dect
/
asterisk
Archived
13
0
Fork 0
This repository has been archived on 2022-02-17. You can view files and clone it, but cannot push or open issues or pull requests.
asterisk/channels/xpmr/xpmr.c

3340 lines
79 KiB
C
Executable File

/*
* xpmr.c - Xelatec Private Mobile Radio Processes
*
* All Rights Reserved. Copyright (C)2007, Xelatec, LLC
*
* 20070808 1235 Steven Henke, W9SH, sph@xelatec.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* This version may be optionally licenced under the GNU LGPL licence.
*
* A license has been granted to Digium (via disclaimer) for the use of
* this code.
*
* 20080118 0800 sph@xelatec.com major fixes and features
*/
/*! \file
*
* \brief Private Land Mobile Radio Channel Voice and Signaling Processor
*
* \author Steven Henke, W9SH <sph@xelatec.com> Xelatec, LLC
*/
/*
FYI = For Your Information
PMR = Private Mobile Radio
RX = Receive
TX = Transmit
CTCSS = Continuous Tone Coded Squelch System
TONE = Same as above.
LSD = Low Speed Data, subaudible signaling. May be tones or codes.
VOX = Voice Operated Transmit
DSP = Digital Signal Processing
LPF = Low Pass Filter
FIR = Finite Impulse Response (Filter)
IIR = Infinite Impulse Response (Filter)
*/
// XPMR_FILE_VERSION(__FILE__, "$Revision$")
#include <stdio.h>
#include <ctype.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#ifdef HAVE_SYS_IO_H
#include <sys/io.h>
#endif
#include <fcntl.h>
#include <sys/time.h>
#include <stdlib.h>
#include <errno.h>
#include "xpmr.h"
#include "xpmr_coef.h"
#include "sinetabx.h"
static i16 pmrChanIndex=0; // count of created pmr instances
//static i16 pmrSpsIndex=0;
#if (DTX_PROG == 1) || XPMR_PPTP == 1
static int ppdrvdev=0;
#endif
/*
Trace Routines
*/
void strace(i16 point, t_sdbg *sdbg, i16 idx, i16 value)
{
// make dbg_trace buffer in structure
if(!sdbg->mode || sdbg->point[point]<0){
return;
} else {
sdbg->buffer[(idx*XPMR_DEBUG_CHANS) + sdbg->point[point]] = value;
}
}
/*
*/
void strace2(t_sdbg *sdbg)
{
int i;
for(i=0;i<XPMR_DEBUG_CHANS;i++)
{
if(sdbg->source[i])
{
int ii;
for(ii=0;ii<SAMPLES_PER_BLOCK;ii++)
{
sdbg->buffer[ii*XPMR_DEBUG_CHANS + i] = sdbg->source[i][ii];
}
}
}
}
#if XPMR_PPTP == 1
/*
Hardware Trace Signals via the PC Parallel Port
*/
void pptp_init (void)
{
if (ppdrvdev == 0)
ppdrvdev = open("/dev/ppdrv_device", 0);
if (ppdrvdev < 0)
{
ast_log(LOG_ERROR, "open /dev/ppdrv_ppdrvdev returned %i\n",ppdrvdev);
exit(0);
}
ioctl(ppdrvdev, PPDRV_IOC_PINMODE_OUT, DTX_CLK | DTX_DATA | DTX_ENABLE | DTX_TXPWR | DTX_TX | DTX_TP1 | DTX_TP2);
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_CLK | DTX_DATA | DTX_ENABLE | DTX_TXPWR | DTX_TX | DTX_TP1 | DTX_TP2);
}
/*
*/
void pptp_write(i16 bit, i16 state)
{
if(bit==0)
{
if(state)ioctl(ppdrvdev,PPDRV_IOC_PINSET,DTX_TP1);
else ioctl(ppdrvdev,PPDRV_IOC_PINCLEAR,DTX_TP1);
}
else
{
if(state)ioctl(ppdrvdev,PPDRV_IOC_PINSET,DTX_TP2);
else ioctl(ppdrvdev,PPDRV_IOC_PINCLEAR,DTX_TP2);
}
}
#endif
/*
take source string allocate and copy
copy is modified, delimiters are replaced with zeros to mark
end of string
count set pointers
string_parse( char *src, char *dest, char **sub)
*/
i16 string_parse(char *src, char **dest, char ***ptrs)
{
char *p,*pd;
char *ptstr[1000];
i16 i, slen, numsub;
TRACEJ(2,("string_parse(%s)\n",src));
slen=strlen(src);
TRACEJ(2,(" source len = %i\n",slen));
pd=*dest;
free(pd);
pd=calloc(slen+1,1);
memcpy(pd,src,slen);
*dest=pd;
p=0;
numsub=0;
for(i=0;i<slen+1;i++)
{
TRACEJ(5,(" pd[%i] = %c\n",i,pd[i]));
if( p==0 && pd[i]!=',' && pd[i]!=' ' )
{
p=&(pd[i]);
}
else if(pd[i]==',' || pd[i]==0 )
{
ptstr[numsub]=p;
pd[i]=0;
p=0;
numsub++;
}
}
for(i=0;i<numsub;i++)
{
TRACEJ(5,(" ptstr[%i] = %p %s\n",i,ptstr[i],ptstr[i]));
}
if(*ptrs)free(*ptrs);
*ptrs=calloc(numsub,4);
for(i=0;i<numsub;i++)
{
(*ptrs)[i]=ptstr[i];
TRACEJ(5,(" %i = %s\n",i,(*ptrs)[i]));
}
TRACEJ(5,("string_parse()=%i\n\n",numsub));
return numsub;
}
/*
the parent program defines
pRxCodeSrc and pTxCodeSrc string pointers to the list of codes
pTxCodeDefault the default Tx Code.
*/
i16 code_string_parse(t_pmr_chan *pChan)
{
i16 i, ii, hit, ti;
char *p;
float f, maxctcsstxfreq;
t_pmr_sps *pSps;
i16 maxctcssindex;
TRACEF(1,("code_string_parse(%i)\n",0));
TRACEF(1,("pChan->pRxCodeSrc %s \n",pChan->pRxCodeSrc));
TRACEF(1,("pChan->pTxCodeSrc %s \n",pChan->pTxCodeSrc));
TRACEF(1,("pChan->pTxCodeDefault %s \n",pChan->pTxCodeDefault));
//printf("code_string_parse() %s / %s / %s / %s \n",pChan->name, pChan->pTxCodeDefault,pChan->pTxCodeSrc,pChan->pRxCodeSrc);
maxctcssindex=CTCSS_NULL;
maxctcsstxfreq=CTCSS_NULL;
pChan->txctcssdefault_index=CTCSS_NULL;
pChan->txctcssdefault_value=CTCSS_NULL;
pChan->b.ctcssRxEnable=pChan->b.ctcssTxEnable=0;
pChan->b.dcsRxEnable=pChan->b.dcsTxEnable=0;
pChan->b.lmrRxEnable=pChan->b.lmrTxEnable=0;
pChan->b.mdcRxEnable=pChan->b.mdcTxEnable=0;
pChan->b.dstRxEnable=pChan->b.dstTxEnable=0;
pChan->b.p25RxEnable=pChan->b.p25TxEnable=0;
if(pChan->spsLsdGen){
pChan->spsLsdGen->enabled=0;
pChan->spsLsdGen->state=0;
}
TRACEF(1,("code_string_parse(%i) 05\n",0));
pChan->numrxcodes = string_parse( pChan->pRxCodeSrc, &(pChan->pRxCodeStr), &(pChan->pRxCode));
pChan->numtxcodes = string_parse( pChan->pTxCodeSrc, &(pChan->pTxCodeStr), &(pChan->pTxCode));
if(pChan->numrxcodes!=pChan->numtxcodes)printf("ERROR: numrxcodes != numtxcodes \n");
pChan->rxCtcss->enabled=0;
pChan->rxCtcss->gain=1*M_Q8;
pChan->rxCtcss->limit=8192;
pChan->rxCtcss->input=pChan->pRxLsdLimit;
pChan->rxCtcss->decode=CTCSS_NULL;
pChan->rxCtcss->testIndex=0;
if(!pChan->rxCtcss->testIndex)pChan->rxCtcss->testIndex=3;
pChan->rxctcssfreq[0]=0; // decode now CTCSS_RXONLY
for(i=0;i<CTCSS_NUM_CODES;i++)
{
pChan->rxctcss[i]=0;
pChan->txctcss[i]=0;
pChan->rxCtcssMap[i]=CTCSS_NULL;
}
TRACEF(1,("code_string_parse(%i) 10\n",0));
#ifdef XPMRX_H
xpmrx(pChan,XXO_LSDCODEPARSE);
#endif
// Do Receive Codes String
for(i=0;i<pChan->numrxcodes;i++)
{
i16 ri,_ti;
float _f;
p=pChan->pStr=pChan->pRxCode[i];
#ifdef HAVE_XPMRX
if(!xpmrx(pChan,XXO_LSDCODEPARSE_1))
#endif
{
sscanf(p, "%30f", &_f);
ri=CtcssFreqIndex(_f);
if(ri>maxctcssindex)maxctcssindex=ri;
sscanf(pChan->pTxCode[i], "%30f", &_f);
_ti=CtcssFreqIndex(_f);
if(_f>maxctcsstxfreq)maxctcsstxfreq=_f;
if(ri>CTCSS_NULL && _ti>CTCSS_NULL)
{
pChan->b.ctcssRxEnable=pChan->b.ctcssTxEnable=1;
pChan->rxCtcssMap[ri]=_ti;
pChan->numrxctcssfreqs++;
TRACEF(1,("pChan->rxctcss[%i]=%s pChan->rxCtcssMap[%i]=%i\n",i,pChan->rxctcss[i],ri,_ti));
}
else if(ri>CTCSS_NULL && _f==0)
{
pChan->b.ctcssRxEnable=1;
pChan->rxCtcssMap[ri]=CTCSS_RXONLY;
pChan->numrxctcssfreqs++;
TRACEF(1,("pChan->rxctcss[%i]=%s pChan->rxCtcssMap[%i]=%i RXONLY\n",i,pChan->rxctcss[i],ri,_ti));
}
else
{
i16 _ii;
pChan->numrxctcssfreqs=0;
for(_ii=0;_ii<CTCSS_NUM_CODES;_ii++) pChan->rxCtcssMap[_ii]=CTCSS_NULL;
TRACEF(1,("WARNING: Invalid Channel code detected and ignored. %i %s %s \n",i,pChan->pRxCode[i],pChan->pTxCode[i]));
}
}
}
TRACEF(1,("code_string_parse() CTCSS Init Struct %i %i\n",pChan->b.ctcssRxEnable,pChan->b.ctcssTxEnable));
if(pChan->b.ctcssRxEnable)
{
pChan->rxHpfEnable=1;
pChan->spsRxLsdNrz->enabled=pChan->rxCenterSlicerEnable=1;
pChan->rxCtcssDecodeEnable=1;
pChan->rxCtcss->enabled=1;
}
else
{
pChan->rxHpfEnable=1;
pChan->spsRxLsdNrz->enabled=pChan->rxCenterSlicerEnable=0;
pChan->rxCtcssDecodeEnable=0;
pChan->rxCtcss->enabled=0;
}
TRACEF(1,("code_string_parse() CTCSS Init Decoders \n"));
for(i=0;i<CTCSS_NUM_CODES;i++)
{
t_tdet *ptdet;
ptdet=&(pChan->rxCtcss->tdet[i]);
ptdet->counterFactor=coef_ctcss_div[i];
ptdet->state=1;
ptdet->setpt=(M_Q15*0.041); // 0.069
ptdet->hyst =(M_Q15*0.0130);
ptdet->binFactor=(M_Q15*0.135); // was 0.140
ptdet->fudgeFactor=8;
}
// DEFAULT TX CODE
TRACEF(1,("code_string_parse() Default Tx Code %s \n",pChan->pTxCodeDefault));
pChan->txcodedefaultsmode=SMODE_NULL;
p=pChan->pStr=pChan->pTxCodeDefault;
#ifdef HAVE_XPMRX
if(!lsd_code_parse(pChan,3))
#endif
{
sscanf(p, "%30f", &f);
ti=CtcssFreqIndex(f);
if(f>maxctcsstxfreq)maxctcsstxfreq=f;
if(ti>CTCSS_NULL)
{
pChan->b.ctcssTxEnable=1;
pChan->txctcssdefault_index=ti;
pChan->txctcssdefault_value=f;
pChan->spsSigGen0->freq=f*10;
pChan->txcodedefaultsmode=SMODE_CTCSS;
TRACEF(1,("code_string_parse() Tx Default CTCSS = %s %i %f\n",p,ti,f));
}
}
// set x for maximum length and just change pointers
TRACEF(1,("code_string_parse() Filter Config \n"));
pSps=pChan->spsTxLsdLpf;
if(pSps->x)free(pSps->x);
if(maxctcsstxfreq>203.5)
{
pSps->ncoef=taps_fir_lpf_250_9_66;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_250_9_66;
pSps->nx=taps_fir_lpf_250_9_66;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_250_9_66;
TRACEF(1,("code_string_parse() Tx Filter Freq High\n"));
}
else
{
pSps->ncoef=taps_fir_lpf_215_9_88;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_215_9_88;
pSps->nx=taps_fir_lpf_215_9_88;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_215_9_88;
TRACEF(1,("code_string_parse() Tx Filter Freq Low\n"));
}
// CTCSS Rx Decoder Low Pass Filter
hit=0;
ii= CtcssFreqIndex(203.5);
for(i=ii;i<CTCSS_NUM_CODES;i++)
{
if(pChan->rxCtcssMap[i]>CTCSS_NULL)hit=1;
}
pSps=pChan->spsRxLsd;
if(pSps->x)free(pSps->x);
if(hit)
{
pSps->ncoef=taps_fir_lpf_250_9_66;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_250_9_66;
pSps->nx=taps_fir_lpf_250_9_66;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_250_9_66;
TRACEF(1,("code_string_parse() Rx Filter Freq High\n"));
}
else
{
pSps->ncoef=taps_fir_lpf_215_9_88;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_215_9_88;
pSps->nx=taps_fir_lpf_215_9_88;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_215_9_88;
TRACEF(1,("code_string_parse() Rx Filter Freq Low\n"));
}
if(pChan->b.ctcssRxEnable || pChan->b.dcsRxEnable || pChan->b.lmrRxEnable)
{
pChan->rxCenterSlicerEnable=1;
pSps->enabled=1;
}
else
{
pChan->rxCenterSlicerEnable=0;
pSps->enabled=0;
}
#if XPMR_DEBUG0 == 1
TRACEF(2,("code_string_parse() ctcssRxEnable = %i \n",pChan->b.ctcssRxEnable));
TRACEF(2,(" ctcssTxEnable = %i \n",pChan->b.ctcssTxEnable));
TRACEF(2,(" dcsRxEnable = %i \n",pChan->b.dcsRxEnable));
TRACEF(2,(" lmrRxEnable = %i \n",pChan->b.lmrRxEnable));
TRACEF(2,(" txcodedefaultsmode = %i \n",pChan->txcodedefaultsmode));
for(i=0;i<CTCSS_NUM_CODES;i++)
{
TRACEF(2,("rxCtcssMap[%i] = %i \n",i,pChan->rxCtcssMap[i]));
}
#endif
#ifdef HAVE_XPMRX
lsd_code_parse(pChan,5);
#endif
TRACEF(1,("code_string_parse(%i) end\n",0));
return 0;
}
/*
Convert a Frequency in Hz to a zero based CTCSS Table index
*/
i16 CtcssFreqIndex(float freq)
{
i16 i,hit=CTCSS_NULL;
for(i=0;i<CTCSS_NUM_CODES;i++){
if(freq==freq_ctcss[i])hit=i;
}
return hit;
}
/*
pmr_rx_frontend
Takes a block of data and low pass filters it.
