dect
/
asterisk
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
asterisk/dsp.c

1766 lines
50 KiB
C

/*
* Asterisk -- An open source telephony toolkit.
*
* Copyright (C) 1999 - 2005, Digium, Inc.
*
* Mark Spencer <markster@digium.com>
*
* Goertzel routines are borrowed from Steve Underwood's tremendous work on the
* DTMF detector.
*
* See http://www.asterisk.org for more information about
* the Asterisk project. Please do not directly contact
* any of the maintainers of this project for assistance;
* the project provides a web site, mailing lists and IRC
* channels for your use.
*
* This program is free software, distributed under the terms of
* the GNU General Public License Version 2. See the LICENSE file
* at the top of the source tree.
*/
/*! \file
*
* \brief Convenience Signal Processing routines
*
* \author Mark Spencer <markster@digium.com>
* \author Steve Underwood <steveu@coppice.org>
*/
/* Some routines from tone_detect.c by Steven Underwood as published under the zapata library */
/*
tone_detect.c - General telephony tone detection, and specific
detection of DTMF.
Copyright (C) 2001 Steve Underwood <steveu@coppice.org>
Despite my general liking of the GPL, I place this code in the
public domain for the benefit of all mankind - even the slimy
ones who might try to proprietize my work and use it to my
detriment.
*/
#include <sys/types.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
#include "asterisk.h"
ASTERISK_FILE_VERSION(__FILE__, "$Revision$")
#include "asterisk/frame.h"
#include "asterisk/channel.h"
#include "asterisk/logger.h"
#include "asterisk/dsp.h"
#include "asterisk/ulaw.h"
#include "asterisk/alaw.h"
#include "asterisk/utils.h"
/*! Number of goertzels for progress detect */
enum gsamp_size {
GSAMP_SIZE_NA = 183, /*!< North America - 350, 440, 480, 620, 950, 1400, 1800 Hz */
GSAMP_SIZE_CR = 188, /*!< Costa Rica, Brazil - Only care about 425 Hz */
GSAMP_SIZE_UK = 160 /*!< UK disconnect goertzel feed - should trigger 400hz */
};
enum prog_mode {
PROG_MODE_NA = 0,
PROG_MODE_CR,
PROG_MODE_UK
};
enum freq_index {
/*! For US modes { */
HZ_350 = 0,
HZ_440,
HZ_480,
HZ_620,
HZ_950,
HZ_1400,
HZ_1800, /*!< } */
/*! For CR/BR modes */
HZ_425 = 0,
/*! For UK mode */
HZ_400 = 0
};
static struct progalias {
char *name;
enum prog_mode mode;
} aliases[] = {
{ "us", PROG_MODE_NA },
{ "ca", PROG_MODE_NA },
{ "cr", PROG_MODE_CR },
{ "br", PROG_MODE_CR },
{ "uk", PROG_MODE_UK },
};
static struct progress {
enum gsamp_size size;
int freqs[7];
} modes[] = {
{ GSAMP_SIZE_NA, { 350, 440, 480, 620, 950, 1400, 1800 } }, /*!< North America */
{ GSAMP_SIZE_CR, { 425 } }, /*!< Costa Rica, Brazil */
{ GSAMP_SIZE_UK, { 400 } }, /*!< UK */
};
#define DEFAULT_THRESHOLD 512
enum busy_detect {
BUSY_PERCENT = 10, /*!< The percentage difference between the two last silence periods */
BUSY_PAT_PERCENT = 7, /*!< The percentage difference between measured and actual pattern */
BUSY_THRESHOLD = 100, /*!< Max number of ms difference between max and min times in busy */
BUSY_MIN = 75, /*!< Busy must be at least 80 ms in half-cadence */
BUSY_MAX =3100 /*!< Busy can't be longer than 3100 ms in half-cadence */
};
/*! Remember last 15 units */
#define DSP_HISTORY 15
/*! Define if you want the fax detector -- NOT RECOMMENDED IN -STABLE */
#define FAX_DETECT
#define TONE_THRESH 10.0 /*!< How much louder the tone should be than channel energy */
#define TONE_MIN_THRESH 1e8 /*!< How much tone there should be at least to attempt */
/*! All THRESH_XXX values are in GSAMP_SIZE chunks (us = 22ms) */
enum gsamp_thresh {
THRESH_RING = 8, /*!< Need at least 150ms ring to accept */
THRESH_TALK = 2, /*!< Talk detection does not work continuously */
THRESH_BUSY = 4, /*!< Need at least 80ms to accept */
THRESH_CONGESTION = 4, /*!< Need at least 80ms to accept */
THRESH_HANGUP = 60, /*!< Need at least 1300ms to accept hangup */
THRESH_RING2ANSWER = 300 /*!< Timeout from start of ring to answer (about 6600 ms) */
};
#define MAX_DTMF_DIGITS 128
/* Basic DTMF specs:
*
* Minimum tone on = 40ms
* Minimum tone off = 50ms
* Maximum digit rate = 10 per second
* Normal twist <= 8dB accepted
* Reverse twist <= 4dB accepted
* S/N >= 15dB will detect OK
* Attenuation <= 26dB will detect OK
* Frequency tolerance +- 1.5% will detect, +-3.5% will reject
*/
#define DTMF_THRESHOLD 8.0e7
#define FAX_THRESHOLD 8.0e7
#define FAX_2ND_HARMONIC 2.0 /* 4dB */
#define DTMF_NORMAL_TWIST 6.3 /* 8dB */
#ifdef RADIO_RELAX
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 6.5 : 2.5) /* 4dB normal */
#else
#define DTMF_REVERSE_TWIST ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 4.0 : 2.5) /* 4dB normal */
#endif
#define DTMF_RELATIVE_PEAK_ROW 6.3 /* 8dB */
#define DTMF_RELATIVE_PEAK_COL 6.3 /* 8dB */
#define DTMF_2ND_HARMONIC_ROW ((digitmode & DSP_DIGITMODE_RELAXDTMF) ? 1.7 : 2.5) /* 4dB normal */
#define DTMF_2ND_HARMONIC_COL 63.1 /* 18dB */
#define DTMF_TO_TOTAL_ENERGY 42.0
#ifdef OLD_DSP_ROUTINES
#define MF_THRESHOLD 8.0e7
#define MF_NORMAL_TWIST 5.3 /* 8dB */
#define MF_REVERSE_TWIST 4.0 /* was 2.5 */
#define MF_RELATIVE_PEAK 5.3 /* 8dB */
#define MF_2ND_HARMONIC 1.7 /* was 2.5 */
#else
#define BELL_MF_THRESHOLD 1.6e9
#define BELL_MF_TWIST 4.0 /* 6dB */
#define BELL_MF_RELATIVE_PEAK 12.6 /* 11dB */
#endif
#if !defined(BUSYDETECT_MARTIN) && !defined(BUSYDETECT) && !defined(BUSYDETECT_TONEONLY) && !defined(BUSYDETECT_COMPARE_TONE_AND_SILENCE)
#define BUSYDETECT_MARTIN
