q_DECNET:
bpf_error("'decnet' modifier applied to ip6 host");
case Q_SCA:
bpf_error("SCA host filtering not implemented");
case Q_LAT:
bpf_error("LAT host filtering not implemented");
case Q_MOPDL:
bpf_error("MOPDL host filtering not implemented");
case Q_MOPRC:
bpf_error("MOPRC host filtering not implemented");
case Q_IPV6:
return gen_hostop6(addr, mask, dir, ETHERTYPE_IPV6,
off_nl + 8, off_nl + 24);
case Q_ICMPV6:
bpf_error("'icmp6' modifier applied to host");
case Q_AH:
bpf_error("'ah' modifier applied to host");
case Q_ESP:
bpf_error("'esp' modifier applied to host");
case Q_ISO:
bpf_error("ISO host filtering not implemented");
case Q_ESIS:
bpf_error("'esis' modifier applied to host");
case Q_ISIS:
bpf_error("'isis' modifier applied to host");
case Q_CLNP:
bpf_error("'clnp' modifier applied to host");
case Q_STP:
bpf_error("'stp' modifier applied to host");
case Q_IPX:
bpf_error("IPX host filtering not implemented");
case Q_NETBEUI:
bpf_error("'netbeui' modifier applied to host");
default:
abort();
}
/* NOTREACHED */
}
#endif /*INET6*/
2000-06-03 16:29:42 +00:00
#ifndef INET6
1999-10-07 23:46:40 +00:00
static struct block *
gen_gateway(eaddr, alist, proto, dir)
const u_char *eaddr;
bpf_u_int32 **alist;
int proto;
int dir;
{
struct block *b0, *b1, *tmp;
if (dir != 0)
bpf_error("direction applied to 'gateway'");
switch (proto) {
case Q_DEFAULT:
case Q_IP:
case Q_ARP:
case Q_RARP:
if (linktype == DLT_EN10MB)
1999-10-07 23:46:40 +00:00
b0 = gen_ehostop(eaddr, Q_OR);
else if (linktype == DLT_FDDI)
1999-10-07 23:46:40 +00:00
b0 = gen_fhostop(eaddr, Q_OR);
else if (linktype == DLT_IEEE802)
b0 = gen_thostop(eaddr, Q_OR);
1999-10-07 23:46:40 +00:00
else
bpf_error(
"'gateway' supported only on ethernet, FDDI or token ring");
1999-10-07 23:46:40 +00:00
b1 = gen_host(**alist++, 0xffffffff, proto, Q_OR);
while (*alist) {
tmp = gen_host(**alist++, 0xffffffff, proto, Q_OR);
gen_or(b1, tmp);
b1 = tmp;
}
gen_not(b1);
gen_and(b0, b1);
return b1;
}
bpf_error("illegal modifier of 'gateway'");
/* NOTREACHED */
}
2000-06-03 16:29:42 +00:00
#endif
1999-10-07 23:46:40 +00:00
struct block *
gen_proto_abbrev(proto)
int proto;
{
#ifdef INET6
struct block *b0;
#endif
struct block *b1;
1999-10-07 23:46:40 +00:00
switch (proto) {
case Q_TCP:
b1 = gen_proto(IPPROTO_TCP, Q_IP, Q_DEFAULT);
#ifdef INET6
b0 = gen_proto(IPPROTO_TCP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
#endif
1999-10-07 23:46:40 +00:00
break;
case Q_UDP:
b1 = gen_proto(IPPROTO_UDP, Q_IP, Q_DEFAULT);
#ifdef INET6
b0 = gen_proto(IPPROTO_UDP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
#endif
1999-10-07 23:46:40 +00:00
break;
case Q_ICMP:
b1 = gen_proto(IPPROTO_ICMP, Q_IP, Q_DEFAULT);
1999-10-07 23:46:40 +00:00
break;
#ifndef IPPROTO_IGMP
#define IPPROTO_IGMP 2
#endif
1999-10-07 23:46:40 +00:00
case Q_IGMP:
b1 = gen_proto(IPPROTO_IGMP, Q_IP, Q_DEFAULT);
1999-10-07 23:46:40 +00:00
break;
#ifndef IPPROTO_IGRP
#define IPPROTO_IGRP 9
#endif
case Q_IGRP:
b1 = gen_proto(IPPROTO_IGRP, Q_IP, Q_DEFAULT);
1999-10-07 23:46:40 +00:00
break;
#ifndef IPPROTO_PIM
#define IPPROTO_PIM 103
#endif
case Q_PIM:
b1 = gen_proto(IPPROTO_PIM, Q_IP, Q_DEFAULT);
#ifdef INET6
b0 = gen_proto(IPPROTO_PIM, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
#endif
break;
1999-10-07 23:46:40 +00:00
case Q_IP:
b1 = gen_linktype(ETHERTYPE_IP);
break;
case Q_ARP:
b1 = gen_linktype(ETHERTYPE_ARP);
break;
case Q_RARP:
b1 = gen_linktype(ETHERTYPE_REVARP);
break;
case Q_LINK:
bpf_error("link layer applied in wrong context");
case Q_ATALK:
b1 = gen_linktype(ETHERTYPE_ATALK);
break;
case Q_AARP:
b1 = gen_linktype(ETHERTYPE_AARP);
break;
1999-10-07 23:46:40 +00:00
case Q_DECNET:
b1 = gen_linktype(ETHERTYPE_DN);
break;
case Q_SCA:
b1 = gen_linktype(ETHERTYPE_SCA);
break;
case Q_LAT:
b1 = gen_linktype(ETHERTYPE_LAT);
break;
case Q_MOPDL:
b1 = gen_linktype(ETHERTYPE_MOPDL);
break;
case Q_MOPRC:
b1 = gen_linktype(ETHERTYPE_MOPRC);
break;
#ifdef INET6
case Q_IPV6:
b1 = gen_linktype(ETHERTYPE_IPV6);
break;
#ifndef IPPROTO_ICMPV6
#define IPPROTO_ICMPV6 58
#endif
case Q_ICMPV6:
b1 = gen_proto(IPPROTO_ICMPV6, Q_IPV6, Q_DEFAULT);
break;
#endif /* INET6 */
#ifndef IPPROTO_AH
#define IPPROTO_AH 51
#endif
case Q_AH:
b1 = gen_proto(IPPROTO_AH, Q_IP, Q_DEFAULT);
#ifdef INET6
b0 = gen_proto(IPPROTO_AH, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