Determines the amplitude of high frequency noise for carrier detect.
Decimates input data to change the rate.
*/
i16 pmr_rx_frontend(t_pmr_sps *mySps)
{
#define DCgainBpfNoise 65536
i16 samples,iOutput, *input, *output, *noutput;
i16 *x, *coef, *coef2;
i32 i, naccum, outputGain, calcAdjust;
i64 y;
i16 nx, hyst, setpt, compOut;
i16 amax, amin, apeak, discounteru, discounterl, discfactor;
i16 decimator, decimate, doNoise;
TRACEJ(5,("pmr_rx_frontend()\n"));
if(!mySps->enabled)return(1);
decimator = mySps->decimator;
decimate = mySps->decimate;
input = mySps->source;
output = mySps->sink;
noutput = mySps->parentChan->pRxNoise;
nx = mySps->nx;
coef = mySps->coef;
coef2 = mySps->coef2;
calcAdjust = mySps->calcAdjust;
outputGain = mySps->outputGain;
amax=mySps->amax;
amin=mySps->amin;
apeak=mySps->apeak;
discounteru=mySps->discounteru;
discounterl=mySps->discounterl;
discfactor=mySps->discfactor;
setpt=mySps->setpt;
hyst=mySps->hyst;
compOut=mySps->compOut;
samples=mySps->nSamples*decimate;
x=mySps->x;
iOutput=0;
if(mySps->parentChan->rxCdType!=CD_XPMR_VOX)doNoise=1;
else doNoise=0;
for(i=0;i<samples;i++)
{
i16 n;
//shift the old samples
for(n=nx-1; n>0; n--)
x[n] = x[n-1];
x[0] = input[i*2];
--decimator;
if(decimator<=0)
{
decimator=decimate;
y=0;
for(n=0; n<nx; n++)
y += coef[n] * x[n];
y=((y/calcAdjust)*outputGain)/M_Q8;
if(y>32767)y=32767;
else if(y<-32767)y=-32767;
output[iOutput]=y; // Rx Baseband decimated
noutput[iOutput++] = apeak; // Rx Noise
}
if(doNoise)
{
// calculate noise output
naccum=0;
for(n=0; n<nx; n++)
naccum += coef_fir_bpf_noise_1[n] * x[n];
naccum /= DCgainBpfNoise;
if(naccum>amax)
{
amax=naccum;
discounteru=discfactor;
}
else if(--discounteru<=0)
{
discounteru=discfactor;
amax=(i32)((amax*32700)/32768);
}
if(naccum<amin)
{
amin=naccum;
discounterl=discfactor;
}
else if(--discounterl<=0)
{
discounterl=discfactor;
amin=(i32)((amin*32700)/32768);
}
apeak=(amax-amin)/2;
} // if doNoise
}
if(doNoise)
{
((t_pmr_chan *)(mySps->parentChan))->rxRssi=apeak;
if(apeak>setpt || (compOut&&(apeak>(setpt-hyst)))) compOut=1;
else compOut=0;
mySps->compOut=compOut;
mySps->amax=amax;
mySps->amin=amin;
mySps->apeak=apeak;
mySps->discounteru=discounteru;
mySps->discounterl=discounterl;
}
return 0;
}
/*
pmr general purpose fir
works on a block of samples
*/
i16 pmr_gp_fir(t_pmr_sps *mySps)
{
i32 nsamples,inputGain,outputGain,calcAdjust;
i16 *input, *output;
i16 *x, *coef;
i32 i, ii;
i16 nx, hyst, setpt, compOut;
i16 amax, amin, apeak=0, discounteru=0, discounterl=0, discfactor;
i16 decimator, decimate, interpolate;
i16 numChanOut, selChanOut, mixOut, monoOut;
TRACEJ(5,("pmr_gp_fir() %i %i\n",mySps->index, mySps->enabled));
if(!mySps->enabled)return(1);
inputGain = mySps->inputGain;
calcAdjust = mySps->calcAdjust;
outputGain = mySps->outputGain;
input = mySps->source;
output = mySps->sink;
x = mySps->x;
nx = mySps->nx;
coef = mySps->coef;
decimator = mySps->decimator;
decimate = mySps->decimate;
interpolate = mySps->interpolate;
setpt = mySps->setpt;
compOut = mySps->compOut;
inputGain = mySps->inputGain;
outputGain = mySps->outputGain;
numChanOut = mySps->numChanOut;
selChanOut = mySps->selChanOut;
mixOut = mySps->mixOut;
monoOut = mySps->monoOut;
amax=mySps->amax;
amin=mySps->amin;
discfactor=mySps->discfactor;
hyst=mySps->hyst;
setpt=mySps->setpt;
nsamples=mySps->nSamples;
if(mySps->option==3)
{
mySps->option=0;
mySps->enabled=0;
for(i=0;i<nsamples;i++)
{
if(monoOut)
output[(i*2)]=output[(i*2)+1]=0;
else
output[(i*numChanOut)+selChanOut]=0;
}
return 0;
}
ii=0;
for(i=0;i<nsamples;i++)
{
int ix;
int64_t y=0;
if(decimate<0)
{
decimator=decimate;
}
for(ix=0;ix<interpolate;ix++)
{
i16 n;
y=0;
for(n=nx-1; n>0; n--)
x[n] = x[n-1];
x[0] = (input[i]*inputGain)/M_Q8;
#if 0
--decimator;
if(decimator<=0)
{
decimator=decimate;
for(n=0; n<nx; n++)
y += coef[n] * x[n];
y /= (outputGain*3);
output[ii++]=y;
}
#else
for(n=0; n<nx; n++)
y += coef[n] * x[n];
y=((y/calcAdjust)*outputGain)/M_Q8;
if(mixOut){
if(monoOut){
output[(ii*2)]=output[(ii*2)+1]+=y;
}
else{
output[(ii*numChanOut)+selChanOut]+=y;
}
}
else{
if(monoOut){
output[(ii*2)]=output[(ii*2)+1]=y;
}
else{
output[(ii*numChanOut)+selChanOut]=y;
}
}
ii++;
#endif
}
// amplitude detector
if(setpt)
{
i16 accum=y;
if(accum>amax)
{
amax=accum;
discounteru=discfactor;
}
else if(--discounteru<=0)
{
discounteru=discfactor;
amax=(i32)((amax*32700)/32768);
}
if(accum<amin)
{
amin=accum;
discounterl=discfactor;
}
else if(--discounterl<=0)
{
discounterl=discfactor;
amin=(i32)((amin*32700)/32768);
}
apeak = (i32)(amax-amin)/2;
if(apeak>setpt)compOut=1;
else if(compOut&&(apeak<(setpt-hyst)))compOut=0;
}
}
mySps->decimator = decimator;
mySps->amax=amax;
mySps->amin=amin;
mySps->apeak=apeak;
mySps->discounteru=discounteru;
mySps->discounterl=discounterl;
mySps->compOut=compOut;
return 0;
}
/*
general purpose integrator lpf
*/
i16 gp_inte_00(t_pmr_sps *mySps)
{
i16 npoints;
i16 *input, *output;
i32 inputGain, outputGain,calcAdjust;
i32 i;
i32 accum;
i32 state00;
i16 coeff00, coeff01;
TRACEJ(5,("gp_inte_00() %i\n",mySps->enabled));
if(!mySps->enabled)return(1);
input = mySps->source;
output = mySps->sink;
npoints=mySps->nSamples;
inputGain=mySps->inputGain;
outputGain=mySps->outputGain;
calcAdjust=mySps->calcAdjust;
coeff00=((i16*)mySps->coef)[0];
coeff01=((i16*)mySps->coef)[1];
state00=((i32*)mySps->x)[0];
// note fixed gain of 2 to compensate for attenuation
// in passband
for(i=0;i<npoints;i++)
{
accum=input[i];
state00 = accum + (state00*coeff01)/M_Q15;
accum = (state00*coeff00)/(M_Q15/4);
output[i]=(accum*outputGain)/M_Q8;
}
((i32*)(mySps->x))[0]=state00;
return 0;
}
/*
general purpose differentiator hpf
*/
i16 gp_diff(t_pmr_sps *mySps)
{
i16 *input, *output;
i16 npoints;
i32 inputGain, outputGain, calcAdjust;
i32 i;
i32 temp0,temp1;
i16 x0;
i32 _y0;
i16 a0,a1;
i16 b0;
i16 *coef;
i16 *x;
input = mySps->source;
output = mySps->sink;
npoints=mySps->nSamples;
inputGain=mySps->inputGain;
outputGain=mySps->outputGain;
calcAdjust=mySps->calcAdjust;
coef=(i16*)(mySps->coef);
x=(i16*)(mySps->x);
a0=coef[0];
a1=coef[1];
b0=coef[2];
x0=x[0];
TRACEJ(5,("gp_diff()\n"));
for (i=0;i<npoints;i++)
{
temp0 = x0 * a1;
x0 = input[i];
temp1 = input[i] * a0;
_y0 = (temp0 + temp1)/calcAdjust;
_y0 = (_y0*outputGain)/M_Q8;
if(_y0>32766)_y0=32766;
else if(_y0<-32766)_y0=-32766;
output[i]=_y0;
}
x[0]=x0;
return 0;
}
/* ----------------------------------------------------------------------
CenterSlicer
*/
i16 CenterSlicer(t_pmr_sps *mySps)
{
i16 npoints,lhit,uhit;
i16 *input, *output, *buff;
i32 inputGain, outputGain, inputGainB;
i32 i;
i32 accum;
i32 amax; // buffer amplitude maximum
i32 amin; // buffer amplitude minimum
i32 apeak; // buffer amplitude peak
i32 center;
i32 setpt; // amplitude set point for peak tracking
i32 discounteru; // amplitude detector integrator discharge counter upper
i32 discounterl; // amplitude detector integrator discharge counter lower
i32 discfactor; // amplitude detector integrator discharge factor
TRACEJ(5,("CenterSlicer() %i\n",mySps->enabled));
if(!mySps->enabled)return(1);
input = mySps->source;
output = mySps->sink; // limited output
buff = mySps->buff;
npoints=mySps->nSamples;
inputGain=mySps->inputGain;
outputGain=mySps->outputGain;
inputGainB=mySps->inputGainB;
amax=mySps->amax;
amin=mySps->amin;
setpt=mySps->setpt;
apeak=mySps->apeak;
discounteru=mySps->discounteru;
discounterl=mySps->discounterl;
discfactor=mySps->discfactor;
npoints=mySps->nSamples;
for(i=0;i<npoints;i++)
{
#if XPMR_DEBUG0 == 1
static i32 tfx=0;
#endif
accum=input[i];
lhit=uhit=0;
if(accum>amax)
{
amax=accum;
uhit=1;
if(amin<(amax-setpt))
{
amin=(amax-setpt);
lhit=1;
}
}
else if(accum<amin)
{
amin=accum;
lhit=1;
if(amax>(amin+setpt))
{
amax=(amin+setpt);
uhit=1;
}
}
#if 0
if((discounteru-=1)<=0 && amax>amin)
{
if((amax-=10)<amin)amax=amin;
uhit=1;
}
if((discounterl-=1)<=0 && amin<amax)
{
if((amin+=10)>amax)amin=amax;
lhit=1;
}
if(uhit)discounteru=discfactor;
if(lhit)discounterl=discfactor;
#else
if((amax-=discfactor)<amin)amax=amin;
if((amin+=discfactor)>amax)amin=amax;
#endif
apeak = (amax-amin)/2;
center = (amax+amin)/2;
accum = accum - center;
output[i]=accum; // sink output unlimited/centered.