#endif
typedef struct {
float v2;
float v3;
float fac;
#ifndef OLD_DSP_ROUTINES
int samples;
#endif
} goertzel_state_t;
typedef struct
{
goertzel_state_t row_out[4];
goertzel_state_t col_out[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone;
#endif
#ifdef OLD_DSP_ROUTINES
goertzel_state_t row_out2nd[4];
goertzel_state_t col_out2nd[4];
#ifdef FAX_DETECT
goertzel_state_t fax_tone2nd;
#endif
int hit1;
int hit2;
int hit3;
int hit4;
#else
int hits[3];
#endif
int mhit;
float energy;
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
int digit_hits[16];
#ifdef FAX_DETECT
int fax_hits;
#endif
} dtmf_detect_state_t;
typedef struct
{
goertzel_state_t tone_out[6];
int mhit;
#ifdef OLD_DSP_ROUTINES
int hit1;
int hit2;
int hit3;
int hit4;
goertzel_state_t tone_out2nd[6];
float energy;
#else
int hits[5];
#endif
int current_sample;
char digits[MAX_DTMF_DIGITS + 1];
int current_digits;
int detected_digits;
int lost_digits;
#ifdef FAX_DETECT
int fax_hits;
#endif
} mf_detect_state_t;
static float dtmf_row[] =
{
697.0, 770.0, 852.0, 941.0
};
static float dtmf_col[] =
{
1209.0, 1336.0, 1477.0, 1633.0
};
static float mf_tones[] =
{
700.0, 900.0, 1100.0, 1300.0, 1500.0, 1700.0
};
#ifdef FAX_DETECT
static float fax_freq = 1100.0;
#endif
static char dtmf_positions[] = "123A" "456B" "789C" "*0#D";
#ifdef OLD_DSP_ROUTINES
static char mf_hit[6][6] = {
/* 700 + */ { 0, '1', '2', '4', '7', 'C' },
/* 900 + */ { '1', 0, '3', '5', '8', 'A' },
/* 1100 + */ { '2', '3', 0, '6', '9', '*' },
/* 1300 + */ { '4', '5', '6', 0, '0', 'B' },
/* 1500 + */ { '7', '8', '9', '0', 0, '#' },
/* 1700 + */ { 'C', 'A', '*', 'B', '#', 0 },
};
#else
static char bell_mf_positions[] = "1247C-358A--69*---0B----#";
#endif
static inline void goertzel_sample(goertzel_state_t *s, short sample)
{
float v1;
float fsamp = sample;
v1 = s->v2;
s->v2 = s->v3;
s->v3 = s->fac * s->v2 - v1 + fsamp;
}
static inline void goertzel_update(goertzel_state_t *s, short *samps, int count)
{
int i;
for (i=0;i<count;i++)
goertzel_sample(s, samps[i]);
}
static inline float goertzel_result(goertzel_state_t *s)
{
return s->v3 * s->v3 + s->v2 * s->v2 - s->v2 * s->v3 * s->fac;
}
static inline void goertzel_init(goertzel_state_t *s, float freq, int samples)
{
s->v2 = s->v3 = 0.0;
s->fac = 2.0 * cos(2.0 * M_PI * (freq / 8000.0));
#ifndef OLD_DSP_ROUTINES
s->samples = samples;
#endif
}
static inline void goertzel_reset(goertzel_state_t *s)
{
s->v2 = s->v3 = 0.0;
}
struct ast_dsp {
struct ast_frame f;
int threshold;
int totalsilence;
int totalnoise;
int features;
int ringtimeout;
int busymaybe;
int busycount;
int busy_tonelength;
int busy_quietlength;
int historicnoise[DSP_HISTORY];
int historicsilence[DSP_HISTORY];
goertzel_state_t freqs[7];
int freqcount;
int gsamps;
enum gsamp_size gsamp_size;
enum prog_mode progmode;
int tstate;
int tcount;
int digitmode;
int thinkdigit;
float genergy;
union {
dtmf_detect_state_t dtmf;
mf_detect_state_t mf;
} td;
};
static void ast_dtmf_detect_init (dtmf_detect_state_t *s)
{
int i;
#ifdef OLD_DSP_ROUTINES
s->hit1 =
s->mhit =
s->hit3 =
s->hit4 =
s->hit2 = 0;
#else
s->hits[0] = s->hits[1] = s->hits[2] = 0;
#endif
for (i = 0; i < 4; i++) {
goertzel_init (&s->row_out[i], dtmf_row[i], 102);
goertzel_init (&s->col_out[i], dtmf_col[i], 102);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->row_out2nd[i], dtmf_row[i] * 2.0, 102);
goertzel_init (&s->col_out2nd[i], dtmf_col[i] * 2.0, 102);
#endif
s->energy = 0.0;
}
#ifdef FAX_DETECT
/* Same for the fax dector */
goertzel_init (&s->fax_tone, fax_freq, 102);
#ifdef OLD_DSP_ROUTINES
/* Same for the fax dector 2nd harmonic */
goertzel_init (&s->fax_tone2nd, fax_freq * 2.0, 102);
#endif
#endif /* FAX_DETECT */
s->current_sample = 0;
s->detected_digits = 0;
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->lost_digits = 0;
s->digits[0] = '\0';
}
static void ast_mf_detect_init (mf_detect_state_t *s)
{
int i;
#ifdef OLD_DSP_ROUTINES
s->hit1 =
s->hit2 = 0;
#else
s->hits[0] = s->hits[1] = s->hits[2] = s->hits[3] = s->hits[4] = 0;
#endif
for (i = 0; i < 6; i++) {
goertzel_init (&s->tone_out[i], mf_tones[i], 160);
#ifdef OLD_DSP_ROUTINES
goertzel_init (&s->tone_out2nd[i], mf_tones[i] * 2.0, 160);
s->energy = 0.0;
#endif
}
s->current_digits = 0;
memset(&s->digits, 0, sizeof(s->digits));
s->current_sample = 0;
s->detected_digits = 0;
s->lost_digits = 0;
s->digits[0] = '\0';
s->mhit = 0;
}
static int dtmf_detect (dtmf_detect_state_t *s, int16_t amp[], int samples,
int digitmode, int *writeback, int faxdetect)
{
float row_energy[4];
float col_energy[4];
#ifdef FAX_DETECT
float fax_energy;
#ifdef OLD_DSP_ROUTINES
float fax_energy_2nd;
#endif
#endif /* FAX_DETECT */
float famp;
float v1;
int i;
int j;
int sample;
int best_row;
int best_col;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 102 is optimised to meet the DTMF specs. */
if ((samples - sample) >= (102 - s->current_sample))
limit = sample + (102 - s->current_sample);
else
limit = samples;
#if defined(USE_3DNOW)
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j=sample;j<limit;j++) {
famp = amp[j];
s->energy += famp*famp;
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->row_out[0].v2;
s->row_out[0].v2 = s->row_out[0].v3;
s->row_out[0].v3 = s->row_out[0].fac*s->row_out[0].v2 - v1 + famp;
v1 = s->col_out[0].v2;
s->col_out[0].v2 = s->col_out[0].v3;
s->col_out[0].v3 = s->col_out[0].fac*s->col_out[0].v2 - v1 + famp;
v1 = s->row_out[1].v2;