#endif
break;
#ifndef IPPROTO_ESP
#define IPPROTO_ESP 50
#endif
case Q_ESP:
b1 = gen_proto(IPPROTO_ESP, Q_IP, Q_DEFAULT);
#ifdef INET6
b0 = gen_proto(IPPROTO_ESP, Q_IPV6, Q_DEFAULT);
gen_or(b0, b1);
#endif
break;
case Q_ISO:
b1 = gen_linktype(LLCSAP_ISONS);
break;
case Q_ESIS:
b1 = gen_proto(ISO9542_ESIS, Q_ISO, Q_DEFAULT);
break;
case Q_ISIS:
b1 = gen_proto(ISO10589_ISIS, Q_ISO, Q_DEFAULT);
break;
case Q_CLNP:
b1 = gen_proto(ISO8473_CLNP, Q_ISO, Q_DEFAULT);
break;
case Q_STP:
b1 = gen_linktype(LLCSAP_8021D);
break;
case Q_IPX:
b1 = gen_linktype(LLCSAP_IPX);
break;
case Q_NETBEUI:
b1 = gen_linktype(LLCSAP_NETBEUI);
break;
1999-10-07 23:46:40 +00:00
default:
abort();
}
return b1;
}
static struct block *
gen_ipfrag()
{
struct slist *s;
struct block *b;
/* not ip frag */
s = new_stmt(BPF_LD|BPF_H|BPF_ABS);
s->s.k = off_nl + 6;
b = new_block(JMP(BPF_JSET));
b->s.k = 0x1fff;
b->stmts = s;
gen_not(b);
return b;
}
static struct block *
gen_portatom(off, v)
int off;
bpf_int32 v;
{
struct slist *s;
struct block *b;
s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
s->s.k = off_nl;
s->next = new_stmt(BPF_LD|BPF_IND|BPF_H);
s->next->s.k = off_nl + off;
b = new_block(JMP(BPF_JEQ));
b->stmts = s;
b->s.k = v;
return b;
}
#ifdef INET6
static struct block *
gen_portatom6(off, v)
int off;
bpf_int32 v;
{
return gen_cmp(off_nl + 40 + off, BPF_H, v);
}
#endif/*INET6*/
1999-10-07 23:46:40 +00:00
struct block *
gen_portop(port, proto, dir)
int port, proto, dir;
{
struct block *b0, *b1, *tmp;
/* ip proto 'proto' */
tmp = gen_cmp(off_nl + 9, BPF_B, (bpf_int32)proto);
b0 = gen_ipfrag();
gen_and(tmp, b0);
switch (dir) {
case Q_SRC:
b1 = gen_portatom(0, (bpf_int32)port);
break;
case Q_DST:
b1 = gen_portatom(2, (bpf_int32)port);
break;
case Q_OR:
case Q_DEFAULT:
tmp = gen_portatom(0, (bpf_int32)port);
b1 = gen_portatom(2, (bpf_int32)port);
gen_or(tmp, b1);
break;
case Q_AND:
tmp = gen_portatom(0, (bpf_int32)port);
b1 = gen_portatom(2, (bpf_int32)port);
gen_and(tmp, b1);
break;
default:
abort();
}
gen_and(b0, b1);
return b1;
}
static struct block *
gen_port(port, ip_proto, dir)
int port;
int ip_proto;
int dir;
{
struct block *b0, *b1, *tmp;
/* ether proto ip */
b0 = gen_linktype(ETHERTYPE_IP);
switch (ip_proto) {
case IPPROTO_UDP:
case IPPROTO_TCP:
b1 = gen_portop(port, ip_proto, dir);
break;
case PROTO_UNDEF:
tmp = gen_portop(port, IPPROTO_TCP, dir);
b1 = gen_portop(port, IPPROTO_UDP, dir);
gen_or(tmp, b1);
break;
default:
abort();
}
gen_and(b0, b1);
return b1;
}
#ifdef INET6
struct block *
gen_portop6(port, proto, dir)
int port, proto, dir;
{
struct block *b0, *b1, *tmp;
/* ip proto 'proto' */
b0 = gen_cmp(off_nl + 6, BPF_B, (bpf_int32)proto);
switch (dir) {
case Q_SRC:
b1 = gen_portatom6(0, (bpf_int32)port);
break;
case Q_DST:
b1 = gen_portatom6(2, (bpf_int32)port);
break;
case Q_OR:
case Q_DEFAULT:
tmp = gen_portatom6(0, (bpf_int32)port);
b1 = gen_portatom6(2, (bpf_int32)port);
gen_or(tmp, b1);
break;
case Q_AND:
tmp = gen_portatom6(0, (bpf_int32)port);
b1 = gen_portatom6(2, (bpf_int32)port);
gen_and(tmp, b1);
break;
default:
abort();
}
gen_and(b0, b1);
return b1;
}
static struct block *
gen_port6(port, ip_proto, dir)
int port;
int ip_proto;
int dir;
{
struct block *b0, *b1, *tmp;
/* ether proto ip */
b0 = gen_linktype(ETHERTYPE_IPV6);
switch (ip_proto) {
case IPPROTO_UDP:
case IPPROTO_TCP:
b1 = gen_portop6(port, ip_proto, dir);
break;
case PROTO_UNDEF:
tmp = gen_portop6(port, IPPROTO_TCP, dir);
b1 = gen_portop6(port, IPPROTO_UDP, dir);
gen_or(tmp, b1);
break;
default:
abort();
}
gen_and(b0, b1);
return b1;
}
#endif /* INET6 */
1999-10-07 23:46:40 +00:00
static int
lookup_proto(name, proto)
register const char *name;
register int proto;
{
register int v;
switch (proto) {
case Q_DEFAULT:
case Q_IP:
v = pcap_nametoproto(name);
if (v == PROTO_UNDEF)
bpf_error("unknown ip proto '%s'", name);
break;
case Q_LINK:
/* XXX should look up h/w protocol type based on linktype */
v = pcap_nametoeproto(name);
if (v == PROTO_UNDEF)
bpf_error("unknown ether proto '%s'", name);
break;
case Q_ISO:
if (strcmp(name, "esis") == 0)
v = ISO9542_ESIS;
else if (strcmp(name, "isis") == 0)
v = ISO10589_ISIS;
else if (strcmp(name, "clnp") == 0)
v = ISO8473_CLNP;
else
bpf_error("unknown osi proto '%s'", name);
break;
1999-10-07 23:46:40 +00:00