// do limiter function
if(accum>inputGainB)accum=inputGainB;
else if(accum<-inputGainB)accum=-inputGainB;
buff[i]=accum;
#if XPMR_DEBUG0 == 1
#if 0
mySps->parentChan->pRxLsdCen[i]=center; // trace center ref
#else
if((tfx++/8)&1) // trace min/max levels
mySps->parentChan->pRxLsdCen[i]=amax;
else
mySps->parentChan->pRxLsdCen[i]=amin;
#endif
#if 0
if(mySps->parentChan->frameCountRx&0x01) mySps->parentChan->prxDebug1[i]=amax;
else mySps->parentChan->prxDebug1[i]=amin;
#endif
#endif
}
mySps->amax=amax;
mySps->amin=amin;
mySps->apeak=apeak;
mySps->discounteru=discounteru;
mySps->discounterl=discounterl;
return 0;
}
/* ----------------------------------------------------------------------
MeasureBlock
determine peak amplitude
*/
i16 MeasureBlock(t_pmr_sps *mySps)
{
i16 npoints;
i16 *input, *output;
i32 inputGain, outputGain;
i32 i;
i32 accum;
i16 amax; // buffer amplitude maximum
i16 amin; // buffer amplitude minimum
i16 apeak=0; // buffer amplitude peak (peak to peak)/2
i16 setpt; // amplitude set point for amplitude comparator
i32 discounteru; // amplitude detector integrator discharge counter upper
i32 discounterl; // amplitude detector integrator discharge counter lower
i32 discfactor; // amplitude detector integrator discharge factor
TRACEJ(5,("MeasureBlock() %i\n",mySps->enabled));
if(!mySps->enabled)return 1;
if(mySps->option==3)
{
mySps->amax = mySps->amin = mySps->apeak = \
mySps->discounteru = mySps->discounterl = \
mySps->enabled = 0;
return 1;
}
input = mySps->source;
output = mySps->sink;
npoints=mySps->nSamples;
inputGain=mySps->inputGain;
outputGain=mySps->outputGain;
amax=mySps->amax;
amin=mySps->amin;
setpt=mySps->setpt;
discounteru=mySps->discounteru;
discounterl=mySps->discounterl;
discfactor=mySps->discfactor;
npoints=mySps->nSamples;
for(i=0;i<npoints;i++)
{
accum=input[i];
if(accum>amax)
{
amax=accum;
discounteru=discfactor;
}
else if(--discounteru<=0)
{
discounteru=discfactor;
amax=(i32)((amax*32700)/32768);
}
if(accum<amin)
{
amin=accum;
discounterl=discfactor;
}
else if(--discounterl<=0)
{
discounterl=discfactor;
amin=(i32)((amin*32700)/32768);
}
apeak = (i32)(amax-amin)/2;
if(output)output[i]=apeak;
}
mySps->amax=amax;
mySps->amin=amin;
mySps->apeak=apeak;
mySps->discounteru=discounteru;
mySps->discounterl=discounterl;
if(apeak>=setpt) mySps->compOut=1;
else mySps->compOut=0;
//TRACEX((" -MeasureBlock()=%i\n",mySps->apeak));
return 0;
}
/*
SoftLimiter
*/
i16 SoftLimiter(t_pmr_sps *mySps)
{
i16 npoints;
//i16 samples, lhit,uhit;
i16 *input, *output;
i32 inputGain, outputGain;
i32 i;
i32 accum;
i32 tmp;
i32 amax; // buffer amplitude maximum
i32 amin; // buffer amplitude minimum
//i32 apeak; // buffer amplitude peak
i32 setpt; // amplitude set point for amplitude comparator
i16 compOut; // amplitude comparator output
input = mySps->source;
output = mySps->sink;
inputGain=mySps->inputGain;
outputGain=mySps->outputGain;
npoints=mySps->nSamples;
setpt=mySps->setpt;
amax=(setpt*124)/128;
amin=-amax;
TRACEJ(5,("SoftLimiter() %i %i %i) \n",amin, amax,setpt));
for(i=0;i<npoints;i++)
{
accum=input[i];
//accum=input[i]*mySps->inputGain/256;
if(accum>setpt)
{
tmp=((accum-setpt)*4)/128;
accum=setpt+tmp;
if(accum>amax)accum=amax;
compOut=1;
accum=setpt;
}
else if(accum<-setpt)
{
tmp=((accum+setpt)*4)/128;
accum=(-setpt)-tmp;
if(accum<amin)accum=amin;
compOut=1;
accum=-setpt;
}
output[i]=(accum*outputGain)/M_Q8;
}
return 0;
}
/*
SigGen() - sine, square function generator
sps overloaded values
discfactor = phase factor
discfactoru = phase index
if source is not NULL then mix it in!
sign table and output gain are in Q15 format (32767=.999)
*/
i16 SigGen(t_pmr_sps *mySps)
{
#define PH_FRACT_FACT 128
i32 ph;
i16 i,outputgain,waveform,numChanOut,selChanOut;
i32 accum;
t_pmr_chan *pChan;
pChan=mySps->parentChan;
TRACEC(5,("SigGen(%i %i %i)\n",mySps->option,mySps->enabled,mySps->state));
if(!mySps->freq ||!mySps->enabled)return 0;
outputgain=mySps->outputGain;
waveform=0;
numChanOut=mySps->numChanOut;
selChanOut=mySps->selChanOut;
if(mySps->option==1)
{
mySps->option=0;
mySps->state=1;
mySps->discfactor=
(SAMPLES_PER_SINE*mySps->freq*PH_FRACT_FACT)/mySps->sampleRate/10;
TRACEF(5,(" SigGen() discfactor = %i\n",mySps->discfactor));
if(mySps->discounterl)mySps->state=2;
}
else if(mySps->option==2)
{
i16 shiftfactor=CTCSS_TURN_OFF_SHIFT;
// phase shift request
mySps->option=0;
mySps->state=2;
mySps->discounterl=CTCSS_TURN_OFF_TIME-(2*MS_PER_FRAME); //
mySps->discounteru = \
(mySps->discounteru + (((SAMPLES_PER_SINE*shiftfactor)/360)*PH_FRACT_FACT)) % (SAMPLES_PER_SINE*PH_FRACT_FACT);
//printf("shiftfactor = %i\n",shiftfactor);
//shiftfactor+=10;
}
else if(mySps->option==3)
{
// stop it and clear the output buffer
mySps->option=0;
mySps->state=0;
mySps->enabled=0;
for(i=0;i<mySps->nSamples;i++)
mySps->sink[(i*numChanOut)+selChanOut]=0;
return(0);
}
else if(mySps->state==2)
{
// doing turn off
mySps->discounterl-=MS_PER_FRAME;
if(mySps->discounterl<=0)
{
mySps->option=3;
mySps->state=2;
}
}
else if(mySps->state==0)
{
return(0);
}
ph=mySps->discounteru;
for(i=0;i<mySps->nSamples;i++)
{
if(!waveform)
{
// sine
//tmp=(sinetablex[ph/PH_FRACT_FACT]*amplitude)/M_Q16;
accum=sinetablex[ph/PH_FRACT_FACT];
accum=(accum*outputgain)/M_Q8;
}
else
{
// square
if(ph>SAMPLES_PER_SINE/2)
accum=outputgain/M_Q8;
else
accum=-outputgain/M_Q8;
}
if(mySps->source)accum+=mySps->source[i];
mySps->sink[(i*numChanOut)+selChanOut]=accum;
ph=(ph+mySps->discfactor)%(SAMPLES_PER_SINE*PH_FRACT_FACT);
}
mySps->discounteru=ph;
return 0;
}
/*
adder/mixer
takes existing buffer and adds source buffer to destination buffer
sink buffer = (sink buffer * gain) + source buffer
*/
i16 pmrMixer(t_pmr_sps *mySps)
{
i32 accum;
i16 i, *input, *inputB, *output;
i16 inputGain, inputGainB; // apply to input data in Q7.8 format
i16 outputGain; // apply to output data in Q7.8 format
i16 discounteru,discounterl,amax,amin,setpt,discfactor;
i16 npoints,uhit,lhit,apeak,measPeak;
t_pmr_chan *pChan;
pChan=mySps->parentChan;
TRACEF(5,("pmrMixer()\n"));
input = mySps->source;
inputB = mySps->sourceB;
output = mySps->sink;
inputGain=mySps->inputGain;
inputGainB=mySps->inputGainB;
outputGain=mySps->outputGain;
amax=mySps->amax;
amin=mySps->amin;
setpt=mySps->setpt;
discounteru=mySps->discounteru;
discounterl=mySps->discounteru;
discfactor=mySps->discfactor;
npoints=mySps->nSamples;
measPeak=mySps->measPeak;
for(i=0;i<npoints;i++)
{
accum = ((input[i]*inputGain)/M_Q8) +
((inputB[i]*inputGainB)/M_Q8);
accum=(accum*outputGain)/M_Q8;
output[i]=accum;
if(measPeak){
lhit=uhit=0;
if(accum>amax){
amax=accum;
uhit=1;
if(amin<(amax-setpt)){
amin=(amax-setpt);
lhit=1;
}
}
else if(accum<amin){
amin=accum;
lhit=1;
if(amax>(amin+setpt)){
amax=(amin+setpt);
uhit=1;
}
}
if(--discounteru<=0 && amax>0){
amax--;
uhit=1;
}
if(--discounterl<=0 && amin<0){
amin++;
lhit=1;
}
if(uhit)discounteru=discfactor;
if(lhit)discounterl=discfactor;
}
}
if(measPeak){
apeak = (amax-amin)/2;
mySps->apeak=apeak;
mySps->amax=amax;
mySps->amin=amin;
mySps->discounteru=discounteru;
mySps->discounterl=discounterl;
}
return 0;
}
/*
DelayLine
*/
i16 DelayLine(t_pmr_sps *mySps)
{
i16 *input, *output, *buff;
i16 i, npoints,buffsize,inindex,outindex;
t_pmr_chan *pChan;
pChan=mySps->parentChan;
TRACEF(5,(" DelayLine() %i\n",mySps->enabled));
input = mySps->source;
output = mySps->sink;
buff = (i16*)(mySps->buff);
buffsize = mySps->buffSize;
npoints = mySps->nSamples;
outindex = mySps->buffOutIndex;
inindex = outindex + mySps->buffLead;
for(i=0;i<npoints;i++)
{
inindex %= buffsize;
outindex %= buffsize;
buff[inindex]=input[i];
output[i]=buff[outindex];
inindex++;
outindex++;
}
mySps->buffOutIndex=outindex;
return 0;
}
/*
Continuous Tone Coded Squelch (CTCSS) Detector
*/
i16 ctcss_detect(t_pmr_chan *pChan)
{
i16 i,points2do,*pInput,hit,thit,relax;
i16 tnum, tmp,indexNow,gain,diffpeak;
i16 difftrig;
i16 tv0,tv1,tv2,tv3,indexDebug;
i16 points=0;
i16 indexWas=0;
TRACEF(5,("ctcss_detect(%p) %i %i %i %i\n",pChan,
pChan->rxCtcss->enabled,
0,
pChan->rxCtcss->testIndex,
pChan->rxCtcss->decode));
if(!pChan->rxCtcss->enabled)return(1);
relax = pChan->rxCtcss->relax;
pInput = pChan->rxCtcss->input;
gain = pChan->rxCtcss->gain;
if(relax) difftrig=(-0.1*M_Q15);
else difftrig=(-0.05*M_Q15);
thit=hit=-1;
//TRACEX((" ctcss_detect() %i %i %i %i\n", CTCSS_NUM_CODES,0,0,0));
for(tnum=0;tnum<CTCSS_NUM_CODES;tnum++)
{
i32 accum, peak;
t_tdet *ptdet;
i16 fudgeFactor;
i16 binFactor;
TRACEF(6,(" ctcss_detect() tnum=%i %i\n",tnum,pChan->rxCtcssMap[tnum]));
//if(tnum==14)printf("ctcss_detect() %i %i %i\n",tnum,pChan->rxCtcssMap[tnum], pChan->rxCtcss->decode );
if( (pChan->rxCtcssMap[tnum]==CTCSS_NULL) ||
(pChan->rxCtcss->decode>CTCSS_NULL && (tnum!= pChan->rxCtcss->decode))
)
continue;
TRACEF(6,(" ctcss_detect() tnum=%i\n",tnum));
ptdet=&(pChan->rxCtcss->tdet[tnum]);
indexDebug=0;
points=points2do=pChan->nSamplesRx;
fudgeFactor=ptdet->fudgeFactor;
binFactor=ptdet->binFactor;
while(ptdet->counter < (points2do*CTCSS_SCOUNT_MUL))
{
tmp=(ptdet->counter/CTCSS_SCOUNT_MUL)+1;
ptdet->counter-=(tmp*CTCSS_SCOUNT_MUL);
points2do-=tmp;
indexNow=points-points2do;
ptdet->counter += ptdet->counterFactor;
accum = pInput[indexNow-1]; // duuuude's major bug fix!