s->row_out[1].v2 = s->row_out[1].v3;
s->row_out[1].v3 = s->row_out[1].fac*s->row_out[1].v2 - v1 + famp;
v1 = s->col_out[1].v2;
s->col_out[1].v2 = s->col_out[1].v3;
s->col_out[1].v3 = s->col_out[1].fac*s->col_out[1].v2 - v1 + famp;
v1 = s->row_out[2].v2;
s->row_out[2].v2 = s->row_out[2].v3;
s->row_out[2].v3 = s->row_out[2].fac*s->row_out[2].v2 - v1 + famp;
v1 = s->col_out[2].v2;
s->col_out[2].v2 = s->col_out[2].v3;
s->col_out[2].v3 = s->col_out[2].fac*s->col_out[2].v2 - v1 + famp;
v1 = s->row_out[3].v2;
s->row_out[3].v2 = s->row_out[3].v3;
s->row_out[3].v3 = s->row_out[3].fac*s->row_out[3].v2 - v1 + famp;
v1 = s->col_out[3].v2;
s->col_out[3].v2 = s->col_out[3].v3;
s->col_out[3].v3 = s->col_out[3].fac*s->col_out[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone.v2 = s->fax_tone.v3;
s->fax_tone.v3 = s->fax_tone.fac*s->fax_tone.v2 - v1 + famp;
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
v1 = s->col_out2nd[0].v2;
s->col_out2nd[0].v2 = s->col_out2nd[0].v3;
s->col_out2nd[0].v3 = s->col_out2nd[0].fac*s->col_out2nd[0].v2 - v1 + famp;
v1 = s->row_out2nd[0].v2;
s->row_out2nd[0].v2 = s->row_out2nd[0].v3;
s->row_out2nd[0].v3 = s->row_out2nd[0].fac*s->row_out2nd[0].v2 - v1 + famp;
v1 = s->col_out2nd[1].v2;
s->col_out2nd[1].v2 = s->col_out2nd[1].v3;
s->col_out2nd[1].v3 = s->col_out2nd[1].fac*s->col_out2nd[1].v2 - v1 + famp;
v1 = s->row_out2nd[1].v2;
s->row_out2nd[1].v2 = s->row_out2nd[1].v3;
s->row_out2nd[1].v3 = s->row_out2nd[1].fac*s->row_out2nd[1].v2 - v1 + famp;
v1 = s->col_out2nd[2].v2;
s->col_out2nd[2].v2 = s->col_out2nd[2].v3;
s->col_out2nd[2].v3 = s->col_out2nd[2].fac*s->col_out2nd[2].v2 - v1 + famp;
v1 = s->row_out2nd[2].v2;
s->row_out2nd[2].v2 = s->row_out2nd[2].v3;
s->row_out2nd[2].v3 = s->row_out2nd[2].fac*s->row_out2nd[2].v2 - v1 + famp;
v1 = s->col_out2nd[3].v2;
s->col_out2nd[3].v2 = s->col_out2nd[3].v3;
s->col_out2nd[3].v3 = s->col_out2nd[3].fac*s->col_out2nd[3].v2 - v1 + famp;
v1 = s->row_out2nd[3].v2;
s->row_out2nd[3].v2 = s->row_out2nd[3].v3;
s->row_out2nd[3].v3 = s->row_out2nd[3].fac*s->row_out2nd[3].v2 - v1 + famp;
#ifdef FAX_DETECT
/* Update fax tone */
v1 = s->fax_tone.v2;
s->fax_tone2nd.v2 = s->fax_tone2nd.v3;
s->fax_tone2nd.v3 = s->fax_tone2nd.fac*s->fax_tone2nd.v2 - v1 + famp;
#endif /* FAX_DETECT */
#endif
}
#endif
s->current_sample += (limit - sample);
if (s->current_sample < 102) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
#ifdef FAX_DETECT
/* Detect the fax energy, too */
fax_energy = goertzel_result(&s->fax_tone);
#endif
/* We are at the end of a DTMF detection block */
/* Find the peak row and the peak column */
row_energy[0] = goertzel_result (&s->row_out[0]);
col_energy[0] = goertzel_result (&s->col_out[0]);
for (best_row = best_col = 0, i = 1; i < 4; i++) {
row_energy[i] = goertzel_result (&s->row_out[i]);
if (row_energy[i] > row_energy[best_row])
best_row = i;
col_energy[i] = goertzel_result (&s->col_out[i]);
if (col_energy[i] > col_energy[best_col])
best_col = i;
}
hit = 0;
/* Basic signal level test and the twist test */
if (row_energy[best_row] >= DTMF_THRESHOLD &&
col_energy[best_col] >= DTMF_THRESHOLD &&
col_energy[best_col] < row_energy[best_row]*DTMF_REVERSE_TWIST &&
col_energy[best_col]*DTMF_NORMAL_TWIST > row_energy[best_row]) {
/* Relative peak test */
for (i = 0; i < 4; i++) {
if ((i != best_col &&
col_energy[i]*DTMF_RELATIVE_PEAK_COL > col_energy[best_col]) ||
(i != best_row
&& row_energy[i]*DTMF_RELATIVE_PEAK_ROW > row_energy[best_row])) {
break;
}
}
#ifdef OLD_DSP_ROUTINES
/* ... and second harmonic test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > 42.0*s->energy &&
goertzel_result(&s->col_out2nd[best_col])*DTMF_2ND_HARMONIC_COL < col_energy[best_col]
&& goertzel_result(&s->row_out2nd[best_row])*DTMF_2ND_HARMONIC_ROW < row_energy[best_row]) {
#else
/* ... and fraction of total energy test */
if (i >= 4 &&
(row_energy[best_row] + col_energy[best_col]) > DTMF_TO_TOTAL_ENERGY*s->energy) {
#endif
/* Got a hit */
hit = dtmf_positions[(best_row << 2) + best_col];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two successive similar results */
/* The logic in the next test is:
We need two successive identical clean detects, with
something different preceeding it. This can work with
back to back differing digits. More importantly, it
can work with nasty phones that give a very wobbly start
to a digit */
#ifdef OLD_DSP_ROUTINES
if (hit == s->hit3 && s->hit3 != s->hit2) {
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
#else
if (hit == s->hits[2] && hit != s->hits[1] && hit != s->hits[0]) {
s->mhit = hit;
s->digit_hits[(best_row << 2) + best_col]++;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
#endif
}
}
#ifdef FAX_DETECT
if (!hit && (fax_energy >= FAX_THRESHOLD) &&
(fax_energy >= DTMF_TO_TOTAL_ENERGY*s->energy) &&
(faxdetect)) {
#if 0
printf("Fax energy/Second Harmonic: %f\n", fax_energy);
#endif
/* XXX Probably need better checking than just this the energy XXX */
hit = 'f';
s->fax_hits++;
} else {
if (s->fax_hits > 5) {
hit = 'f';
s->mhit = 'f';
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
s->fax_hits = 0;
}
#endif /* FAX_DETECT */
#ifdef OLD_DSP_ROUTINES
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
#else
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = hit;
#endif
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&s->row_out[i]);
goertzel_reset(&s->col_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&s->row_out2nd[i]);