default:
v = PROTO_UNDEF;
break;
}
return v;
}
2000-06-03 16:29:42 +00:00
#if 0
struct stmt *
gen_joinsp(s, n)
struct stmt **s;
int n;
{
2000-06-03 16:29:42 +00:00
return NULL;
}
2000-06-03 16:29:42 +00:00
#endif
static struct block *
gen_protochain(v, proto, dir)
int v;
int proto;
int dir;
{
#ifdef NO_PROTOCHAIN
return gen_proto(v, proto, dir);
#else
struct block *b0, *b;
2000-06-03 16:29:42 +00:00
struct slist *s[100];
int fix2, fix3, fix4, fix5;
int ahcheck, again, end;
int i, max;
int reg2 = alloc_reg();
memset(s, 0, sizeof(s));
fix2 = fix3 = fix4 = fix5 = 0;
switch (proto) {
case Q_IP:
case Q_IPV6:
break;
case Q_DEFAULT:
b0 = gen_protochain(v, Q_IP, dir);
1999-11-01 13:47:51 +00:00
b = gen_protochain(v, Q_IPV6, dir);
gen_or(b0, b);
return b;
default:
bpf_error("bad protocol applied for 'protochain'");
/*NOTREACHED*/
}
no_optimize = 1; /*this code is not compatible with optimzer yet */
/*
* s[0] is a dummy entry to protect other BPF insn from damaged
* by s[fix] = foo with uninitialized variable "fix". It is somewhat
* hard to find interdependency made by jump table fixup.
*/
i = 0;
s[i] = new_stmt(0); /*dummy*/
i++;
switch (proto) {
case Q_IP:
b0 = gen_linktype(ETHERTYPE_IP);
/* A = ip->ip_p */
s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
s[i]->s.k = off_nl + 9;
i++;
/* X = ip->ip_hl << 2 */
s[i] = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
s[i]->s.k = off_nl;
i++;
break;
#ifdef INET6
case Q_IPV6:
b0 = gen_linktype(ETHERTYPE_IPV6);
/* A = ip6->ip_nxt */
s[i] = new_stmt(BPF_LD|BPF_ABS|BPF_B);
s[i]->s.k = off_nl + 6;
i++;
/* X = sizeof(struct ip6_hdr) */
s[i] = new_stmt(BPF_LDX|BPF_IMM);
s[i]->s.k = 40;
i++;
break;
#endif
default:
bpf_error("unsupported proto to gen_protochain");
/*NOTREACHED*/
}
/* again: if (A == v) goto end; else fall through; */
again = i;
s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.k = v;
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
fix5 = i;
i++;
1999-10-30 05:16:35 +00:00
#ifndef IPPROTO_NONE
#define IPPROTO_NONE 59
#endif
/* if (A == IPPROTO_NONE) goto end */
s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_NONE;
s[fix5]->s.jf = s[i];
fix2 = i;
i++;
#ifdef INET6
if (proto == Q_IPV6) {
int v6start, v6end, v6advance, j;
v6start = i;
/* if (A == IPPROTO_HOPOPTS) goto v6advance */
s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_HOPOPTS;
s[fix2]->s.jf = s[i];
i++;
/* if (A == IPPROTO_DSTOPTS) goto v6advance */
s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_DSTOPTS;
i++;
/* if (A == IPPROTO_ROUTING) goto v6advance */
s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*update in next stmt*/
s[i]->s.k = IPPROTO_ROUTING;
i++;
/* if (A == IPPROTO_FRAGMENT) goto v6advance; else goto ahcheck; */
s[i - 1]->s.jf = s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*later*/
s[i]->s.k = IPPROTO_FRAGMENT;
fix3 = i;
v6end = i;
i++;
/* v6advance: */
v6advance = i;
/*
* in short,
2000-11-09 06:20:05 +00:00
* A = P[X];
* X = X + (P[X + 1] + 1) * 8;
*/
/* A = X */
s[i] = new_stmt(BPF_MISC|BPF_TXA);
i++;
2000-11-09 06:20:05 +00:00
/* A = P[X + packet head] */
s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
s[i]->s.k = off_nl;
i++;
/* MEM[reg2] = A */
s[i] = new_stmt(BPF_ST);
2000-11-09 06:20:05 +00:00
s[i]->s.k = reg2;
i++;
/* A = X */
s[i] = new_stmt(BPF_MISC|BPF_TXA);
i++;
/* A += 1 */
s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 1;
i++;
/* X = A */
s[i] = new_stmt(BPF_MISC|BPF_TAX);
i++;
/* A = P[X + packet head]; */
s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
s[i]->s.k = off_nl;
i++;
/* A += 1 */
s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 1;
i++;
/* A *= 8 */
s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
s[i]->s.k = 8;
i++;
/* X = A; */
s[i] = new_stmt(BPF_MISC|BPF_TAX);
i++;
/* A = MEM[reg2] */
s[i] = new_stmt(BPF_LD|BPF_MEM);
s[i]->s.k = reg2;
i++;
/* goto again; (must use BPF_JA for backward jump) */
s[i] = new_stmt(BPF_JMP|BPF_JA);
s[i]->s.k = again - i - 1;
s[i - 1]->s.jf = s[i];
i++;
/* fixup */
for (j = v6start; j <= v6end; j++)
s[j]->s.jt = s[v6advance];
} else
#endif
{
/* nop */
s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 0;
s[fix2]->s.jf = s[i];
i++;
}
/* ahcheck: */
ahcheck = i;
/* if (A == IPPROTO_AH) then fall through; else goto end; */
s[i] = new_stmt(BPF_JMP|BPF_JEQ|BPF_K);