ptdet->z[ptdet->zIndex]+=
(((accum - ptdet->z[ptdet->zIndex])*binFactor)/M_Q15);
peak = abs(ptdet->z[0]-ptdet->z[2]) + abs(ptdet->z[1]-ptdet->z[3]);
if (ptdet->peak < peak)
ptdet->peak += ( ((peak-ptdet->peak)*binFactor)/M_Q15);
else
ptdet->peak=peak;
{
static const i16 a0=13723;
static const i16 a1=-13723;
i32 temp0,temp1;
i16 x0;
//differentiate
x0=ptdet->zd;
temp0 = x0 * a1;
ptdet->zd = ptdet->peak;
temp1 = ptdet->peak * a0;
diffpeak = (temp0 + temp1)/1024;
}
if(diffpeak<(-0.03*M_Q15))ptdet->dvd-=4;
else if(ptdet->dvd<0)ptdet->dvd++;
if((ptdet->dvd < -12) && diffpeak > (-0.02*M_Q15))ptdet->dvu+=2;
else if(ptdet->dvu)ptdet->dvu--;
tmp=ptdet->setpt;
if(pChan->rxCtcss->decode==tnum)
{
if(relax)tmp=(tmp*55)/100;
else tmp=(tmp*80)/100;
}
if(ptdet->peak > tmp)
{
if(ptdet->decode<(fudgeFactor*32))ptdet->decode++;
}
else if(pChan->rxCtcss->decode==tnum)
{
if(ptdet->peak > ptdet->hyst)ptdet->decode--;
else if(relax) ptdet->decode--;
else ptdet->decode-=4;
}
else
{
ptdet->decode=0;
}
if((pChan->rxCtcss->decode==tnum) && !relax && (ptdet->dvu > (0.00075*M_Q15)))
{
ptdet->decode=0;
ptdet->z[0]=ptdet->z[1]=ptdet->z[2]=ptdet->z[3]=ptdet->dvu=0;
TRACEF(4,("ctcss_detect() turnoff detected by dvdt for tnum = %i.\n",tnum));
}
if(ptdet->decode<0 || !pChan->rxCarrierDetect)ptdet->decode=0;
if(ptdet->decode>=fudgeFactor)
{
thit=tnum;
if(pChan->rxCtcss->decode!=tnum)
{
ptdet->zd=ptdet->dvu=ptdet->dvd=0;
}
}
#if XPMR_DEBUG0 == 1
if(thit>=0 && thit==tnum)
TRACEF(6,(" ctcss_detect() %i %i %i %i \n",tnum,ptdet->peak,ptdet->setpt,ptdet->hyst));
if(ptdet->pDebug0)
{
tv0=ptdet->peak;
tv1=ptdet->decode;
tv2=tmp;
tv3=ptdet->dvu*32;
if(indexDebug==0)
{
ptdet->lasttv0=ptdet->pDebug0[points-1];
ptdet->lasttv1=ptdet->pDebug1[points-1];
ptdet->lasttv2=ptdet->pDebug2[points-1];
ptdet->lasttv3=ptdet->pDebug3[points-1];
}
while(indexDebug<indexNow)
{
ptdet->pDebug0[indexDebug]=ptdet->lasttv0;
ptdet->pDebug1[indexDebug]=ptdet->lasttv1;
ptdet->pDebug2[indexDebug]=ptdet->lasttv2;
ptdet->pDebug3[indexDebug]=ptdet->lasttv3;
indexDebug++;
}
ptdet->lasttv0=tv0;
ptdet->lasttv1=tv1;
ptdet->lasttv2=tv2;
ptdet->lasttv3=tv3;
}
#endif
indexWas=indexNow;
ptdet->zIndex=(++ptdet->zIndex)%4;
}
ptdet->counter-=(points2do*CTCSS_SCOUNT_MUL);
#if XPMR_DEBUG0 == 1
for(i=indexWas;i<points;i++)
{
ptdet->pDebug0[i]=ptdet->lasttv0;
ptdet->pDebug1[i]=ptdet->lasttv1;
ptdet->pDebug2[i]=ptdet->lasttv2;
ptdet->pDebug3[i]=ptdet->lasttv3;
}
#endif
}
//TRACEX((" ctcss_detect() thit %i\n",thit));
if(pChan->rxCtcss->BlankingTimer>0)pChan->rxCtcss->BlankingTimer-=points;
if(pChan->rxCtcss->BlankingTimer<0)pChan->rxCtcss->BlankingTimer=0;
if(thit>CTCSS_NULL && pChan->rxCtcss->decode<=CTCSS_NULL && !pChan->rxCtcss->BlankingTimer)
{
pChan->rxCtcss->decode=thit;
sprintf(pChan->rxctcssfreq,"%.1f",freq_ctcss[thit]);
TRACEC(1,("ctcss decode %i %.1f\n",thit,freq_ctcss[thit]));
}
else if(thit<=CTCSS_NULL && pChan->rxCtcss->decode>CTCSS_NULL)
{
pChan->rxCtcss->BlankingTimer=SAMPLE_RATE_NETWORK/5;
pChan->rxCtcss->decode=CTCSS_NULL;
strcpy(pChan->rxctcssfreq,"0");
TRACEC(1,("ctcss decode NULL\n"));
for(tnum=0;tnum<CTCSS_NUM_CODES;tnum++)
{
t_tdet *ptdet=NULL;
ptdet=&(pChan->rxCtcss->tdet[tnum]);
ptdet->decode=0;
ptdet->z[0]=ptdet->z[1]=ptdet->z[2]=ptdet->z[3]=0;
}
}
//TRACEX((" ctcss_detect() thit %i %i\n",thit,pChan->rxCtcss->decode));
return(0);
}
/*
TxTestTone
*/
static i16 TxTestTone(t_pmr_chan *pChan, i16 function)
{
if(function==1)
{
pChan->spsSigGen1->enabled=1;
pChan->spsSigGen1->option=1;
pChan->spsSigGen1->outputGain=(.23125*M_Q8); // to match *99 level
pChan->spsTx->source=pChan->spsSigGen1->sink;
}
else
{
pChan->spsSigGen1->option=3;
}
return 0;
}
/*
assumes:
sampling rate is 48KS/s
samples are all 16 bits
samples are filtered and decimated by 1/6th
*/
t_pmr_chan *createPmrChannel(t_pmr_chan *tChan, i16 numSamples)
{
i16 i, *inputTmp;
t_pmr_chan *pChan;
t_pmr_sps *pSps;
t_dec_ctcss *pDecCtcss;
TRACEJ(1,("createPmrChannel(%p,%i)\n",tChan,numSamples));
pChan = (t_pmr_chan *)calloc(sizeof(t_pmr_chan),1);
if(pChan==NULL)
{
printf("createPmrChannel() failed\n");
return(NULL);
}
#if XPMR_PPTP == 1
pptp_init();
#endif
pChan->index=pmrChanIndex++;
pChan->nSamplesTx=pChan->nSamplesRx=numSamples;
pDecCtcss = (t_dec_ctcss *)calloc(sizeof(t_dec_ctcss),1);
pChan->rxCtcss=pDecCtcss;
pChan->rxctcssfreq[0]=0;
#ifdef HAVE_XPMRX
if(tChan->rptnum>=LSD_CHAN_MAX)tChan->rptnum=0;
#endif
if(tChan==NULL)
{
printf("createPmrChannel() WARNING: NULL tChan!\n");
pChan->rxNoiseSquelchEnable=0;
pChan->rxHpfEnable=0;
pChan->rxDeEmpEnable=0;
pChan->rxCenterSlicerEnable=0;
pChan->rxCtcssDecodeEnable=0;
pChan->rxDcsDecodeEnable=0;
pChan->rxCarrierPoint = 17000;
pChan->rxCarrierHyst = 2500;
pChan->txHpfEnable=0;
pChan->txLimiterEnable=0;
pChan->txPreEmpEnable=0;
pChan->txLpfEnable=1;
pChan->txMixA=TX_OUT_VOICE;
pChan->txMixB=TX_OUT_LSD;
}
else
{
pChan->rxDemod=tChan->rxDemod;
pChan->rxCdType=tChan->rxCdType;
pChan->rxSquelchPoint = tChan->rxSquelchPoint;
pChan->rxCarrierHyst = 3000;
pChan->rxSqVoxAdj=tChan->rxSqVoxAdj;
pChan->txMod=tChan->txMod;
pChan->txHpfEnable=1;
pChan->txLpfEnable=1;
pChan->pTxCodeDefault=tChan->pTxCodeDefault;
pChan->pRxCodeSrc=tChan->pRxCodeSrc;
pChan->pTxCodeSrc=tChan->pTxCodeSrc;
pChan->txMixA=tChan->txMixA;
pChan->txMixB=tChan->txMixB;
pChan->radioDuplex=tChan->radioDuplex;
pChan->area=tChan->area;
pChan->rptnum=tChan->rptnum;
pChan->idleinterval=tChan->idleinterval;
pChan->turnoffs=tChan->turnoffs;
pChan->b.rxpolarity=tChan->b.rxpolarity;
pChan->b.txpolarity=tChan->b.txpolarity;
pChan->b.dcsrxpolarity=tChan->b.dcsrxpolarity;
pChan->b.dcstxpolarity=tChan->b.dcstxpolarity;
pChan->b.lsdrxpolarity=tChan->b.lsdrxpolarity;
pChan->b.lsdtxpolarity=tChan->b.lsdtxpolarity;
pChan->txsettletime=tChan->txsettletime;
pChan->tracelevel=tChan->tracelevel;
pChan->tracetype=tChan->tracetype;
pChan->ukey=tChan->ukey;
pChan->name=tChan->name;
}
pChan->txHpfEnable=1;
pChan->txLpfEnable=1;
if(pChan->rxCdType==CD_XPMR_NOISE) pChan->rxNoiseSquelchEnable=1;
if(pChan->rxDemod==RX_AUDIO_FLAT) pChan->rxDeEmpEnable=1;
pChan->rxCarrierPoint=(pChan->rxSquelchPoint*32767)/100;
pChan->rxCarrierHyst = 3000; //pChan->rxCarrierPoint/15;
pChan->rxDcsDecodeEnable=0;
if(pChan->b.ctcssRxEnable || pChan->b.dcsRxEnable || pChan->b.lmrRxEnable)
{
pChan->rxHpfEnable=1;
pChan->rxCenterSlicerEnable=1;
pChan->rxCtcssDecodeEnable=1;
}
if(pChan->txMod){
pChan->txPreEmpEnable=1;
pChan->txLimiterEnable=1;
}
pChan->dd.option=9;
dedrift(pChan);
TRACEF(1,("calloc buffers \n"));
pChan->pRxDemod = calloc(numSamples,2);
pChan->pRxNoise = calloc(numSamples,2);
pChan->pRxBase = calloc(numSamples,2);
pChan->pRxHpf = calloc(numSamples,2);
pChan->pRxLsd = calloc(numSamples,2);
pChan->pRxSpeaker = calloc(numSamples,2);
pChan->pRxCtcss = calloc(numSamples,2);
pChan->pRxDcTrack = calloc(numSamples,2);
pChan->pRxLsdLimit = calloc(numSamples,2);
pChan->pTxInput = calloc(numSamples,2);
pChan->pTxBase = calloc(numSamples,2);
pChan->pTxHpf = calloc(numSamples,2);
pChan->pTxPreEmp = calloc(numSamples,2);
pChan->pTxLimiter = calloc(numSamples,2);
pChan->pTxLsd = calloc(numSamples,2);
pChan->pTxLsdLpf = calloc(numSamples,2);
pChan->pTxComposite = calloc(numSamples,2);
pChan->pSigGen0 = calloc(numSamples,2);
pChan->pSigGen1 = calloc(numSamples,2);
pChan->prxMeasure = calloc(numSamples,2);
pChan->pTxOut = calloc(numSamples,2*2*6); // output buffer
#ifdef HAVE_XPMRX
pChan->pLsdEnc = calloc(sizeof(t_encLsd),1);
#endif
#if XPMR_DEBUG0 == 1
TRACEF(1,("configure tracing\n"));
pChan->pTstTxOut = calloc(numSamples,2);
pChan->pRxLsdCen = calloc(numSamples,2);
pChan->prxDebug0 = calloc(numSamples,2);
pChan->prxDebug1 = calloc(numSamples,2);
pChan->prxDebug2 = calloc(numSamples,2);
pChan->prxDebug3 = calloc(numSamples,2);
pChan->ptxDebug0 = calloc(numSamples,2);
pChan->ptxDebug1 = calloc(numSamples,2);
pChan->ptxDebug2 = calloc(numSamples,2);
pChan->ptxDebug3 = calloc(numSamples,2);
pChan->pNull = calloc(numSamples,2);
for(i=0;i<numSamples;i++)pChan->pNull[i]=((i%(numSamples/2))*8000)-4000;
pChan->rxCtcss->pDebug0=calloc(numSamples,2);
pChan->rxCtcss->pDebug1=calloc(numSamples,2);
pChan->rxCtcss->pDebug2=calloc(numSamples,2);
pChan->rxCtcss->pDebug3=calloc(numSamples,2);
for(i=0;i<CTCSS_NUM_CODES;i++)
{
pChan->rxCtcss->tdet[i].pDebug0=calloc(numSamples,2);
pChan->rxCtcss->tdet[i].pDebug1=calloc(numSamples,2);
pChan->rxCtcss->tdet[i].pDebug2=calloc(numSamples,2);
pChan->rxCtcss->tdet[i].pDebug3=calloc(numSamples,2);
}
// buffer, 2 bytes per sample, and 16 channels
pChan->prxDebug=calloc(numSamples*16,2);
pChan->ptxDebug=calloc(numSamples*16,2);
// TSCOPE CONFIGURATION SETSCOPE configure debug traces and sources for each channel of the output
pChan->sdbg = (t_sdbg *)calloc(sizeof(t_sdbg),1);
for(i=0;i<XPMR_DEBUG_CHANS;i++)pChan->sdbg->trace[i]=-1;
TRACEF(1,("pChan->tracetype = %i\n",pChan->tracetype));
if(pChan->tracetype==1) // CTCSS DECODE