goertzel_reset(&s->col_out2nd[i]);
#endif
}
#ifdef FAX_DETECT
goertzel_reset (&s->fax_tone);
#ifdef OLD_DSP_ROUTINES
goertzel_reset (&s->fax_tone2nd);
#endif
#endif
s->energy = 0.0;
s->current_sample = 0;
}
if ((!s->mhit) || (s->mhit != hit)) {
s->mhit = 0;
return(0);
}
return (hit);
}
/* MF goertzel size */
#ifdef OLD_DSP_ROUTINES
#define MF_GSIZE 160
#else
#define MF_GSIZE 120
#endif
static int mf_detect (mf_detect_state_t *s, int16_t amp[],
int samples, int digitmode, int *writeback)
{
#ifdef OLD_DSP_ROUTINES
float tone_energy[6];
int best1;
int best2;
float max;
int sofarsogood;
#else
float energy[6];
int best;
int second_best;
#endif
float famp;
float v1;
int i;
int j;
int sample;
int hit;
int limit;
hit = 0;
for (sample = 0; sample < samples; sample = limit) {
/* 80 is optimised to meet the MF specs. */
if ((samples - sample) >= (MF_GSIZE - s->current_sample))
limit = sample + (MF_GSIZE - s->current_sample);
else
limit = samples;
#if defined(USE_3DNOW)
_dtmf_goertzel_update (s->row_out, amp + sample, limit - sample);
_dtmf_goertzel_update (s->col_out, amp + sample, limit - sample);
#ifdef OLD_DSP_ROUTINES
_dtmf_goertzel_update (s->row_out2nd, amp + sample, limit2 - sample);
_dtmf_goertzel_update (s->col_out2nd, amp + sample, limit2 - sample);
#endif
/* XXX Need to fax detect for 3dnow too XXX */
#warning "Fax Support Broken"
#else
/* The following unrolled loop takes only 35% (rough estimate) of the
time of a rolled loop on the machine on which it was developed */
for (j = sample; j < limit; j++) {
famp = amp[j];
#ifdef OLD_DSP_ROUTINES
s->energy += famp*famp;
#endif
/* With GCC 2.95, the following unrolled code seems to take about 35%
(rough estimate) as long as a neat little 0-3 loop */
v1 = s->tone_out[0].v2;
s->tone_out[0].v2 = s->tone_out[0].v3;
s->tone_out[0].v3 = s->tone_out[0].fac*s->tone_out[0].v2 - v1 + famp;
v1 = s->tone_out[1].v2;
s->tone_out[1].v2 = s->tone_out[1].v3;
s->tone_out[1].v3 = s->tone_out[1].fac*s->tone_out[1].v2 - v1 + famp;
v1 = s->tone_out[2].v2;
s->tone_out[2].v2 = s->tone_out[2].v3;
s->tone_out[2].v3 = s->tone_out[2].fac*s->tone_out[2].v2 - v1 + famp;
v1 = s->tone_out[3].v2;
s->tone_out[3].v2 = s->tone_out[3].v3;
s->tone_out[3].v3 = s->tone_out[3].fac*s->tone_out[3].v2 - v1 + famp;
v1 = s->tone_out[4].v2;
s->tone_out[4].v2 = s->tone_out[4].v3;
s->tone_out[4].v3 = s->tone_out[4].fac*s->tone_out[4].v2 - v1 + famp;
v1 = s->tone_out[5].v2;
s->tone_out[5].v2 = s->tone_out[5].v3;
s->tone_out[5].v3 = s->tone_out[5].fac*s->tone_out[5].v2 - v1 + famp;
#ifdef OLD_DSP_ROUTINES
v1 = s->tone_out2nd[0].v2;
s->tone_out2nd[0].v2 = s->tone_out2nd[0].v3;
s->tone_out2nd[0].v3 = s->tone_out2nd[0].fac*s->tone_out2nd[0].v2 - v1 + famp;
v1 = s->tone_out2nd[1].v2;
s->tone_out2nd[1].v2 = s->tone_out2nd[1].v3;
s->tone_out2nd[1].v3 = s->tone_out2nd[1].fac*s->tone_out2nd[1].v2 - v1 + famp;
v1 = s->tone_out2nd[2].v2;
s->tone_out2nd[2].v2 = s->tone_out2nd[2].v3;
s->tone_out2nd[2].v3 = s->tone_out2nd[2].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[3].v2 = s->tone_out2nd[3].v3;
s->tone_out2nd[3].v3 = s->tone_out2nd[3].fac*s->tone_out2nd[3].v2 - v1 + famp;
v1 = s->tone_out2nd[4].v2;
s->tone_out2nd[4].v2 = s->tone_out2nd[4].v3;
s->tone_out2nd[4].v3 = s->tone_out2nd[4].fac*s->tone_out2nd[2].v2 - v1 + famp;
v1 = s->tone_out2nd[3].v2;
s->tone_out2nd[5].v2 = s->tone_out2nd[6].v3;
s->tone_out2nd[5].v3 = s->tone_out2nd[6].fac*s->tone_out2nd[3].v2 - v1 + famp;
#endif
}
#endif
s->current_sample += (limit - sample);
if (s->current_sample < MF_GSIZE) {
if (hit && !((digitmode & DSP_DIGITMODE_NOQUELCH))) {
/* If we had a hit last time, go ahead and clear this out since likely it
will be another hit */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
continue;
}
#ifdef OLD_DSP_ROUTINES
/* We're at the end of an MF detection block. Go ahead and calculate
all the energies. */
for (i=0;i<6;i++) {
tone_energy[i] = goertzel_result(&s->tone_out[i]);
}
/* Find highest */
best1 = 0;
max = tone_energy[0];
for (i=1;i<6;i++) {
if (tone_energy[i] > max) {
max = tone_energy[i];
best1 = i;
}
}
/* Find 2nd highest */
if (best1) {
max = tone_energy[0];
best2 = 0;
} else {
max = tone_energy[1];
best2 = 1;
}
for (i=0;i<6;i++) {
if (i == best1) continue;
if (tone_energy[i] > max) {
max = tone_energy[i];
best2 = i;
}
}
hit = 0;
if (best1 != best2)
sofarsogood=1;
else
sofarsogood=0;
/* Check for relative energies */
for (i=0;i<6;i++) {
if (i == best1)
continue;
if (i == best2)
continue;
if (tone_energy[best1] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
if (tone_energy[best2] < tone_energy[i] * MF_RELATIVE_PEAK) {
sofarsogood = 0;
break;
}
}
if (sofarsogood) {
/* Check for 2nd harmonic */
if (goertzel_result(&s->tone_out2nd[best1]) * MF_2ND_HARMONIC > tone_energy[best1])
sofarsogood = 0;
else if (goertzel_result(&s->tone_out2nd[best2]) * MF_2ND_HARMONIC > tone_energy[best2])
sofarsogood = 0;
}
if (sofarsogood) {
hit = mf_hit[best1][best2];
if (!(digitmode & DSP_DIGITMODE_NOQUELCH)) {
/* Zero out frame data if this is part DTMF */
for (i=sample;i<limit;i++)
amp[i] = 0;
*writeback = 1;
}
/* Look for two consecutive clean hits */
if ((hit == s->hit3) && (s->hit3 != s->hit2)) {
s->mhit = hit;
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS - 2) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
}
s->hit1 = s->hit2;
s->hit2 = s->hit3;
s->hit3 = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&s->tone_out[i]);