s[i]->s.jt = NULL; /*later*/
s[i]->s.jf = NULL; /*later*/
s[i]->s.k = IPPROTO_AH;
if (fix3)
s[fix3]->s.jf = s[ahcheck];
fix4 = i;
i++;
/*
* in short,
2000-11-09 06:20:05 +00:00
* A = P[X];
* X = X + (P[X + 1] + 2) * 4;
*/
/* A = X */
s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
i++;
/* A = P[X + packet head]; */
s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
s[i]->s.k = off_nl;
i++;
/* MEM[reg2] = A */
s[i] = new_stmt(BPF_ST);
s[i]->s.k = reg2;
i++;
2000-11-09 06:20:05 +00:00
/* A = X */
s[i - 1]->s.jt = s[i] = new_stmt(BPF_MISC|BPF_TXA);
i++;
/* A += 1 */
s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 1;
i++;
/* X = A */
s[i] = new_stmt(BPF_MISC|BPF_TAX);
i++;
/* A = P[X + packet head] */
s[i] = new_stmt(BPF_LD|BPF_IND|BPF_B);
s[i]->s.k = off_nl;
i++;
/* A += 2 */
s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 2;
i++;
/* A *= 4 */
s[i] = new_stmt(BPF_ALU|BPF_MUL|BPF_K);
s[i]->s.k = 4;
i++;
/* X = A; */
s[i] = new_stmt(BPF_MISC|BPF_TAX);
i++;
/* A = MEM[reg2] */
s[i] = new_stmt(BPF_LD|BPF_MEM);
s[i]->s.k = reg2;
i++;
/* goto again; (must use BPF_JA for backward jump) */
s[i] = new_stmt(BPF_JMP|BPF_JA);
s[i]->s.k = again - i - 1;
i++;
/* end: nop */
end = i;
s[i] = new_stmt(BPF_ALU|BPF_ADD|BPF_K);
s[i]->s.k = 0;
s[fix2]->s.jt = s[end];
s[fix4]->s.jf = s[end];
s[fix5]->s.jt = s[end];
i++;
/*
* make slist chain
*/
max = i;
for (i = 0; i < max - 1; i++)
s[i]->next = s[i + 1];
s[max - 1]->next = NULL;
/*
* emit final check
*/
b = new_block(JMP(BPF_JEQ));
b->stmts = s[1]; /*remember, s[0] is dummy*/
b->s.k = v;
free_reg(reg2);
gen_and(b0, b);
return b;
#endif
}
1999-10-07 23:46:40 +00:00
static struct block *
gen_proto(v, proto, dir)
int v;
int proto;
int dir;
{
struct block *b0, *b1;
if (dir != Q_DEFAULT)
bpf_error("direction applied to 'proto'");
switch (proto) {
case Q_DEFAULT:
#ifdef INET6
b0 = gen_proto(v, Q_IP, dir);
b1 = gen_proto(v, Q_IPV6, dir);
gen_or(b0, b1);
return b1;
#else
/*FALLTHROUGH*/
#endif
1999-10-07 23:46:40 +00:00
case Q_IP:
b0 = gen_linktype(ETHERTYPE_IP);
#ifndef CHASE_CHAIN
1999-10-07 23:46:40 +00:00
b1 = gen_cmp(off_nl + 9, BPF_B, (bpf_int32)v);
#else
b1 = gen_protochain(v, Q_IP);
#endif
1999-10-07 23:46:40 +00:00
gen_and(b0, b1);
return b1;
case Q_ISO:
b0 = gen_linktype(LLCSAP_ISONS);
b1 = gen_cmp(off_nl + 3, BPF_B, (long)v);
gen_and(b0, b1);
return b1;
1999-10-07 23:46:40 +00:00
case Q_ARP:
bpf_error("arp does not encapsulate another protocol");
/* NOTREACHED */
case Q_RARP:
bpf_error("rarp does not encapsulate another protocol");
/* NOTREACHED */
case Q_ATALK:
bpf_error("atalk encapsulation is not specifiable");
/* NOTREACHED */
case Q_DECNET:
bpf_error("decnet encapsulation is not specifiable");
/* NOTREACHED */
case Q_SCA:
bpf_error("sca does not encapsulate another protocol");
/* NOTREACHED */
case Q_LAT:
bpf_error("lat does not encapsulate another protocol");
/* NOTREACHED */
case Q_MOPRC:
bpf_error("moprc does not encapsulate another protocol");
/* NOTREACHED */
case Q_MOPDL:
bpf_error("mopdl does not encapsulate another protocol");
/* NOTREACHED */
case Q_LINK:
return gen_linktype(v);
case Q_UDP:
bpf_error("'udp proto' is bogus");
/* NOTREACHED */
case Q_TCP:
bpf_error("'tcp proto' is bogus");
/* NOTREACHED */
case Q_ICMP:
bpf_error("'icmp proto' is bogus");
/* NOTREACHED */
case Q_IGMP:
bpf_error("'igmp proto' is bogus");
/* NOTREACHED */
case Q_IGRP:
bpf_error("'igrp proto' is bogus");
/* NOTREACHED */
case Q_PIM:
bpf_error("'pim proto' is bogus");
/* NOTREACHED */
#ifdef INET6
case Q_IPV6:
b0 = gen_linktype(ETHERTYPE_IPV6);
#ifndef CHASE_CHAIN
b1 = gen_cmp(off_nl + 6, BPF_B, (bpf_int32)v);
#else
b1 = gen_protochain(v, Q_IPV6);
#endif
gen_and(b0, b1);
return b1;
case Q_ICMPV6:
bpf_error("'icmp6 proto' is bogus");
#endif /* INET6 */
case Q_AH:
bpf_error("'ah proto' is bogus");
case Q_ESP:
bpf_error("'ah proto' is bogus");
case Q_STP:
bpf_error("'stp proto' is bogus");
case Q_IPX:
bpf_error("'ipx proto' is bogus");
case Q_NETBEUI:
bpf_error("'netbeui proto' is bogus");
1999-10-07 23:46:40 +00:00
default:
abort();
/* NOTREACHED */
}
/* NOTREACHED */
}
struct block *
gen_scode(name, q)
register const char *name;
struct qual q;
{
int proto = q.proto;
int dir = q.dir;
int tproto;
u_char *eaddr;
2000-06-03 16:29:42 +00:00
bpf_u_int32 mask, addr;