{
pChan->sdbg->source [0]=pChan->pRxDemod;
pChan->sdbg->source [1]=pChan->pRxBase;
pChan->sdbg->source [2]=pChan->pRxNoise;
pChan->sdbg->trace [3]=RX_NOISE_TRIG;
pChan->sdbg->source [4]=pChan->pRxLsd;
pChan->sdbg->source [5]=pChan->pRxLsdCen;
pChan->sdbg->source [6]=pChan->pRxLsdLimit;
pChan->sdbg->source [7]=pChan->rxCtcss->tdet[3].pDebug0;
pChan->sdbg->trace [8]=RX_CTCSS_DECODE;
pChan->sdbg->trace [9]=RX_SMODE;
}
if(pChan->tracetype==2) // CTCSS DECODE
{
pChan->sdbg->source [0]=pChan->pRxDemod;
pChan->sdbg->source [1]=pChan->pRxBase;
pChan->sdbg->trace [2]=RX_NOISE_TRIG;
pChan->sdbg->source [3]=pChan->pRxLsd;
pChan->sdbg->source [4]=pChan->pRxLsdCen;
pChan->sdbg->source [5]=pChan->pRxDcTrack;
pChan->sdbg->source [6]=pChan->pRxLsdLimit;
pChan->sdbg->source [7]=pChan->rxCtcss->tdet[3].pDebug0;
pChan->sdbg->source [8]=pChan->rxCtcss->tdet[3].pDebug1;
pChan->sdbg->source [9]=pChan->rxCtcss->tdet[3].pDebug2;
pChan->sdbg->source [10]=pChan->rxCtcss->tdet[3].pDebug3;
pChan->sdbg->trace [11]=RX_CTCSS_DECODE;
pChan->sdbg->trace [12]=RX_SMODE;
pChan->sdbg->trace [13]=TX_PTT_IN;
pChan->sdbg->trace [14]=TX_PTT_OUT;
pChan->sdbg->source [15]=pChan->pTxLsdLpf;
}
else if(pChan->tracetype==3) // DCS DECODE
{
pChan->sdbg->source [0]=pChan->pRxDemod;
pChan->sdbg->source [1]=pChan->pRxBase;
pChan->sdbg->trace [2]=RX_NOISE_TRIG;
pChan->sdbg->source [3]=pChan->pRxLsd;
pChan->sdbg->source [4]=pChan->pRxLsdCen;
pChan->sdbg->source [5]=pChan->pRxDcTrack;
pChan->sdbg->trace [6]=RX_DCS_CLK;
pChan->sdbg->trace [7]=RX_DCS_DIN;
pChan->sdbg->trace [8]=RX_DCS_DEC;
pChan->sdbg->trace [9]=RX_SMODE;
pChan->sdbg->trace [10]=TX_PTT_IN;
pChan->sdbg->trace [11]=TX_PTT_OUT;
pChan->sdbg->trace [12]=TX_LSD_CLK;
pChan->sdbg->trace [13]=TX_LSD_DAT;
pChan->sdbg->trace [14]=TX_LSD_GEN;
pChan->sdbg->source [14]=pChan->pTxLsd;
pChan->sdbg->source [15]=pChan->pTxLsdLpf;
}
else if(pChan->tracetype==4) // LSD DECODE
{
pChan->sdbg->source [0]=pChan->pRxDemod;
pChan->sdbg->source [1]=pChan->pRxBase;
pChan->sdbg->trace [2]=RX_NOISE_TRIG;
pChan->sdbg->source [3]=pChan->pRxLsd;
pChan->sdbg->source [4]=pChan->pRxLsdCen;
pChan->sdbg->source [5]=pChan->pRxDcTrack;
pChan->sdbg->trace [6]=RX_LSD_CLK;
pChan->sdbg->trace [7]=RX_LSD_DAT;
pChan->sdbg->trace [8]=RX_LSD_ERR;
pChan->sdbg->trace [9]=RX_LSD_SYNC;
pChan->sdbg->trace [10]=RX_SMODE;
pChan->sdbg->trace [11]=TX_PTT_IN;
pChan->sdbg->trace [12]=TX_PTT_OUT;
pChan->sdbg->trace [13]=TX_LSD_CLK;
pChan->sdbg->trace [14]=TX_LSD_DAT;
//pChan->sdbg->trace [14]=TX_LSD_GEN;
//pChan->sdbg->source [14]=pChan->pTxLsd;
pChan->sdbg->source [15]=pChan->pTxLsdLpf;
}
else if(pChan->tracetype==5) // LSD LOGIC
{
pChan->sdbg->source [0]=pChan->pRxBase;
pChan->sdbg->trace [1]=RX_NOISE_TRIG;
pChan->sdbg->source [2]=pChan->pRxDcTrack;
pChan->sdbg->trace [3]=RX_LSD_SYNC;
pChan->sdbg->trace [4]=RX_SMODE;
pChan->sdbg->trace [5]=TX_PTT_IN;
pChan->sdbg->trace [6]=TX_PTT_OUT;
pChan->sdbg->source [7]=pChan->pTxLsdLpf;
}
else if(pChan->tracetype==6)
{
// tx clock skew and jitter buffer
pChan->sdbg->source [0]=pChan->pRxDemod;
pChan->sdbg->source [5]=pChan->pTxBase;
pChan->sdbg->trace [6]=TX_DEDRIFT_LEAD;
pChan->sdbg->trace [7]=TX_DEDRIFT_ERR;
pChan->sdbg->trace [8]=TX_DEDRIFT_FACTOR;
pChan->sdbg->trace [9]=TX_DEDRIFT_DRIFT;
}
else if(pChan->tracetype==7)
{
// tx path
pChan->sdbg->source [0]=pChan->pRxBase;
pChan->sdbg->trace [1]=RX_NOISE_TRIG;
pChan->sdbg->source [2]=pChan->pRxLsd;
pChan->sdbg->trace [3]=RX_CTCSS_DECODE;
pChan->sdbg->source [4]=pChan->pRxHpf;
pChan->sdbg->trace [5]=TX_PTT_IN;
pChan->sdbg->trace [6]=TX_PTT_OUT;
pChan->sdbg->source [7]=pChan->pTxBase;
pChan->sdbg->source [8]=pChan->pTxHpf;
pChan->sdbg->source [9]=pChan->pTxPreEmp;
pChan->sdbg->source [10]=pChan->pTxLimiter;
pChan->sdbg->source [11]=pChan->pTxComposite;
pChan->sdbg->source [12]=pChan->pTxLsdLpf;
}
for(i=0;i<XPMR_DEBUG_CHANS;i++){
if(pChan->sdbg->trace[i]>=0)pChan->sdbg->point[pChan->sdbg->trace[i]]=i;
}
pChan->sdbg->mode=1;
#endif
#ifdef XPMRX_H
// LSD GENERATOR
pSps=pChan->spsLsdGen=createPmrSps(pChan);
pSps->source=NULL;
pSps->sink=pChan->pTxLsd;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->sigProc=LsdGen;
pSps->nSamples=pChan->nSamplesTx;
pSps->outputGain=(.25*M_Q8);
pSps->option=0;
pSps->interpolate=1;
pSps->decimate=1;
pSps->enabled=0;
#endif
// General Purpose Function Generator
pSps=pChan->spsSigGen1=createPmrSps(pChan);
pSps->sink=pChan->pSigGen1;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->sigProc=SigGen;
pSps->nSamples=pChan->nSamplesTx;
pSps->sampleRate=SAMPLE_RATE_NETWORK;
pSps->freq=10000; // in increments of 0.1 Hz
pSps->outputGain=(.25*M_Q8);
pSps->option=0;
pSps->interpolate=1;
pSps->decimate=1;
pSps->enabled=0;
// CTCSS ENCODER
pSps = pChan->spsSigGen0 = createPmrSps(pChan);
pSps->sink=pChan->pTxLsd;
pSps->sigProc=SigGen;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->nSamples=pChan->nSamplesTx;
pSps->sampleRate=SAMPLE_RATE_NETWORK;
pSps->freq=1000; // in 0.1 Hz steps
pSps->outputGain=(0.5*M_Q8);
pSps->option=0;
pSps->interpolate=1;
pSps->decimate=1;
pSps->enabled=0;
// Tx LSD Low Pass Filter
pSps=pChan->spsTxLsdLpf=createPmrSps(pChan);
pSps->source=pChan->pTxLsd;
pSps->sink=pChan->pTxLsdLpf;
pSps->sigProc=pmr_gp_fir;
pSps->enabled=0;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->nSamples=pChan->nSamplesTx;
pSps->decimator=pSps->decimate=1;
pSps->interpolate=1;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
// configure the longer, lower cutoff filter by default
pSps->ncoef=taps_fir_lpf_215_9_88;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_215_9_88;
pSps->nx=taps_fir_lpf_215_9_88;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_215_9_88;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
TRACEF(1,("spsTxLsdLpf = sps \n"));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
// RX Process
TRACEF(1,("create rx\n"));
pSps = NULL;
// allocate space for first sps and set pointers
pSps=pChan->spsRx=createPmrSps(pChan);
pSps->source=NULL; //set when called
pSps->sink=pChan->pRxBase;
pSps->sigProc=pmr_rx_frontend;
pSps->enabled=1;
pSps->decimator=pSps->decimate=6;
pSps->interpolate=pSps->interpolate=1;
pSps->nSamples=pChan->nSamplesRx;
pSps->ncoef=taps_fir_bpf_noise_1;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_3K_1;
pSps->coef2=(void*)coef_fir_bpf_noise_1;
pSps->nx=taps_fir_bpf_noise_1;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_coef));
pSps->calcAdjust=(gain_fir_lpf_3K_1*256)/0x0100;
pSps->outputGain=(1.0*M_Q8);
pSps->discfactor=2;
pSps->hyst=pChan->rxCarrierHyst;
pSps->setpt=pChan->rxCarrierPoint;
pChan->prxSquelchAdjust=&pSps->setpt;
#if XPMR_DEBUG0 == 1
pSps->debugBuff0=pChan->pRxDemod;
pSps->debugBuff1=pChan->pRxNoise;
pSps->debugBuff2=pChan->prxDebug0;
#endif
// allocate space for next sps and set pointers
// Rx SubAudible Decoder Low Pass Filter
pSps=pChan->spsRxLsd=pSps->nextSps=createPmrSps(pChan);
pSps->source=pChan->pRxBase;
pSps->sink=pChan->pRxLsd;
pSps->sigProc=pmr_gp_fir;
pSps->enabled=1;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->nSamples=pChan->nSamplesRx;
pSps->decimator=pSps->decimate=1;
pSps->interpolate=1;
// configure the the larger, lower cutoff filter by default
pSps->ncoef=taps_fir_lpf_215_9_88;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_215_9_88;
pSps->nx=taps_fir_lpf_215_9_88;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_215_9_88;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
pChan->prxCtcssMeasure=pSps->sink;
pChan->prxCtcssAdjust=&(pSps->outputGain);
// CTCSS CenterSlicer
pSps=pChan->spsRxLsdNrz=pSps->nextSps=createPmrSps(pChan);
pSps->source=pChan->pRxLsd;
pSps->sink=pChan->pRxDcTrack;
pSps->buff=pChan->pRxLsdLimit;
pSps->sigProc=CenterSlicer;
pSps->nSamples=pChan->nSamplesRx;
pSps->discfactor=LSD_DFS; // centering time constant
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
pSps->setpt=4900; // ptp clamp for DC centering
pSps->inputGainB=625; // peak output limiter clip point
pSps->enabled=0;
// Rx HPF
pSps=pSps->nextSps=createPmrSps(pChan);
pChan->spsRxHpf=pSps;
pSps->source=pChan->pRxBase;
pSps->sink=pChan->pRxHpf;
pSps->sigProc=pmr_gp_fir;
pSps->enabled=1;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->nSamples=pChan->nSamplesRx;
pSps->decimator=pSps->decimate=1;
pSps->interpolate=1;
pSps->ncoef=taps_fir_hpf_300_9_66;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_hpf_300_9_66;
pSps->nx=taps_fir_hpf_300_9_66;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
pSps->calcAdjust=gain_fir_hpf_300_9_66;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
pChan->prxVoiceAdjust=&(pSps->outputGain);
pChan->spsRxOut=pSps;
// allocate space for next sps and set pointers
// Rx DeEmp
if(pChan->rxDeEmpEnable){
pSps=pSps->nextSps=createPmrSps(pChan);
pChan->spsRxDeEmp=pSps;
pSps->source=pChan->pRxHpf;
pSps->sink=pChan->pRxSpeaker;
pChan->spsRxOut=pSps; // OUTPUT STRUCTURE!