goertzel_reset(&s->tone_out2nd[i]);
}
s->energy = 0.0;
s->current_sample = 0;
}
#else
/* We're at the end of an MF detection block. */
/* Find the two highest energies. The spec says to look for
two tones and two tones only. Taking this literally -ie
only two tones pass the minimum threshold - doesn't work
well. The sinc function mess, due to rectangular windowing
ensure that! Find the two highest energies and ensure they
are considerably stronger than any of the others. */
energy[0] = goertzel_result(&s->tone_out[0]);
energy[1] = goertzel_result(&s->tone_out[1]);
if (energy[0] > energy[1]) {
best = 0;
second_best = 1;
} else {
best = 1;
second_best = 0;
}
/*endif*/
for (i=2;i<6;i++) {
energy[i] = goertzel_result(&s->tone_out[i]);
if (energy[i] >= energy[best]) {
second_best = best;
best = i;
} else if (energy[i] >= energy[second_best]) {
second_best = i;
}
}
/* Basic signal level and twist tests */
hit = 0;
if (energy[best] >= BELL_MF_THRESHOLD && energy[second_best] >= BELL_MF_THRESHOLD
&& energy[best] < energy[second_best]*BELL_MF_TWIST
&& energy[best]*BELL_MF_TWIST > energy[second_best]) {
/* Relative peak test */
hit = -1;
for (i=0;i<6;i++) {
if (i != best && i != second_best) {
if (energy[i]*BELL_MF_RELATIVE_PEAK >= energy[second_best]) {
/* The best two are not clearly the best */
hit = 0;
break;
}
}
}
}
if (hit) {
/* Get the values into ascending order */
if (second_best < best) {
i = best;
best = second_best;
second_best = i;
}
best = best*5 + second_best - 1;
hit = bell_mf_positions[best];
/* Look for two successive similar results */
/* The logic in the next test is:
For KP we need 4 successive identical clean detects, with
two blocks of something different preceeding it. For anything
else we need two successive identical clean detects, with
two blocks of something different preceeding it. */
if (hit == s->hits[4] && hit == s->hits[3] &&
((hit != '*' && hit != s->hits[2] && hit != s->hits[1])||
(hit == '*' && hit == s->hits[2] && hit != s->hits[1] &&
hit != s->hits[0]))) {
s->detected_digits++;
if (s->current_digits < MAX_DTMF_DIGITS) {
s->digits[s->current_digits++] = hit;
s->digits[s->current_digits] = '\0';
} else {
s->lost_digits++;
}
}
} else {
hit = 0;
}
s->hits[0] = s->hits[1];
s->hits[1] = s->hits[2];
s->hits[2] = s->hits[3];
s->hits[3] = s->hits[4];
s->hits[4] = hit;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++)
goertzel_reset(&s->tone_out[i]);
s->current_sample = 0;
}
#endif
if ((!s->mhit) || (s->mhit != hit)) {
s->mhit = 0;
return(0);
}
return (hit);
}
static int __ast_dsp_digitdetect(struct ast_dsp *dsp, short *s, int len, int *writeback)
{
int res;
if (dsp->digitmode & DSP_DIGITMODE_MF)
res = mf_detect(&dsp->td.mf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback);
else
res = dtmf_detect(&dsp->td.dtmf, s, len, dsp->digitmode & DSP_DIGITMODE_RELAXDTMF, writeback, dsp->features & DSP_FEATURE_FAX_DETECT);
return res;
}
int ast_dsp_digitdetect(struct ast_dsp *dsp, struct ast_frame *inf)
{
short *s;
int len;
int ign=0;
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (inf->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
s = inf->data;
len = inf->datalen / 2;
return __ast_dsp_digitdetect(dsp, s, len, &ign);
}
static inline int pair_there(float p1, float p2, float i1, float i2, float e)
{
/* See if p1 and p2 are there, relative to i1 and i2 and total energy */
/* Make sure absolute levels are high enough */
if ((p1 < TONE_MIN_THRESH) || (p2 < TONE_MIN_THRESH))
return 0;
/* Amplify ignored stuff */
i2 *= TONE_THRESH;
i1 *= TONE_THRESH;
e *= TONE_THRESH;
/* Check first tone */
if ((p1 < i1) || (p1 < i2) || (p1 < e))
return 0;
/* And second */
if ((p2 < i1) || (p2 < i2) || (p2 < e))
return 0;
/* Guess it's there... */
return 1;
}
int ast_dsp_getdigits (struct ast_dsp *dsp, char *buf, int max)
{
if (dsp->digitmode & DSP_DIGITMODE_MF) {
if (max > dsp->td.mf.current_digits)
max = dsp->td.mf.current_digits;
if (max > 0) {
memcpy(buf, dsp->td.mf.digits, max);
memmove(dsp->td.mf.digits, dsp->td.mf.digits + max, dsp->td.mf.current_digits - max);
dsp->td.mf.current_digits -= max;
}
buf[max] = '\0';
return max;
} else {
if (max > dsp->td.dtmf.current_digits)
max = dsp->td.dtmf.current_digits;
if (max > 0) {
memcpy (buf, dsp->td.dtmf.digits, max);
memmove (dsp->td.dtmf.digits, dsp->td.dtmf.digits + max, dsp->td.dtmf.current_digits - max);
dsp->td.dtmf.current_digits -= max;
}
buf[max] = '\0';
return max;
}
}
static int __ast_dsp_call_progress(struct ast_dsp *dsp, short *s, int len)
{
int x;
int y;
int pass;
int newstate = DSP_TONE_STATE_SILENCE;
int res = 0;
while(len) {
/* Take the lesser of the number of samples we need and what we have */
pass = len;
if (pass > dsp->gsamp_size - dsp->gsamps)
pass = dsp->gsamp_size - dsp->gsamps;
for (x=0;x<pass;x++) {
for (y=0;y<dsp->freqcount;y++)
goertzel_sample(&dsp->freqs[y], s[x]);
dsp->genergy += s[x] * s[x];
}
s += pass;
dsp->gsamps += pass;
len -= pass;
if (dsp->gsamps == dsp->gsamp_size) {
float hz[7];
for (y=0;y<7;y++)
hz[y] = goertzel_result(&dsp->freqs[y]);
#if 0
printf("\n350: 425: 440: 480: 620: 950: 1400: 1800: Energy: \n");
printf("%.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e %.2e\n",
hz[HZ_350], hz[HZ_425], hz[HZ_440], hz[HZ_480], hz[HZ_620], hz[HZ_950], hz[HZ_1400], hz[HZ_1800], dsp->genergy);
#endif
switch(dsp->progmode) {
case PROG_MODE_NA:
if (pair_there(hz[HZ_480], hz[HZ_620], hz[HZ_350], hz[HZ_440], dsp->genergy)) {