#ifndef INET6
bpf_u_int32 **alist;
#else
int tproto6;
struct sockaddr_in *sin;
struct sockaddr_in6 *sin6;
struct addrinfo *res, *res0;
struct in6_addr mask128;
#endif /*INET6*/
1999-10-07 23:46:40 +00:00
struct block *b, *tmp;
int port, real_proto;
switch (q.addr) {
case Q_NET:
addr = pcap_nametonetaddr(name);
if (addr == 0)
bpf_error("unknown network '%s'", name);
/* Left justify network addr and calculate its network mask */
mask = 0xffffffff;
while (addr && (addr & 0xff000000) == 0) {
addr <<= 8;
mask <<= 8;
}
return gen_host(addr, mask, proto, dir);
case Q_DEFAULT:
case Q_HOST:
if (proto == Q_LINK) {
switch (linktype) {
case DLT_EN10MB:
1999-10-07 23:46:40 +00:00
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
bpf_error(
"unknown ether host '%s'", name);
return gen_ehostop(eaddr, dir);
case DLT_FDDI:
1999-10-07 23:46:40 +00:00
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
bpf_error(
"unknown FDDI host '%s'", name);
return gen_fhostop(eaddr, dir);
case DLT_IEEE802:
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
bpf_error(
"unknown token ring host '%s'", name);
return gen_thostop(eaddr, dir);
1999-10-07 23:46:40 +00:00
default:
bpf_error(
"only ethernet/FDDI/token ring supports link-level host name");
1999-10-07 23:46:40 +00:00
break;
}
} else if (proto == Q_DECNET) {
unsigned short dn_addr = __pcap_nametodnaddr(name);
/*
* I don't think DECNET hosts can be multihomed, so
* there is no need to build up a list of addresses
*/
return (gen_host(dn_addr, 0, proto, dir));
} else {
#ifndef INET6
1999-10-07 23:46:40 +00:00
alist = pcap_nametoaddr(name);
if (alist == NULL || *alist == NULL)
bpf_error("unknown host '%s'", name);
tproto = proto;
if (off_linktype == -1 && tproto == Q_DEFAULT)
tproto = Q_IP;
b = gen_host(**alist++, 0xffffffff, tproto, dir);
while (*alist) {
tmp = gen_host(**alist++, 0xffffffff,
tproto, dir);
gen_or(b, tmp);
b = tmp;
}
return b;
#else
memset(&mask128, 0xff, sizeof(mask128));
res0 = res = pcap_nametoaddrinfo(name);
if (res == NULL)
bpf_error("unknown host '%s'", name);
b = tmp = NULL;
tproto = tproto6 = proto;
if (off_linktype == -1 && tproto == Q_DEFAULT) {
tproto = Q_IP;
tproto6 = Q_IPV6;
}
for (res = res0; res; res = res->ai_next) {
switch (res->ai_family) {
case AF_INET:
if (tproto == Q_IPV6)
continue;
sin = (struct sockaddr_in *)
res->ai_addr;
tmp = gen_host(ntohl(sin->sin_addr.s_addr),
0xffffffff, tproto, dir);
break;
case AF_INET6:
if (tproto6 == Q_IP)
continue;
sin6 = (struct sockaddr_in6 *)
res->ai_addr;
tmp = gen_host6(&sin6->sin6_addr,
&mask128, tproto6, dir);
break;
}
if (b)
gen_or(b, tmp);
b = tmp;
}
freeaddrinfo(res0);
if (b == NULL) {
bpf_error("unknown host '%s'%s", name,
(proto == Q_DEFAULT)
? ""
: " for specified address family");
}
return b;
#endif /*INET6*/
1999-10-07 23:46:40 +00:00
}
case Q_PORT:
if (proto != Q_DEFAULT && proto != Q_UDP && proto != Q_TCP)
bpf_error("illegal qualifier of 'port'");
if (pcap_nametoport(name, &port, &real_proto) == 0)
bpf_error("unknown port '%s'", name);
if (proto == Q_UDP) {
if (real_proto == IPPROTO_TCP)
bpf_error("port '%s' is tcp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_UDP;
}
if (proto == Q_TCP) {
if (real_proto == IPPROTO_UDP)
bpf_error("port '%s' is udp", name);
else
/* override PROTO_UNDEF */
real_proto = IPPROTO_TCP;
}
#ifndef INET6
1999-10-07 23:46:40 +00:00
return gen_port(port, real_proto, dir);
#else
{
struct block *b;
b = gen_port(port, real_proto, dir);
gen_or(gen_port6(port, real_proto, dir), b);
return b;
}
#endif /* INET6 */
1999-10-07 23:46:40 +00:00
case Q_GATEWAY:
#ifndef INET6
1999-10-07 23:46:40 +00:00
eaddr = pcap_ether_hostton(name);
if (eaddr == NULL)
bpf_error("unknown ether host: %s", name);
alist = pcap_nametoaddr(name);
if (alist == NULL || *alist == NULL)
bpf_error("unknown host '%s'", name);
return gen_gateway(eaddr, alist, proto, dir);
#else
bpf_error("'gateway' not supported in this configuration");
#endif /*INET6*/
1999-10-07 23:46:40 +00:00
case Q_PROTO:
real_proto = lookup_proto(name, proto);
if (real_proto >= 0)
return gen_proto(real_proto, proto, dir);
else
bpf_error("unknown protocol: %s", name);
case Q_PROTOCHAIN:
real_proto = lookup_proto(name, proto);
if (real_proto >= 0)
return gen_protochain(real_proto, proto, dir);
else
bpf_error("unknown protocol: %s", name);