pSps->sigProc=gp_inte_00;
pSps->enabled=1;
pSps->nSamples=pChan->nSamplesRx;
pSps->ncoef=taps_int_lpf_300_1_2;
pSps->size_coef=2;
pSps->coef=(void*)coef_int_lpf_300_1_2;
pSps->nx=taps_int_lpf_300_1_2;
pSps->size_x=4;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
pSps->calcAdjust=gain_int_lpf_300_1_2/2;
pSps->inputGain=(1.0*M_Q8);
pSps->outputGain=(1.0*M_Q8);
pChan->prxVoiceMeasure=pSps->sink;
pChan->prxVoiceAdjust=&(pSps->outputGain);
}
if(pChan->rxDelayLineEnable)
{
TRACEF(1,("create delayline\n"));
pSps=pChan->spsDelayLine=pSps->nextSps=createPmrSps(pChan);
pSps->sigProc=DelayLine;
pSps->source=pChan->pRxSpeaker;
pSps->sink=pChan->pRxSpeaker;
pSps->enabled=0;
pSps->inputGain=1*M_Q8;
pSps->outputGain=1*M_Q8;
pSps->nSamples=pChan->nSamplesRx;
pSps->buffSize=4096;
pSps->buff=calloc(4096,2); // one second maximum
pSps->buffLead = (SAMPLE_RATE_NETWORK*0.100);
pSps->buffOutIndex=0;
}
if(pChan->rxCdType==CD_XPMR_VOX)
{
TRACEF(1,("create vox measureblock\n"));
pChan->prxVoxMeas=calloc(pChan->nSamplesRx,2);
pSps=pChan->spsRxVox=pSps->nextSps=createPmrSps(pChan);
pSps->sigProc=MeasureBlock;
pSps->parentChan=pChan;
pSps->source=pChan->pRxBase;
pSps->sink=pChan->prxVoxMeas;
pSps->inputGain=1*M_Q8;
pSps->outputGain=1*M_Q8;
pSps->nSamples=pChan->nSamplesRx;
pSps->discfactor=3;
if(pChan->rxSqVoxAdj==0)
pSps->setpt=(0.011*M_Q15);
else
pSps->setpt=(pChan->rxSqVoxAdj);
pSps->hyst=(pSps->setpt/10);
pSps->enabled=1;
}
// tuning measure block
pSps=pChan->spsMeasure=pSps->nextSps=createPmrSps(pChan);
pSps->source=pChan->spsRx->sink;
pSps->sink=pChan->prxMeasure;
pSps->sigProc=MeasureBlock;
pSps->enabled=0;
pSps->nSamples=pChan->nSamplesRx;
pSps->discfactor=10;
pSps->nextSps=NULL; // last sps in chain RX
// CREATE TRANSMIT CHAIN
TRACEF(1,("create tx\n"));
inputTmp=NULL;
pSps = NULL;
// allocate space for first sps and set pointers
// Tx HPF SubAudible
if(pChan->txHpfEnable)
{
pSps=createPmrSps(pChan);
pChan->spsTx=pSps;
pSps->source=pChan->pTxBase;
pSps->sink=pChan->pTxHpf;
pSps->sigProc=pmr_gp_fir;
pSps->enabled=1;
pSps->numChanOut=1;
pSps->selChanOut=0;
pSps->nSamples=pChan->nSamplesTx;
pSps->decimator=pSps->decimate=1;
pSps->interpolate=1;
pSps->ncoef=taps_fir_hpf_300_9_66;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_hpf_300_9_66;
pSps->nx=taps_fir_hpf_300_9_66;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
pSps->calcAdjust=gain_fir_hpf_300_9_66;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
inputTmp=pChan->pTxHpf;
}
// Tx PreEmphasis
if(pChan->txPreEmpEnable)
{
if(pSps==NULL) pSps=pChan->spsTx=createPmrSps(pChan);
else pSps=pSps->nextSps=createPmrSps(pChan);
pSps->source=inputTmp;
pSps->sink=pChan->pTxPreEmp;
pSps->sigProc=gp_diff;
pSps->enabled=1;
pSps->nSamples=pChan->nSamplesTx;
pSps->ncoef=taps_int_hpf_4000_1_2;
pSps->size_coef=2;
pSps->coef=(void*)coef_int_hpf_4000_1_2;
pSps->nx=taps_int_hpf_4000_1_2;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
pSps->calcAdjust=gain_int_hpf_4000_1_2;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8); // to match flat at 1KHz
inputTmp=pSps->sink;
}
// Tx Limiter
if(pChan->txLimiterEnable)
{
if(pSps==NULL) pSps=pChan->spsTx=createPmrSps(pChan);
else pSps=pSps->nextSps=createPmrSps(pChan);
pSps->source=inputTmp;
pSps->sink=pChan->pTxLimiter;
pSps->sigProc=SoftLimiter;
pSps->enabled=1;
pSps->nSamples=pChan->nSamplesTx;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
pSps->setpt=12000;
inputTmp=pSps->sink;
}
// Composite Mix of Voice and LSD
if((pChan->txMixA==TX_OUT_COMPOSITE)||(pChan->txMixB==TX_OUT_COMPOSITE))
{
if(pSps==NULL)
pSps=pChan->spsTx=createPmrSps(pChan);
else
pSps=pSps->nextSps=createPmrSps(pChan);
pSps->source=inputTmp;
pSps->sourceB=pChan->pTxLsdLpf; //asdf ??? !!! maw pTxLsdLpf
pSps->sink=pChan->pTxComposite;
pSps->sigProc=pmrMixer;
pSps->enabled=1;
pSps->nSamples=pChan->nSamplesTx;
pSps->inputGain=2*M_Q8;
pSps->inputGainB=1*M_Q8/8;
pSps->outputGain=1*M_Q8;
pSps->setpt=0;
inputTmp=pSps->sink;
pChan->ptxCtcssAdjust=&pSps->inputGainB;
}
// Chan A Upsampler and Filter
if(pSps==NULL) pSps=pChan->spsTx=createPmrSps(pChan);
else pSps=pSps->nextSps=createPmrSps(pChan);
pChan->spsTxOutA=pSps;
if(!pChan->spsTx)pChan->spsTx=pSps;
if(pChan->txMixA==TX_OUT_COMPOSITE)
{
pSps->source=pChan->pTxComposite;
}
else if(pChan->txMixA==TX_OUT_LSD)
{
pSps->source=pChan->pTxLsdLpf;
}
else if(pChan->txMixA==TX_OUT_VOICE)
{
pSps->source=pChan->pTxHpf;
}
else if (pChan->txMixA==TX_OUT_AUX)
{
pSps->source=inputTmp;
}
else
{
pSps->source=NULL; // maw sph asdf !!! no blow up
pSps->source=inputTmp;
}
pSps->sink=pChan->pTxOut;
pSps->sigProc=pmr_gp_fir;
pSps->enabled=1;
pSps->numChanOut=2;
pSps->selChanOut=0;
pSps->nSamples=pChan->nSamplesTx;
pSps->interpolate=6;
pSps->ncoef=taps_fir_lpf_3K_1;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_3K_1;
pSps->nx=taps_fir_lpf_3K_1;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
pSps->calcAdjust=gain_fir_lpf_3K_1;
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
if(pChan->txMixA==pChan->txMixB)pSps->monoOut=1;
else pSps->monoOut=0;
// Chan B Upsampler and Filter
if((pChan->txMixA!=pChan->txMixB)&&(pChan->txMixB!=TX_OUT_OFF))
{
if(pSps==NULL) pSps=pChan->spsTx=createPmrSps(pChan);
else pSps=pSps->nextSps=createPmrSps(pChan);
pChan->spsTxOutB=pSps;
if(pChan->txMixB==TX_OUT_COMPOSITE)
{
pSps->source=pChan->pTxComposite;
}
else if(pChan->txMixB==TX_OUT_LSD)
{
pSps->source=pChan->pTxLsdLpf;
// pChan->ptxCtcssAdjust=&pSps->inputGain;
}
else if(pChan->txMixB==TX_OUT_VOICE)
{
pSps->source=inputTmp;
}
else if(pChan->txMixB==TX_OUT_AUX)
{
pSps->source=pChan->pTxHpf;
}
else
{
pSps->source=NULL;
}
pSps->sink=pChan->pTxOut;
pSps->sigProc=pmr_gp_fir;
pSps->enabled=1;
pSps->numChanOut=2;
pSps->selChanOut=1;
pSps->mixOut=0;
pSps->nSamples=pChan->nSamplesTx;
pSps->interpolate=6;
pSps->ncoef=taps_fir_lpf_3K_1;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_3K_1;
pSps->nx=taps_fir_lpf_3K_1;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
if(pSps==NULL)printf("Error: calloc(), createPmrChannel()\n");
pSps->calcAdjust=(gain_fir_lpf_3K_1);
pSps->inputGain=(1*M_Q8);
pSps->outputGain=(1*M_Q8);
}
pSps->nextSps=NULL;
// Configure Coded Signaling
code_string_parse(pChan);
pChan->smode=SMODE_NULL;
pChan->smodewas=SMODE_NULL;
pChan->smodetime=2500;
pChan->smodetimer=0;
pChan->b.smodeturnoff=0;
pChan->txsettletimer=0;
TRACEF(1,("createPmrChannel() end\n"));
return pChan;
}
/*
*/
i16 destroyPmrChannel(t_pmr_chan *pChan)
{
#if XPMR_DEBUG0 == 1
i16 i;
#endif
t_pmr_sps *pmr_sps, *tmp_sps;
TRACEF(1,("destroyPmrChannel()\n"));
free(pChan->pRxDemod);
free(pChan->pRxNoise);
free(pChan->pRxBase);
free(pChan->pRxHpf);
free(pChan->pRxLsd);
free(pChan->pRxSpeaker);
free(pChan->pRxDcTrack);
if(pChan->pRxLsdLimit)free(pChan->pRxLsdLimit);
free(pChan->pTxBase);
free(pChan->pTxHpf);
free(pChan->pTxPreEmp);
free(pChan->pTxLimiter);
free(pChan->pTxLsd);
free(pChan->pTxLsdLpf);
if(pChan->pTxComposite)free(pChan->pTxComposite);
free(pChan->pTxOut);
if(pChan->prxMeasure)free(pChan->prxMeasure);
if(pChan->pSigGen0)free(pChan->pSigGen0);
if(pChan->pSigGen1)free(pChan->pSigGen1);
#if XPMR_DEBUG0 == 1
//if(pChan->prxDebug)free(pChan->prxDebug);
if(pChan->ptxDebug)free(pChan->ptxDebug);
free(pChan->prxDebug0);
free(pChan->prxDebug1);
free(pChan->prxDebug2);
free(pChan->prxDebug3);
free(pChan->ptxDebug0);
free(pChan->ptxDebug1);
free(pChan->ptxDebug2);
free(pChan->ptxDebug3);
free(pChan->rxCtcss->pDebug0);
free(pChan->rxCtcss->pDebug1);
for(i=0;i<CTCSS_NUM_CODES;i++)
{
free(pChan->rxCtcss->tdet[i].pDebug0);
free(pChan->rxCtcss->tdet[i].pDebug1);
free(pChan->rxCtcss->tdet[i].pDebug2);
free(pChan->rxCtcss->tdet[i].pDebug3);
}
#endif
pChan->dd.option=8;
dedrift(pChan);
free(pChan->pRxCtcss);
pmr_sps=pChan->spsRx;
if(pChan->sdbg)free(pChan->sdbg);
while(pmr_sps)
{
tmp_sps = pmr_sps;
pmr_sps = tmp_sps->nextSps;
destroyPmrSps(tmp_sps);