newstate = DSP_TONE_STATE_BUSY;
} else if (pair_there(hz[HZ_440], hz[HZ_480], hz[HZ_350], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_RINGING;
} else if (pair_there(hz[HZ_350], hz[HZ_440], hz[HZ_480], hz[HZ_620], dsp->genergy)) {
newstate = DSP_TONE_STATE_DIALTONE;
} else if (hz[HZ_950] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_SPECIAL1;
} else if (hz[HZ_1400] > TONE_MIN_THRESH * TONE_THRESH) {
if (dsp->tstate == DSP_TONE_STATE_SPECIAL1)
newstate = DSP_TONE_STATE_SPECIAL2;
} else if (hz[HZ_1800] > TONE_MIN_THRESH * TONE_THRESH) {
if (dsp->tstate == DSP_TONE_STATE_SPECIAL2)
newstate = DSP_TONE_STATE_SPECIAL3;
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
} else
newstate = DSP_TONE_STATE_SILENCE;
break;
case PROG_MODE_CR:
if (hz[HZ_425] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_RINGING;
} else if (dsp->genergy > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_TALKING;
} else
newstate = DSP_TONE_STATE_SILENCE;
break;
case PROG_MODE_UK:
if (hz[HZ_400] > TONE_MIN_THRESH * TONE_THRESH) {
newstate = DSP_TONE_STATE_HUNGUP;
}
break;
default:
ast_log(LOG_WARNING, "Can't process in unknown prog mode '%d'\n", dsp->progmode);
}
if (newstate == dsp->tstate) {
dsp->tcount++;
if (dsp->ringtimeout)
dsp->ringtimeout++;
switch (dsp->tstate) {
case DSP_TONE_STATE_RINGING:
if ((dsp->features & DSP_PROGRESS_RINGING) &&
(dsp->tcount==THRESH_RING)) {
res = AST_CONTROL_RINGING;
dsp->ringtimeout= 1;
}
break;
case DSP_TONE_STATE_BUSY:
if ((dsp->features & DSP_PROGRESS_BUSY) &&
(dsp->tcount==THRESH_BUSY)) {
res = AST_CONTROL_BUSY;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_TALKING:
if ((dsp->features & DSP_PROGRESS_TALK) &&
(dsp->tcount==THRESH_TALK)) {
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_SPECIAL3:
if ((dsp->features & DSP_PROGRESS_CONGESTION) &&
(dsp->tcount==THRESH_CONGESTION)) {
res = AST_CONTROL_CONGESTION;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
case DSP_TONE_STATE_HUNGUP:
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS) &&
(dsp->tcount==THRESH_HANGUP)) {
res = AST_CONTROL_HANGUP;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
break;
}
if (dsp->ringtimeout==THRESH_RING2ANSWER) {
#if 0
ast_log(LOG_NOTICE, "Consider call as answered because of timeout after last ring\n");
#endif
res = AST_CONTROL_ANSWER;
dsp->features &= ~DSP_FEATURE_CALL_PROGRESS;
}
} else {
#if 0
ast_log(LOG_NOTICE, "Stop state %d with duration %d\n", dsp->tstate, dsp->tcount);
ast_log(LOG_NOTICE, "Start state %d\n", newstate);
#endif
dsp->tstate = newstate;
dsp->tcount = 1;
}
/* Reset goertzel */
for (x=0;x<7;x++)
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
dsp->gsamps = 0;
dsp->genergy = 0.0;
}
}
#if 0
if (res)
printf("Returning %d\n", res);
#endif
return res;
}
int ast_dsp_call_progress(struct ast_dsp *dsp, struct ast_frame *inf)
{
if (inf->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't check call progress of non-voice frames\n");
return 0;
}
if (inf->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only check call progress in signed-linear frames\n");
return 0;
}
return __ast_dsp_call_progress(dsp, inf->data, inf->datalen / 2);
}
static int __ast_dsp_silence(struct ast_dsp *dsp, short *s, int len, int *totalsilence)
{
int accum;
int x;
int res = 0;
if (!len)
return 0;
accum = 0;
for (x=0;x<len; x++)
accum += abs(s[x]);
accum /= len;
if (accum < dsp->threshold) {
/* Silent */
dsp->totalsilence += len/8;
if (dsp->totalnoise) {
/* Move and save history */
memmove(dsp->historicnoise + DSP_HISTORY - dsp->busycount, dsp->historicnoise + DSP_HISTORY - dsp->busycount +1, dsp->busycount*sizeof(dsp->historicnoise[0]));
dsp->historicnoise[DSP_HISTORY - 1] = dsp->totalnoise;
/* we don't want to check for busydetect that frequently */
#if 0
dsp->busymaybe = 1;
#endif
}
dsp->totalnoise = 0;
res = 1;
} else {
/* Not silent */
dsp->totalnoise += len/8;
if (dsp->totalsilence) {
int silence1 = dsp->historicsilence[DSP_HISTORY - 1];
int silence2 = dsp->historicsilence[DSP_HISTORY - 2];
/* Move and save history */
memmove(dsp->historicsilence + DSP_HISTORY - dsp->busycount, dsp->historicsilence + DSP_HISTORY - dsp->busycount + 1, dsp->busycount*sizeof(dsp->historicsilence[0]));
dsp->historicsilence[DSP_HISTORY - 1] = dsp->totalsilence;
/* check if the previous sample differs only by BUSY_PERCENT from the one before it */
if (silence1 < silence2) {
if (silence1 + silence1*BUSY_PERCENT/100 >= silence2)
dsp->busymaybe = 1;
else
dsp->busymaybe = 0;
} else {
if (silence1 - silence1*BUSY_PERCENT/100 <= silence2)
dsp->busymaybe = 1;
else
dsp->busymaybe = 0;
}
}
dsp->totalsilence = 0;
}
if (totalsilence)
*totalsilence = dsp->totalsilence;
return res;
}
#ifdef BUSYDETECT_MARTIN
int ast_dsp_busydetect(struct ast_dsp *dsp)
{
int res = 0, x;
#ifndef BUSYDETECT_TONEONLY
int avgsilence = 0, hitsilence = 0;
#endif
int avgtone = 0, hittone = 0;
if (!dsp->busymaybe)
return res;
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
#ifndef BUSYDETECT_TONEONLY
avgsilence += dsp->historicsilence[x];
#endif
avgtone += dsp->historicnoise[x];
}
#ifndef BUSYDETECT_TONEONLY
avgsilence /= dsp->busycount;
#endif
avgtone /= dsp->busycount;
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
#ifndef BUSYDETECT_TONEONLY
if (avgsilence > dsp->historicsilence[x]) {
if (avgsilence - (avgsilence*BUSY_PERCENT/100) <= dsp->historicsilence[x])
hitsilence++;
} else {