1999-10-07 23:46:40 +00:00
case Q_UNDEF:
syntax();
/* NOTREACHED */
}
abort();
/* NOTREACHED */
}
struct block *
gen_mcode(s1, s2, masklen, q)
register const char *s1, *s2;
register int masklen;
struct qual q;
{
register int nlen, mlen;
bpf_u_int32 n, m;
nlen = __pcap_atoin(s1, &n);
/* Promote short ipaddr */
n <<= 32 - nlen;
if (s2 != NULL) {
mlen = __pcap_atoin(s2, &m);
/* Promote short ipaddr */
m <<= 32 - mlen;
if ((n & ~m) != 0)
bpf_error("non-network bits set in \"%s mask %s\"",
s1, s2);
} else {
/* Convert mask len to mask */
if (masklen > 32)
bpf_error("mask length must be <= 32");
m = 0xffffffff << (32 - masklen);
if ((n & ~m) != 0)
bpf_error("non-network bits set in \"%s/%d\"",
s1, masklen);
}
switch (q.addr) {
case Q_NET:
return gen_host(n, m, q.proto, q.dir);
default:
bpf_error("Mask syntax for networks only");
/* NOTREACHED */
}
}
struct block *
gen_ncode(s, v, q)
register const char *s;
bpf_u_int32 v;
struct qual q;
{
bpf_u_int32 mask;
int proto = q.proto;
int dir = q.dir;
register int vlen;
if (s == NULL)
vlen = 32;
else if (q.proto == Q_DECNET)
vlen = __pcap_atodn(s, &v);
else
vlen = __pcap_atoin(s, &v);
switch (q.addr) {
case Q_DEFAULT:
case Q_HOST:
case Q_NET:
if (proto == Q_DECNET)
return gen_host(v, 0, proto, dir);
else if (proto == Q_LINK) {
bpf_error("illegal link layer address");
} else {
mask = 0xffffffff;
if (s == NULL && q.addr == Q_NET) {
/* Promote short net number */
while (v && (v & 0xff000000) == 0) {
v <<= 8;
mask <<= 8;
}
} else {
/* Promote short ipaddr */
v <<= 32 - vlen;
mask <<= 32 - vlen;
}
return gen_host(v, mask, proto, dir);
}
case Q_PORT:
if (proto == Q_UDP)
proto = IPPROTO_UDP;
else if (proto == Q_TCP)
proto = IPPROTO_TCP;
else if (proto == Q_DEFAULT)
proto = PROTO_UNDEF;
else
bpf_error("illegal qualifier of 'port'");
#ifndef INET6
1999-10-07 23:46:40 +00:00
return gen_port((int)v, proto, dir);
#else
{
struct block *b;
b = gen_port((int)v, proto, dir);
gen_or(gen_port6((int)v, proto, dir), b);
return b;
}
#endif /* INET6 */
1999-10-07 23:46:40 +00:00
case Q_GATEWAY:
bpf_error("'gateway' requires a name");
/* NOTREACHED */
case Q_PROTO:
return gen_proto((int)v, proto, dir);
case Q_PROTOCHAIN:
return gen_protochain((int)v, proto, dir);
1999-10-07 23:46:40 +00:00
case Q_UNDEF:
syntax();
/* NOTREACHED */
default:
abort();
/* NOTREACHED */
}
/* NOTREACHED */
}
#ifdef INET6
struct block *
gen_mcode6(s1, s2, masklen, q)
register const char *s1, *s2;
register int masklen;
struct qual q;
{
struct addrinfo *res;
struct in6_addr *addr;
struct in6_addr mask;
struct block *b;
u_int32_t *a, *m;
if (s2)
bpf_error("no mask %s supported", s2);
res = pcap_nametoaddrinfo(s1);
if (!res)
bpf_error("invalid ip6 address %s", s1);
if (res->ai_next)
bpf_error("%s resolved to multiple address", s1);
addr = &((struct sockaddr_in6 *)res->ai_addr)->sin6_addr;
if (sizeof(mask) * 8 < masklen)
bpf_error("mask length must be <= %u", (unsigned int)(sizeof(mask) * 8));
memset(&mask, 0xff, masklen / 8);
if (masklen % 8) {
mask.s6_addr[masklen / 8] =
(0xff << (8 - masklen % 8)) & 0xff;
}
a = (u_int32_t *)addr;
m = (u_int32_t *)&mask;
if ((a[0] & ~m[0]) || (a[1] & ~m[1])
|| (a[2] & ~m[2]) || (a[3] & ~m[3])) {
bpf_error("non-network bits set in \"%s/%d\"", s1, masklen);
}
switch (q.addr) {
case Q_DEFAULT:
case Q_HOST:
if (masklen != 128)
bpf_error("Mask syntax for networks only");
/* FALLTHROUGH */
case Q_NET:
b = gen_host6(addr, &mask, q.proto, q.dir);
freeaddrinfo(res);
return b;
default:
bpf_error("invalid qualifier against IPv6 address");
/* NOTREACHED */
}
}
#endif /*INET6*/
1999-10-07 23:46:40 +00:00
struct block *
gen_ecode(eaddr, q)
register const u_char *eaddr;
struct qual q;
{
if ((q.addr == Q_HOST || q.addr == Q_DEFAULT) && q.proto == Q_LINK) {
if (linktype == DLT_EN10MB)
1999-10-07 23:46:40 +00:00
return gen_ehostop(eaddr, (int)q.dir);
if (linktype == DLT_FDDI)
1999-10-07 23:46:40 +00:00
return gen_fhostop(eaddr, (int)q.dir);
if (linktype == DLT_IEEE802)
return gen_thostop(eaddr, (int)q.dir);
bpf_error("ethernet addresses supported only on ethernet, FDDI or token ring");
1999-10-07 23:46:40 +00:00
}
bpf_error("ethernet address used in non-ether expression");
/* NOTREACHED */
}
void
sappend(s0, s1)
struct slist *s0, *s1;
{
/*
* This is definitely not the best way to do this, but the
* lists will rarely get long.