}
free(pChan);
return 0;
}
/*
*/
t_pmr_sps *createPmrSps(t_pmr_chan *pChan)
{
t_pmr_sps *pSps;
TRACEF(1,("createPmrSps()\n"));
pSps = (t_pmr_sps *)calloc(sizeof(t_pmr_sps),1);
if(!pSps)printf("Error: createPmrSps()\n");
pSps->parentChan=pChan;
pSps->index=pChan->spsIndex++;
// pSps->x=calloc(pSps->nx,pSps->size_x);
return pSps;
}
/*
*/
i16 destroyPmrSps(t_pmr_sps *pSps)
{
TRACEJ(1,("destroyPmrSps(%i)\n",pSps->index));
if(pSps->x!=NULL)free(pSps->x);
free(pSps);
return 0;
}
/*
PmrTx - takes data from network and holds it for PmrRx
*/
i16 PmrTx(t_pmr_chan *pChan, i16 *input)
{
pChan->frameCountTx++;
TRACEF(5,("PmrTx() start %i\n",pChan->frameCountTx));
#if XPMR_PPTP == 99
pptp_p2^=1;
if(pptp_p2)ioctl(ppdrvdev,PPDRV_IOC_PINSET,LP_PIN02);
else ioctl(ppdrvdev,PPDRV_IOC_PINCLEAR,LP_PIN02);
#endif
if(pChan==NULL){
printf("PmrTx() pChan == NULL\n");
return 1;
}
#if XPMR_DEBUG0 == 1
if(pChan->b.rxCapture && pChan->tracetype==5)
{
memcpy(pChan->pTxInput,input,pChan->nSamplesRx*2);
}
#endif
//if(pChan->b.radioactive)pChan->dd.debug=1;
//else pChan->dd.debug=0;
dedrift_write(pChan,input);
return 0;
}
/*
PmrRx handles a block of data from the usb audio device
*/
i16 PmrRx(t_pmr_chan *pChan, i16 *input, i16 *outputrx, i16 *outputtx)
{
int i,hit;
float f=0;
t_pmr_sps *pmr_sps;
TRACEC(5,("PmrRx(%p %p %p %p)\n",pChan, input, outputrx, outputtx));
#if XPMR_PPTP == 1
if(pChan->b.radioactive)
{
pptp_write(1,pChan->frameCountRx&0x00000001);
}
#endif
if(pChan==NULL){
printf("PmrRx() pChan == NULL\n");
return 1;
}
pChan->frameCountRx++;
#if XPMR_DEBUG0 == 1
if(pChan->b.rxCapture)
{
//if(pChan->prxDebug)memset((void *)pChan->prxDebug,0,pChan->nSamplesRx*XPMR_DEBUG_CHANS*2);
if(pChan->ptxDebug)memset((void *)pChan->ptxDebug,0,pChan->nSamplesRx*XPMR_DEBUG_CHANS*2);
if(pChan->sdbg->buffer)
{
memset((void *)pChan->sdbg->buffer,0,pChan->nSamplesRx*XPMR_DEBUG_CHANS*2);
pChan->prxDebug=pChan->sdbg->buffer;
}
}
#endif
pmr_sps=pChan->spsRx; // first sps
pmr_sps->source=input;
if(outputrx!=NULL)pChan->spsRxOut->sink=outputrx; //last sps
#if 0
if(pChan->inputBlanking>0)
{
pChan->inputBlanking-=pChan->nSamplesRx;
if(pChan->inputBlanking<0)pChan->inputBlanking=0;
for(i=0;i<pChan->nSamplesRx*6;i++)
input[i]=0;
}
#endif
if( pChan->rxCpuSaver && !pChan->rxCarrierDetect &&
pChan->smode==SMODE_NULL &&
!pChan->txPttIn && !pChan->txPttOut)
{
if(!pChan->b.rxhalted)
{
if(pChan->spsRxHpf)pChan->spsRxHpf->enabled=0;
if(pChan->spsRxDeEmp)pChan->spsRxDeEmp->enabled=0;
pChan->b.rxhalted=1;
TRACEC(1,("PmrRx() rx sps halted\n"));
}
}
else if(pChan->b.rxhalted)
{
if(pChan->spsRxHpf)pChan->spsRxHpf->enabled=1;
if(pChan->spsRxDeEmp)pChan->spsRxDeEmp->enabled=1;
pChan->b.rxhalted=0;
TRACEC(1,("PmrRx() rx sps un-halted\n"));
}
i=0;
while(pmr_sps!=NULL && pmr_sps!=0)
{
TRACEC(5,("PmrRx() sps %i\n",i++));
pmr_sps->sigProc(pmr_sps);
pmr_sps = (t_pmr_sps *)(pmr_sps->nextSps);
//pmr_sps=NULL; // sph maw
}
#define XPMR_VOX_HANGTIME 2000
if(pChan->rxCdType==CD_XPMR_VOX)
{
if(pChan->spsRxVox->compOut)
{
pChan->rxVoxTimer=XPMR_VOX_HANGTIME; //VOX HangTime in ms
}
if(pChan->rxVoxTimer>0)
{
pChan->rxVoxTimer-=MS_PER_FRAME;
pChan->rxCarrierDetect=1;
}
else
{
pChan->rxVoxTimer=0;
pChan->rxCarrierDetect=0;
}
}
else
{
pChan->rxCarrierDetect=!pChan->spsRx->compOut;
}
// stop and start these engines instead to eliminate falsing
if( pChan->b.ctcssRxEnable &&
( (!pChan->b.rxhalted ||
pChan->rxCtcss->decode!=CTCSS_NULL || pChan->smode==SMODE_CTCSS) &&
(pChan->smode!=SMODE_DCS&&pChan->smode!=SMODE_LSD) )
)
{
ctcss_detect(pChan);
}
#if 1
if(pChan->txPttIn!=pChan->b.pttwas)
{
pChan->b.pttwas=pChan->txPttIn;
TRACEC(1,("PmrRx() txPttIn=%i\n",pChan->b.pttwas));
}
#endif
#ifdef XPMRX_H
xpmrx(pChan,XXO_RXDECODE);
#endif
if(pChan->smodetimer>0 && !pChan->txPttIn)
{
pChan->smodetimer-=MS_PER_FRAME;
if(pChan->smodetimer<=0)
{
pChan->smodetimer=0;
pChan->smodewas=pChan->smode;
pChan->smode=SMODE_NULL;
pChan->b.smodeturnoff=1;
TRACEC(1,("smode timeout. smode was=%i\n",pChan->smodewas));
}
}
if(pChan->rxCtcss->decode > CTCSS_NULL &&
(pChan->smode==SMODE_NULL||pChan->smode==SMODE_CTCSS) )
{
if(pChan->smode!=SMODE_CTCSS)
{
TRACEC(1,("smode set=%i code=%i\n",pChan->smode,pChan->rxCtcss->decode));
pChan->smode=pChan->smodewas=SMODE_CTCSS;
}
pChan->smodetimer=pChan->smodetime;
}
#ifdef HAVE_XPMRX
xpmrx(pChan,XXO_LSDCTL);
#endif
//TRACEX(("PmrRx() tx portion.\n"));
// handle radio transmitter ptt input
hit=0;
if( !(pChan->smode==SMODE_DCS||pChan->smode==SMODE_LSD) )
{
if( pChan->txPttIn && pChan->txState==CHAN_TXSTATE_IDLE )
{
TRACEC(1,("txPttIn==1 from CHAN_TXSTATE_IDLE && !SMODE_LSD. codeindex=%i %i \n",pChan->rxCtcss->decode, pChan->rxCtcssMap[pChan->rxCtcss->decode] ));
pChan->dd.b.doitnow=1;
if(pChan->smode==SMODE_CTCSS && !pChan->b.txCtcssInhibit)
{
if(pChan->rxCtcss->decode>CTCSS_NULL)
{
if(pChan->rxCtcssMap[pChan->rxCtcss->decode]!=CTCSS_RXONLY)
{
f=freq_ctcss[pChan->rxCtcssMap[pChan->rxCtcss->decode]];
}
}
else
{
f=pChan->txctcssdefault_value;
}
TRACEC(1,("txPttIn - Start CTCSSGen %f \n",f));
if(f)
{
t_pmr_sps *pSps;
pChan->spsSigGen0->freq=f*10;
pSps=pChan->spsTxLsdLpf;
pSps->enabled=1;
#if 0
if(f>203.0)
{
pSps->ncoef=taps_fir_lpf_250_9_66;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_250_9_66;
pSps->nx=taps_fir_lpf_250_9_66;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_250_9_66;
}
else
{
pSps->ncoef=taps_fir_lpf_215_9_88;
pSps->size_coef=2;
pSps->coef=(void*)coef_fir_lpf_215_9_88;
pSps->nx=taps_fir_lpf_215_9_88;
pSps->size_x=2;
pSps->x=(void*)(calloc(pSps->nx,pSps->size_x));
pSps->calcAdjust=gain_fir_lpf_215_9_88;
}
#endif
pChan->spsSigGen0->option=1;
pChan->spsSigGen0->enabled=1;
pChan->spsSigGen0->discounterl=0;
}
}
else if(pChan->smode==SMODE_NULL && pChan->txcodedefaultsmode==SMODE_CTCSS && !pChan->b.txCtcssInhibit)
{
TRACEC(1,("txPtt Encode txcodedefaultsmode==SMODE_CTCSS %f\n",pChan->txctcssdefault_value));
pChan->spsSigGen0->freq=pChan->txctcssdefault_value*10;
pChan->spsSigGen0->option=1;
pChan->spsSigGen0->enabled=1;
pChan->spsSigGen0->discounterl=0;
pChan->smode=SMODE_CTCSS;
pChan->smodetimer=pChan->smodetime;
}
else if(pChan->txcodedefaultsmode==SMODE_NULL||pChan->b.txCtcssInhibit)
{
TRACEC(1,("txPtt Encode txcodedefaultsmode==SMODE_NULL\n"));
}
else
{
printf ("ERROR: txPttIn=%i NOT HANDLED PROPERLY.\n",pChan->txPttIn);
TRACEC(1,("ERROR: txPttIn=%i NOT HANDLED PROPERLY.\n",pChan->txPttIn));
}
pChan->txState = CHAN_TXSTATE_ACTIVE;
pChan->txPttOut=1;
pChan->txsettletimer=pChan->txsettletime;
if(pChan->spsTxOutA)pChan->spsTxOutA->enabled=1;
if(pChan->spsTxOutB)pChan->spsTxOutB->enabled=1;
if(pChan->spsTxLsdLpf)pChan->spsTxLsdLpf->enabled=1;
if(pChan->txfreq)pChan->b.reprog=1;
TRACEC(1,("PmrRx() TxOn\n"));
}
else if(pChan->txPttIn && pChan->txState==CHAN_TXSTATE_ACTIVE)
{
// pChan->smode=SMODE_CTCSS;
pChan->smodetimer=pChan->smodetime;
}
else if(!pChan->txPttIn && pChan->txState==CHAN_TXSTATE_ACTIVE)
{
TRACEC(1,("txPttIn==0 from CHAN_TXSTATE_ACTIVE\n"));
if(pChan->smode==SMODE_CTCSS && !pChan->b.txCtcssInhibit)
{
if( pChan->txTocType==TOC_NONE || !pChan->b.ctcssTxEnable )
{
TRACEC(1,("Tx Off Immediate.\n"));
pChan->spsSigGen0->option=3;
pChan->txBufferClear=3;
pChan->txState=CHAN_TXSTATE_FINISHING;
}
else if(pChan->txTocType==TOC_NOTONE)
{
pChan->txState=CHAN_TXSTATE_TOC;
pChan->txHangTime=TOC_NOTONE_TIME/MS_PER_FRAME;
pChan->spsSigGen0->option=3;
TRACEC(1,("Tx Turn Off No Tone Start.\n"));
}
else
{
pChan->txState=CHAN_TXSTATE_TOC;
pChan->txHangTime=0;
pChan->spsSigGen0->option=2;
TRACEC(1,("Tx Turn Off Phase Shift Start.\n"));
}
}
else
{
pChan->txBufferClear=3;
pChan->txState=CHAN_TXSTATE_FINISHING;
TRACEC(1,("Tx Off No SMODE to Finish.\n"));
}
}
else if(pChan->txState==CHAN_TXSTATE_TOC)
{
if( pChan->txPttIn && pChan->smode==SMODE_CTCSS )
{
TRACEC(1,("Tx Key During HangTime\n"));
pChan->txState = CHAN_TXSTATE_ACTIVE;
pChan->spsSigGen0->option=1;