if (avgsilence + (avgsilence*BUSY_PERCENT/100) >= dsp->historicsilence[x])
hitsilence++;
}
#endif
if (avgtone > dsp->historicnoise[x]) {
if (avgtone - (avgtone*BUSY_PERCENT/100) <= dsp->historicnoise[x])
hittone++;
} else {
if (avgtone + (avgtone*BUSY_PERCENT/100) >= dsp->historicnoise[x])
hittone++;
}
}
#ifndef BUSYDETECT_TONEONLY
if ((hittone >= dsp->busycount - 1) && (hitsilence >= dsp->busycount - 1) &&
(avgtone >= BUSY_MIN && avgtone <= BUSY_MAX) &&
(avgsilence >= BUSY_MIN && avgsilence <= BUSY_MAX)) {
#else
if ((hittone >= dsp->busycount - 1) && (avgtone >= BUSY_MIN && avgtone <= BUSY_MAX)) {
#endif
#ifdef BUSYDETECT_COMPARE_TONE_AND_SILENCE
#ifdef BUSYDETECT_TONEONLY
#error You cant use BUSYDETECT_TONEONLY together with BUSYDETECT_COMPARE_TONE_AND_SILENCE
#endif
if (avgtone > avgsilence) {
if (avgtone - avgtone*BUSY_PERCENT/100 <= avgsilence)
res = 1;
} else {
if (avgtone + avgtone*BUSY_PERCENT/100 >= avgsilence)
res = 1;
}
#else
res = 1;
#endif
}
/* If we know the expected busy tone length, check we are in the range */
if (res && (dsp->busy_tonelength > 0)) {
if (abs(avgtone - dsp->busy_tonelength) > (dsp->busy_tonelength*BUSY_PAT_PERCENT/100)) {
#if 0
ast_log(LOG_NOTICE, "busy detector: avgtone of %d not close enough to desired %d\n",
avgtone, dsp->busy_tonelength);
#endif
res = 0;
}
}
/* If we know the expected busy tone silent-period length, check we are in the range */
if (res && (dsp->busy_quietlength > 0)) {
if (abs(avgsilence - dsp->busy_quietlength) > (dsp->busy_quietlength*BUSY_PAT_PERCENT/100)) {
#if 0
ast_log(LOG_NOTICE, "busy detector: avgsilence of %d not close enough to desired %d\n",
avgsilence, dsp->busy_quietlength);
#endif
res = 0;
}
}
#if 1
if (res)
ast_log(LOG_DEBUG, "ast_dsp_busydetect detected busy, avgtone: %d, avgsilence %d\n", avgtone, avgsilence);
#endif
return res;
}
#endif
#ifdef BUSYDETECT
int ast_dsp_busydetect(struct ast_dsp *dsp)
{
int x;
int res = 0;
int max, min;
#if 0
if (dsp->busy_hits > 5);
return 0;
#endif
if (dsp->busymaybe) {
#if 0
printf("Maybe busy!\n");
#endif
dsp->busymaybe = 0;
min = 9999;
max = 0;
for (x=DSP_HISTORY - dsp->busycount;x<DSP_HISTORY;x++) {
#if 0
printf("Silence: %d, Noise: %d\n", dsp->historicsilence[x], dsp->historicnoise[x]);
#endif
if (dsp->historicsilence[x] < min)
min = dsp->historicsilence[x];
if (dsp->historicnoise[x] < min)
min = dsp->historicnoise[x];
if (dsp->historicsilence[x] > max)
max = dsp->historicsilence[x];
if (dsp->historicnoise[x] > max)
max = dsp->historicnoise[x];
}
if ((max - min < BUSY_THRESHOLD) && (max < BUSY_MAX) && (min > BUSY_MIN)) {
#if 0
printf("Busy!\n");
#endif
res = 1;
}
#if 0
printf("Min: %d, max: %d\n", min, max);
#endif
}
return res;
}
#endif
int ast_dsp_silence(struct ast_dsp *dsp, struct ast_frame *f, int *totalsilence)
{
short *s;
int len;
if (f->frametype != AST_FRAME_VOICE) {
ast_log(LOG_WARNING, "Can't calculate silence on a non-voice frame\n");
return 0;
}
if (f->subclass != AST_FORMAT_SLINEAR) {
ast_log(LOG_WARNING, "Can only calculate silence on signed-linear frames :(\n");
return 0;
}
s = f->data;
len = f->datalen/2;
return __ast_dsp_silence(dsp, s, len, totalsilence);
}
struct ast_frame *ast_dsp_process(struct ast_channel *chan, struct ast_dsp *dsp, struct ast_frame *af)
{
int silence;
int res;
int digit;
int x;
short *shortdata;
unsigned char *odata;
int len;
int writeback = 0;
#define FIX_INF(inf) do { \
if (writeback) { \
switch(inf->subclass) { \
case AST_FORMAT_SLINEAR: \
break; \
case AST_FORMAT_ULAW: \
for (x=0;x<len;x++) \
odata[x] = AST_LIN2MU((unsigned short)shortdata[x]); \
break; \
case AST_FORMAT_ALAW: \
for (x=0;x<len;x++) \
odata[x] = AST_LIN2A((unsigned short)shortdata[x]); \
break; \
} \
} \
} while(0)
if (!af)
return NULL;
if (af->frametype != AST_FRAME_VOICE)
return af;
odata = af->data;
len = af->datalen;
/* Make sure we have short data */
switch(af->subclass) {
case AST_FORMAT_SLINEAR:
shortdata = af->data;
len = af->datalen / 2;
break;
case AST_FORMAT_ULAW:
if (!(shortdata = alloca(af->datalen * 2))) {
ast_log(LOG_WARNING, "Unable to allocate stack space for data: %s\n", strerror(errno));
return af;
}
for (x=0;x<len;x++)
shortdata[x] = AST_MULAW(odata[x]);
break;
case AST_FORMAT_ALAW:
if (!(shortdata = alloca(af->datalen * 2))) {
ast_log(LOG_WARNING, "Unable to allocate stack space for data: %s\n", strerror(errno));
return af;
}
for (x=0;x<len;x++)
shortdata[x] = AST_ALAW(odata[x]);
break;
default:
ast_log(LOG_WARNING, "Inband DTMF is not supported on codec %s. Use RFC2833\n", ast_getformatname(af->subclass));
return af;
}
silence = __ast_dsp_silence(dsp, shortdata, len, NULL);
if ((dsp->features & DSP_FEATURE_SILENCE_SUPPRESS) && silence) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_NULL;
return &dsp->f;
}
if ((dsp->features & DSP_FEATURE_BUSY_DETECT) && ast_dsp_busydetect(dsp)) {
chan->_softhangup |= AST_SOFTHANGUP_DEV;
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass = AST_CONTROL_BUSY;
ast_log(LOG_DEBUG, "Requesting Hangup because the busy tone was detected on channel %s\n", chan->name);
return &dsp->f;
}
if ((dsp->features & DSP_FEATURE_DTMF_DETECT)) {
digit = __ast_dsp_digitdetect(dsp, shortdata, len, &writeback);
#if 0
if (digit)
printf("Performing digit detection returned %d, digitmode is %d\n", digit, dsp->digitmode);
#endif
if (dsp->digitmode & (DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX)) {
if (!dsp->thinkdigit) {
if (digit) {
/* Looks like we might have something.