*/
while (s0->next)
s0 = s0->next;
s0->next = s1;
}
static struct slist *
xfer_to_x(a)
struct arth *a;
{
struct slist *s;
s = new_stmt(BPF_LDX|BPF_MEM);
s->s.k = a->regno;
return s;
}
static struct slist *
xfer_to_a(a)
struct arth *a;
{
struct slist *s;
s = new_stmt(BPF_LD|BPF_MEM);
s->s.k = a->regno;
return s;
}
struct arth *
gen_load(proto, index, size)
int proto;
struct arth *index;
int size;
{
struct slist *s, *tmp;
struct block *b;
int regno = alloc_reg();
free_reg(index->regno);
switch (size) {
default:
bpf_error("data size must be 1, 2, or 4");
case 1:
size = BPF_B;
break;
case 2:
size = BPF_H;
break;
case 4:
size = BPF_W;
break;
}
switch (proto) {
default:
bpf_error("unsupported index operation");
case Q_LINK:
s = xfer_to_x(index);
tmp = new_stmt(BPF_LD|BPF_IND|size);
sappend(s, tmp);
sappend(index->s, s);
break;
case Q_IP:
case Q_ARP:
case Q_RARP:
case Q_ATALK:
case Q_DECNET:
case Q_SCA:
case Q_LAT:
case Q_MOPRC:
case Q_MOPDL:
#ifdef INET6
case Q_IPV6:
#endif
2000-01-29 21:01:27 +00:00
/* XXX Note that we assume a fixed link header here. */
1999-10-07 23:46:40 +00:00
s = xfer_to_x(index);
tmp = new_stmt(BPF_LD|BPF_IND|size);
tmp->s.k = off_nl;
sappend(s, tmp);
sappend(index->s, s);
b = gen_proto_abbrev(proto);
if (index->b)
gen_and(index->b, b);
index->b = b;
break;
case Q_TCP:
case Q_UDP:
case Q_ICMP:
case Q_IGMP:
case Q_IGRP:
case Q_PIM:
1999-10-07 23:46:40 +00:00
s = new_stmt(BPF_LDX|BPF_MSH|BPF_B);
s->s.k = off_nl;
sappend(s, xfer_to_a(index));
sappend(s, new_stmt(BPF_ALU|BPF_ADD|BPF_X));
sappend(s, new_stmt(BPF_MISC|BPF_TAX));
sappend(s, tmp = new_stmt(BPF_LD|BPF_IND|size));
tmp->s.k = off_nl;
sappend(index->s, s);
gen_and(gen_proto_abbrev(proto), b = gen_ipfrag());
if (index->b)
gen_and(index->b, b);
#ifdef INET6
gen_and(gen_proto_abbrev(Q_IP), b);
#endif
1999-10-07 23:46:40 +00:00
index->b = b;
break;
#ifdef INET6
case Q_ICMPV6:
bpf_error("IPv6 upper-layer protocol is not supported by proto[x]");
/*NOTREACHED*/
#endif
1999-10-07 23:46:40 +00:00
}
index->regno = regno;
s = new_stmt(BPF_ST);
s->s.k = regno;
sappend(index->s, s);
return index;
}
struct block *
gen_relation(code, a0, a1, reversed)
int code;
struct arth *a0, *a1;
int reversed;
{
struct slist *s0, *s1, *s2;
struct block *b, *tmp;
s0 = xfer_to_x(a1);
s1 = xfer_to_a(a0);
s2 = new_stmt(BPF_ALU|BPF_SUB|BPF_X);
b = new_block(JMP(code));
if (code == BPF_JGT || code == BPF_JGE) {
reversed = !reversed;
b->s.k = 0x80000000;
}
if (reversed)
gen_not(b);
sappend(s1, s2);
sappend(s0, s1);
sappend(a1->s, s0);
sappend(a0->s, a1->s);
b->stmts = a0->s;
free_reg(a0->regno);
free_reg(a1->regno);
/* 'and' together protocol checks */
if (a0->b) {
if (a1->b) {
gen_and(a0->b, tmp = a1->b);
}
else
tmp = a0->b;
} else
tmp = a1->b;
if (tmp)
gen_and(tmp, b);
return b;
}
struct arth *
gen_loadlen()
{
int regno = alloc_reg();
struct arth *a = (struct arth *)newchunk(sizeof(*a));
struct slist *s;
s = new_stmt(BPF_LD|BPF_LEN);
s->next = new_stmt(BPF_ST);
s->next->s.k = regno;
a->s = s;
a->regno = regno;
return a;
}
struct arth *
gen_loadi(val)
int val;
{
struct arth *a;
struct slist *s;
int reg;
a = (struct arth *)newchunk(sizeof(*a));
reg = alloc_reg();
s = new_stmt(BPF_LD|BPF_IMM);
s->s.k = val;
s->next = new_stmt(BPF_ST);
s->next->s.k = reg;
a->s = s;
a->regno = reg;
return a;
}
struct arth *
gen_neg(a)
struct arth *a;
{
struct slist *s;
s = xfer_to_a(a);
sappend(a->s, s);
s = new_stmt(BPF_ALU|BPF_NEG);
s->s.k = 0;
sappend(a->s, s);
s = new_stmt(BPF_ST);
s->s.k = a->regno;
sappend(a->s, s);
return a;
}
struct arth *
gen_arth(code, a0, a1)
int code;
struct arth *a0, *a1;
{
struct slist *s0, *s1, *s2;
s0 = xfer_to_x(a1);
s1 = xfer_to_a(a0);
s2 = new_stmt(BPF_ALU|BPF_X|code);
sappend(s1, s2);
sappend(s0, s1);
sappend(a1->s, s0);
sappend(a0->s, a1->s);
free_reg(a1->regno);
s0 = new_stmt(BPF_ST);
a0->regno = s0->s.k = alloc_reg();
sappend(a0->s, s0);
return a0;
}
/*
* Here we handle simple allocation of the scratch registers.
* If too many registers are alloc'd, the allocator punts.
*/
static int regused[BPF_MEMWORDS];
static int curreg;
/*
* Return the next free register.
*/
static int
alloc_reg()
{
int n = BPF_MEMWORDS;
while (--n >= 0) {
if (regused[curreg])
curreg = (curreg + 1) % BPF_MEMWORDS;
else {
regused[curreg] = 1;
return curreg;
}
}
bpf_error("too many registers needed to evaluate expression");
/* NOTREACHED */
}
/*
* Return a register to the table so it can
* be used later.