* Request a conference mute for the moment */
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = 'm';
dsp->thinkdigit = 'x';
FIX_INF(af);
if (chan)
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
} else {
if (digit) {
/* Thought we saw one last time. Pretty sure we really have now */
if (dsp->thinkdigit) {
if ((dsp->thinkdigit != 'x') && (dsp->thinkdigit != digit)) {
/* If we found a digit, and we're changing digits, go
ahead and send this one, but DON'T stop confmute because
we're detecting something else, too... */
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->thinkdigit;
FIX_INF(af);
if (chan)
ast_queue_frame(chan, af);
ast_frfree(af);
}
dsp->thinkdigit = digit;
return &dsp->f;
}
dsp->thinkdigit = digit;
} else {
if (dsp->thinkdigit) {
memset(&dsp->f, 0, sizeof(dsp->f));
if (dsp->thinkdigit != 'x') {
/* If we found a digit, send it now */
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->thinkdigit;
dsp->thinkdigit = 0;
} else {
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = 'u';
dsp->thinkdigit = 0;
}
FIX_INF(af);
if (chan)
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
}
}
} else if (!digit) {
/* Only check when there is *not* a hit... */
if (dsp->digitmode & DSP_DIGITMODE_MF) {
if (dsp->td.mf.current_digits) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->td.mf.digits[0];
memmove(dsp->td.mf.digits, dsp->td.mf.digits + 1, dsp->td.mf.current_digits);
dsp->td.mf.current_digits--;
FIX_INF(af);
if (chan)
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
} else {
if (dsp->td.dtmf.current_digits) {
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_DTMF;
dsp->f.subclass = dsp->td.dtmf.digits[0];
memmove(dsp->td.dtmf.digits, dsp->td.dtmf.digits + 1, dsp->td.dtmf.current_digits);
dsp->td.dtmf.current_digits--;
FIX_INF(af);
if (chan)
ast_queue_frame(chan, af);
ast_frfree(af);
return &dsp->f;
}
}
}
}
if ((dsp->features & DSP_FEATURE_CALL_PROGRESS)) {
res = __ast_dsp_call_progress(dsp, shortdata, len);
if (res) {
switch(res) {
case AST_CONTROL_ANSWER:
case AST_CONTROL_BUSY:
case AST_CONTROL_RINGING:
case AST_CONTROL_CONGESTION:
case AST_CONTROL_HANGUP:
memset(&dsp->f, 0, sizeof(dsp->f));
dsp->f.frametype = AST_FRAME_CONTROL;
dsp->f.subclass = res;
dsp->f.src = "dsp_progress";
if (chan)
ast_queue_frame(chan, &dsp->f);
break;
default:
ast_log(LOG_WARNING, "Don't know how to represent call progress message %d\n", res);
}
}
}
FIX_INF(af);
return af;
}
static void ast_dsp_prog_reset(struct ast_dsp *dsp)
{
int max = 0;
int x;
dsp->gsamp_size = modes[dsp->progmode].size;
dsp->gsamps = 0;
for (x=0;x<sizeof(modes[dsp->progmode].freqs) / sizeof(modes[dsp->progmode].freqs[0]);x++) {
if (modes[dsp->progmode].freqs[x]) {
goertzel_init(&dsp->freqs[x], (float)modes[dsp->progmode].freqs[x], dsp->gsamp_size);
max = x + 1;
}
}
dsp->freqcount = max;
dsp->ringtimeout= 0;
}
struct ast_dsp *ast_dsp_new(void)
{
struct ast_dsp *dsp;
if ((dsp = ast_calloc(1, sizeof(*dsp)))) {
dsp->threshold = DEFAULT_THRESHOLD;
dsp->features = DSP_FEATURE_SILENCE_SUPPRESS;
dsp->busycount = DSP_HISTORY;
/* Initialize DTMF detector */
ast_dtmf_detect_init(&dsp->td.dtmf);
/* Initialize initial DSP progress detect parameters */
ast_dsp_prog_reset(dsp);
}
return dsp;
}
void ast_dsp_set_features(struct ast_dsp *dsp, int features)
{
dsp->features = features;
}
void ast_dsp_free(struct ast_dsp *dsp)
{
free(dsp);
}
void ast_dsp_set_threshold(struct ast_dsp *dsp, int threshold)
{
dsp->threshold = threshold;
}
void ast_dsp_set_busy_count(struct ast_dsp *dsp, int cadences)
{
if (cadences < 4)
cadences = 4;
if (cadences > DSP_HISTORY)
cadences = DSP_HISTORY;
dsp->busycount = cadences;
}
void ast_dsp_set_busy_pattern(struct ast_dsp *dsp, int tonelength, int quietlength)
{
dsp->busy_tonelength = tonelength;
dsp->busy_quietlength = quietlength;
ast_log(LOG_DEBUG, "dsp busy pattern set to %d,%d\n", tonelength, quietlength);
}
void ast_dsp_digitreset(struct ast_dsp *dsp)
{
int i;
dsp->thinkdigit = 0;
if (dsp->digitmode & DSP_DIGITMODE_MF) {
memset(dsp->td.mf.digits, 0, sizeof(dsp->td.mf.digits));
dsp->td.mf.current_digits = 0;
/* Reinitialise the detector for the next block */
for (i = 0; i < 6; i++) {
goertzel_reset(&dsp->td.mf.tone_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&dsp->td.mf.tone_out2nd[i]);
#endif
}
#ifdef OLD_DSP_ROUTINES
dsp->td.mf.energy = 0.0;
dsp->td.mf.hit1 = dsp->td.mf.hit2 = dsp->td.mf.hit3 = dsp->td.mf.hit4 = dsp->td.mf.mhit = 0;
#else
dsp->td.mf.hits[4] = dsp->td.mf.hits[3] = dsp->td.mf.hits[2] = dsp->td.mf.hits[1] = dsp->td.mf.hits[0] = dsp->td.mf.mhit = 0;
#endif
dsp->td.mf.current_sample = 0;
} else {
memset(dsp->td.dtmf.digits, 0, sizeof(dsp->td.dtmf.digits));
dsp->td.dtmf.current_digits = 0;
/* Reinitialise the detector for the next block */
for (i = 0; i < 4; i++) {
goertzel_reset(&dsp->td.dtmf.row_out[i]);
goertzel_reset(&dsp->td.dtmf.col_out[i]);
#ifdef OLD_DSP_ROUTINES
goertzel_reset(&dsp->td.dtmf.row_out2nd[i]);
goertzel_reset(&dsp->td.dtmf.col_out2nd[i]);
#endif
}
#ifdef FAX_DETECT
goertzel_reset (&dsp->td.dtmf.fax_tone);
#endif
#ifdef OLD_DSP_ROUTINES
#ifdef FAX_DETECT
goertzel_reset (&dsp->td.dtmf.fax_tone2nd);
#endif
dsp->td.dtmf.hit1 = dsp->td.dtmf.hit2 = dsp->td.dtmf.hit3 = dsp->td.dtmf.hit4 = dsp->td.dtmf.mhit = 0;
#else
dsp->td.dtmf.hits[2] = dsp->td.dtmf.hits[1] = dsp->td.dtmf.hits[0] = dsp->td.dtmf.mhit = 0;
#endif
dsp->td.dtmf.energy = 0.0;
dsp->td.dtmf.current_sample = 0;
}
}
void ast_dsp_reset(struct ast_dsp *dsp)
{
int x;
dsp->totalsilence = 0;
dsp->gsamps = 0;
for (x=0;x<4;x++)
dsp->freqs[x].v2 = dsp->freqs[x].v3 = 0.0;
memset(dsp->historicsilence, 0, sizeof(dsp->historicsilence));
memset(dsp->historicnoise, 0, sizeof(dsp->historicnoise));
dsp->ringtimeout= 0;
}
int ast_dsp_digitmode(struct ast_dsp *dsp, int digitmode)
{
int new;
int old;
old = dsp->digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
new = digitmode & (DSP_DIGITMODE_DTMF | DSP_DIGITMODE_MF | DSP_DIGITMODE_MUTECONF | DSP_DIGITMODE_MUTEMAX);
if (old != new) {
/* Must initialize structures if switching from MF to DTMF or vice-versa */
if (new & DSP_DIGITMODE_MF)
ast_mf_detect_init(&dsp->td.mf);
else
ast_dtmf_detect_init(&dsp->td.dtmf);
}
dsp->digitmode = digitmode;
return 0;
}
int ast_dsp_set_call_progress_zone(struct ast_dsp *dsp, char *zone)
{
int x;
for (x=0;x<sizeof(aliases) / sizeof(aliases[0]);x++) {
if (!strcasecmp(aliases[x].name, zone)) {
dsp->progmode = aliases[x].mode;
ast_dsp_prog_reset(dsp);
return 0;
}
}
return -1;
}
int ast_dsp_get_tstate(struct ast_dsp *dsp)
{
return dsp->tstate;
}
int ast_dsp_get_tcount(struct ast_dsp *dsp)
{
return dsp->tcount;
}