*/
static void
free_reg(n)
int n;
{
regused[n] = 0;
}
static struct block *
gen_len(jmp, n)
int jmp, n;
{
struct slist *s;
struct block *b;
s = new_stmt(BPF_LD|BPF_LEN);
b = new_block(JMP(jmp));
b->stmts = s;
b->s.k = n;
return b;
}
struct block *
gen_greater(n)
int n;
{
return gen_len(BPF_JGE, n);
}
/*
* Actually, this is less than or equal.
*/
1999-10-07 23:46:40 +00:00
struct block *
gen_less(n)
int n;
{
struct block *b;
b = gen_len(BPF_JGT, n);
gen_not(b);
return b;
}
struct block *
gen_byteop(op, idx, val)
int op, idx, val;
{
struct block *b;
struct slist *s;
switch (op) {
default:
abort();
case '=':
return gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
case '<':
b = gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
b->s.code = JMP(BPF_JGE);
gen_not(b);
return b;
case '>':
b = gen_cmp((u_int)idx, BPF_B, (bpf_int32)val);
b->s.code = JMP(BPF_JGT);
return b;
case '|':
s = new_stmt(BPF_ALU|BPF_OR|BPF_K);
break;
case '&':
s = new_stmt(BPF_ALU|BPF_AND|BPF_K);
break;
}
s->s.k = val;
b = new_block(JMP(BPF_JEQ));
b->stmts = s;
gen_not(b);
return b;
}
struct block *
gen_broadcast(proto)
int proto;
{
bpf_u_int32 hostmask;
struct block *b0, *b1, *b2;
static u_char ebroadcast[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
switch (proto) {
case Q_DEFAULT:
case Q_LINK:
if (linktype == DLT_EN10MB)
1999-10-07 23:46:40 +00:00
return gen_ehostop(ebroadcast, Q_DST);
if (linktype == DLT_FDDI)
1999-10-07 23:46:40 +00:00
return gen_fhostop(ebroadcast, Q_DST);
if (linktype == DLT_IEEE802)
return gen_thostop(ebroadcast, Q_DST);
1999-10-07 23:46:40 +00:00
bpf_error("not a broadcast link");
break;
case Q_IP:
b0 = gen_linktype(ETHERTYPE_IP);
hostmask = ~netmask;
b1 = gen_mcmp(off_nl + 16, BPF_W, (bpf_int32)0, hostmask);
b2 = gen_mcmp(off_nl + 16, BPF_W,
(bpf_int32)(~0 & hostmask), hostmask);
gen_or(b1, b2);
gen_and(b0, b2);
return b2;
}
bpf_error("only ether/ip broadcast filters supported");
}
struct block *
gen_multicast(proto)
int proto;
{
register struct block *b0, *b1;
register struct slist *s;
switch (proto) {
case Q_DEFAULT:
case Q_LINK:
if (linktype == DLT_EN10MB) {
1999-10-07 23:46:40 +00:00
/* ether[0] & 1 != 0 */
s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
s->s.k = 0;
b0 = new_block(JMP(BPF_JSET));
b0->s.k = 1;
b0->stmts = s;
return b0;
}
if (linktype == DLT_FDDI) {
1999-10-07 23:46:40 +00:00
/* XXX TEST THIS: MIGHT NOT PORT PROPERLY XXX */
/* fddi[1] & 1 != 0 */
s = new_stmt(BPF_LD|BPF_B|BPF_ABS);
s->s.k = 1;
b0 = new_block(JMP(BPF_JSET));
b0->s.k = 1;
b0->stmts = s;
return b0;
}
/* TODO - check how token ring handles multicast */
/* if (linktype == DLT_IEEE802) ... */
1999-10-07 23:46:40 +00:00
/* Link not known to support multicasts */
break;
case Q_IP:
b0 = gen_linktype(ETHERTYPE_IP);
b1 = gen_cmp(off_nl + 16, BPF_B, (bpf_int32)224);
b1->s.code = JMP(BPF_JGE);
gen_and(b0, b1);
return b1;
#ifdef INET6
case Q_IPV6:
b0 = gen_linktype(ETHERTYPE_IPV6);
b1 = gen_cmp(off_nl + 24, BPF_B, (bpf_int32)255);
gen_and(b0, b1);
return b1;
#endif /* INET6 */
1999-10-07 23:46:40 +00:00
}
bpf_error("only IP multicast filters supported on ethernet/FDDI");
}
/*
* generate command for inbound/outbound. It's here so we can
* make it link-type specific. 'dir' = 0 implies "inbound",
* = 1 implies "outbound".
*/
struct block *
gen_inbound(dir)
int dir;
{
register struct block *b0;
/*
* Only some data link types support inbound/outbound qualifiers.
*/
switch (linktype) {
case DLT_SLIP:
case DLT_PPP:
b0 = gen_relation(BPF_JEQ,
1999-10-07 23:46:40 +00:00
gen_load(Q_LINK, gen_loadi(0), 1),
gen_loadi(0),
dir);
break;
default:
bpf_error("inbound/outbound not supported on linktype %d\n",
linktype);
b0 = NULL;
/* NOTREACHED */
}
1999-10-07 23:46:40 +00:00
return (b0);
}
/*
* support IEEE 802.1Q VLAN trunk over ethernet
*/
struct block *
gen_vlan(vlan_num)
int vlan_num;
{
static u_int orig_linktype = -1, orig_nl = -1;
struct block *b0;
/*
* Change the offsets to point to the type and data fields within
* the VLAN packet. This is somewhat of a kludge.
*/
if (orig_nl == (u_int)-1) {
orig_linktype = off_linktype; /* save original values */
orig_nl = off_nl;
switch (linktype) {
case DLT_EN10MB:
off_linktype = 16;
off_nl = 18;
break;
default:
bpf_error("no VLAN support for data link type %d",
linktype);
/*NOTREACHED*/
}
}
/* check for VLAN */
b0 = gen_cmp(orig_linktype, BPF_H, (bpf_int32)ETHERTYPE_8021Q);
/* If a specific VLAN is requested, check VLAN id */
if (vlan_num >= 0) {
struct block *b1;
b1 = gen_cmp(orig_nl, BPF_H, (bpf_int32)vlan_num);
gen_and(b0, b1);
b0 = b1;
}
return (b0);
}