pChan->spsSigGen0->enabled=1;
pChan->spsSigGen0->discounterl=0;
hit=0;
}
else if(pChan->txHangTime)
{
if(--pChan->txHangTime==0)pChan->txState=CHAN_TXSTATE_FINISHING;
}
else if(pChan->txHangTime<=0 && pChan->spsSigGen0->state==0)
{
pChan->txBufferClear=3;
pChan->txState=CHAN_TXSTATE_FINISHING;
TRACEC(1,("Tx Off TOC.\n"));
}
}
else if(pChan->txState==CHAN_TXSTATE_FINISHING)
{
if(--pChan->txBufferClear<=0)
pChan->txState=CHAN_TXSTATE_COMPLETE;
}
else if(pChan->txState==CHAN_TXSTATE_COMPLETE)
{
hit=1;
}
} // end of if SMODE==LSD
if(hit)
{
pChan->txPttOut=0;
pChan->spsSigGen0->option=3;
pChan->txState=CHAN_TXSTATE_IDLE;
if(pChan->spsTxLsdLpf)pChan->spsTxLsdLpf->option=3;
if(pChan->spsTxOutA)pChan->spsTxOutA->option=3;
if(pChan->spsTxOutB)pChan->spsTxOutB->option=3;
if(pChan->rxfreq||pChan->txfreq)pChan->b.reprog=1;
TRACEC(1,("Tx Off hit.\n"));
}
if(pChan->b.reprog)
{
pChan->b.reprog=0;
progdtx(pChan);
}
if(pChan->txsettletimer && pChan->txPttHid )
{
pChan->txsettletimer-=MS_PER_FRAME;
if(pChan->txsettletimer<0)pChan->txsettletimer=0;
}
// enable this after we know everything else is working
if( pChan->txCpuSaver &&
!pChan->txPttIn && !pChan->txPttOut &&
pChan->txState==CHAN_TXSTATE_IDLE &&
!pChan->dd.b.doitnow
)
{
if(!pChan->b.txhalted)
{
pChan->b.txhalted=1;
TRACEC(1,("PmrRx() tx sps halted\n"));
}
}
else if(pChan->b.txhalted)
{
pChan->dd.b.doitnow=1;
pChan->b.txhalted=0;
TRACEC(1,("PmrRx() tx sps un-halted\n"));
}
if(pChan->b.txhalted)return(1);
if(pChan->b.startSpecialTone)
{
pChan->b.startSpecialTone=0;
pChan->spsSigGen1->option=1;
pChan->spsSigGen1->enabled=1;
pChan->b.doingSpecialTone=1;
}
else if(pChan->b.stopSpecialTone)
{
pChan->b.stopSpecialTone=0;
pChan->spsSigGen1->option=0;
pChan->b.doingSpecialTone=0;
pChan->spsSigGen1->enabled=0;
}
else if(pChan->b.doingSpecialTone)
{
pChan->spsSigGen1->sink=outputtx;
pChan->spsSigGen1->sigProc(pChan->spsSigGen1);
for(i=0;i<(pChan->nSamplesTx*2*6);i+=2)outputtx[i+1]=outputtx[i];
return 0;
}
if(pChan->spsSigGen0 && pChan->spsSigGen0->enabled )
{
pChan->spsSigGen0->sigProc(pChan->spsSigGen0);
}
if(pChan->spsSigGen1 && pChan->spsSigGen1->enabled)
{
pChan->spsSigGen1->sigProc(pChan->spsSigGen1);
}
#ifdef XPMRX_H
pChan->spsLsdGen->sigProc(pChan->spsLsdGen); // maw sph ???
#endif
// Do Low Speed Data Low Pass Filter
pChan->spsTxLsdLpf->sigProc(pChan->spsTxLsdLpf);
// Do Voice
pmr_sps=pChan->spsTx;
// get tx data from de-drift process
pChan->dd.option=0;
pChan->dd.ptr=pChan->pTxBase;
dedrift(pChan);
// tx process
if(!pChan->spsSigGen1->enabled)
{
pmr_sps->source=pChan->pTxBase;
}
else input=pmr_sps->source;
if(outputtx!=NULL)
{
if(pChan->spsTxOutA)pChan->spsTxOutA->sink=outputtx;
if(pChan->spsTxOutB)pChan->spsTxOutB->sink=outputtx;
}
i=0;
while(pmr_sps!=NULL && pmr_sps!=0)
{
//TRACEF(1,("PmrTx() sps %i\n",i++));
pmr_sps->sigProc(pmr_sps);
pmr_sps = (t_pmr_sps *)(pmr_sps->nextSps);
}
//TRACEF(1,("PmrTx() - outputs \n"));
if(pChan->txMixA==TX_OUT_OFF || !pChan->txPttOut){
for(i=0;i<pChan->nSamplesTx*2*6;i+=2)outputtx[i]=0;
}
if(pChan->txMixB==TX_OUT_OFF || !pChan->txPttOut ){
for(i=0;i<pChan->nSamplesTx*2*6;i+=2)outputtx[i+1]=0;
}
#if XPMR_PPTP == 1
if( pChan->b.radioactive && pChan->b.pptp_p1!=pChan->txPttOut)
{
pChan->b.pptp_p1=pChan->txPttOut;
pptp_write(0,pChan->b.pptp_p1);
}
#endif
#if XPMR_DEBUG0 == 1
// TRACEF(1,("PmrRx() - debug outputs \n"));
if(pChan->b.rxCapture){
for(i=0;i<pChan->nSamplesRx;i++)
{
pChan->pRxDemod[i]=input[i*2*6];
pChan->pTstTxOut[i]=outputtx[i*2*6+0]; // txa
//pChan->pTstTxOut[i]=outputtx[i*2*6+1]; // txb
TSCOPE((RX_NOISE_TRIG, pChan->sdbg, i, (pChan->rxCarrierDetect*XPMR_TRACE_AMP)-XPMR_TRACE_AMP/2));
TSCOPE((RX_CTCSS_DECODE, pChan->sdbg, i, pChan->rxCtcss->decode*(M_Q14/CTCSS_NUM_CODES)));
TSCOPE((RX_SMODE, pChan->sdbg, i, pChan->smode*(XPMR_TRACE_AMP/4)));
TSCOPE((TX_PTT_IN, pChan->sdbg, i, (pChan->txPttIn*XPMR_TRACE_AMP)-XPMR_TRACE_AMP/2));
TSCOPE((TX_PTT_OUT, pChan->sdbg, i, (pChan->txPttOut*XPMR_TRACE_AMP)-XPMR_TRACE_AMP/2));
TSCOPE((TX_DEDRIFT_LEAD, pChan->sdbg, i, pChan->dd.lead*8));
TSCOPE((TX_DEDRIFT_ERR, pChan->sdbg, i, pChan->dd.err*16));
TSCOPE((TX_DEDRIFT_FACTOR, pChan->sdbg, i, pChan->dd.factor*16));
TSCOPE((TX_DEDRIFT_DRIFT, pChan->sdbg, i, pChan->dd.drift*16));
}
}
#endif
strace2(pChan->sdbg);
TRACEC(5,("PmrRx() return cd=%i smode=%i txPttIn=%i txPttOut=%i \n",pChan->rxCarrierDetect,pChan->smode,pChan->txPttIn,pChan->txPttOut));
return 0;
}
/*
parallel binary programming of an RF Transceiver*/
void ppbinout (u8 chan)
{
#if(DTX_PROG == 1)
i32 i;
if (ppdrvdev == 0)
ppdrvdev = open("/dev/ppdrv_device", 0);
if (ppdrvdev < 0)
{
ast_log(LOG_ERROR, "open /dev/ppdrv_ppdrvdev returned %i\n",ppdrvdev);
return;
}
i=0;
if(chan&0x01)i|=BIN_PROG_0;
if(chan&0x02)i|=BIN_PROG_1;
if(chan&0x04)i|=BIN_PROG_2;
if(chan&0x08)i|=BIN_PROG_3;
ioctl(ppdrvdev, PPDRV_IOC_PINMODE_OUT, BIN_PROG_3|BIN_PROG_2|BIN_PROG_1|BIN_PROG_0);
//ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, BIN_PROG_3|BIN_PROG_2|BIN_PROG_1|BIN_PROG_0);
//ioctl(ppdrvdev, PPDRV_IOC_PINSET, i );
ioctl(ppdrvdev, PPDRV_IOC_PINSET, BIN_PROG_3|BIN_PROG_2|BIN_PROG_1|BIN_PROG_0);
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, i );
// ioctl(ppdrvdev, PPDRV_IOC_PINSET, BIN_PROG_3|BIN_PROG_2|BIN_PROG_1|BIN_PROG_0 );
ast_log(LOG_NOTICE, "mask=%i 0x%x\n",i,i);
#endif
}
/*
SPI Programming of an RF Transceiver
need to add permissions check and mutex
*/
/*
need to add permissions check and mutex
*/
void ppspiout (u32 spidata)
{
#if(DTX_PROG == 1)
static char firstrun=0;
i32 i,ii;
u32 bitselect;
if (ppdrvdev < 0)
{
ast_log(LOG_ERROR, "no parallel port permission ppdrvdev %i\n",ppdrvdev);
exit(0);
}
ioctl(ppdrvdev, PPDRV_IOC_PINMODE_OUT, DTX_CLK | DTX_DATA | DTX_ENABLE | DTX_TXPWR | DTX_TX );
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_CLK | DTX_DATA | DTX_ENABLE | DTX_TXPWR | DTX_TX );
if(firstrun==0)
{
firstrun=1;
for(ii=0;ii<PP_BIT_TIME*200;ii++);
}
else
{
for(ii=0;ii<PP_BIT_TIME*4;ii++);
}
bitselect=0x00080000;
for(i=0;i<(PP_REG_LEN-12);i++)
{
if((bitselect&spidata))
ioctl(ppdrvdev, PPDRV_IOC_PINSET, DTX_DATA );
else
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_DATA );
for(ii=0;ii<PP_BIT_TIME;ii++);
ioctl(ppdrvdev, PPDRV_IOC_PINSET, DTX_CLK );
for(ii=0;ii<PP_BIT_TIME;ii++);
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_CLK );
for(ii=0;ii<PP_BIT_TIME;ii++);
bitselect=(bitselect>>1);
}
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_CLK | DTX_DATA );
ioctl(ppdrvdev, PPDRV_IOC_PINSET, DTX_ENABLE );
for(ii=0;ii<PP_BIT_TIME;ii++);
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_ENABLE );
#endif
}
/*
mutex needed
now assumes calling thread secures permissions
could set up a separate thread to program the radio? yuck!
*/
void progdtx(t_pmr_chan *pChan)
{
#if(DTX_PROG == 1)
//static u32 progcount=0;
u32 reffreq;
u32 stepfreq;
u32 rxiffreq;
u32 synthfreq;
u32 shiftreg;
u32 tmp;
TRACEC(1,("\nprogdtx() %i %i %i\n",pChan->rxfreq,pChan->txfreq,0));
if (ppdrvdev == 0)
ppdrvdev = open("/dev/ppdrv_device", 0);
if (ppdrvdev < 0)
{
ast_log(LOG_ERROR, "open /dev/ppdrv_ppdrvdev returned %i\n",ppdrvdev);
exit(0);
}
if(pChan->rxfreq>200000000)
{
reffreq=16012500;
stepfreq=12500;
rxiffreq=21400000;
}
else
{
reffreq=16000000;
stepfreq=5000;
rxiffreq=10700000;
}
shiftreg=(reffreq/stepfreq)<<1;
shiftreg=shiftreg|0x00000001;
ppspiout(shiftreg);
if(pChan->txPttOut)
synthfreq=pChan->txfreq;
else
synthfreq=pChan->rxfreq-rxiffreq;
shiftreg=(synthfreq/stepfreq)<<1;
tmp=(shiftreg&0xFFFFFF80)<<1;
shiftreg=tmp+(shiftreg&0x0000007F);
ppspiout(shiftreg);
ioctl(ppdrvdev, PPDRV_IOC_PINMODE_OUT, DTX_CLK | DTX_DATA | DTX_ENABLE | DTX_TXPWR | DTX_TX );
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_CLK | DTX_DATA | DTX_ENABLE );
if(pChan->txPttOut)
{
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_TXPWR );
ioctl(ppdrvdev, PPDRV_IOC_PINSET, DTX_TX );
if(pChan->txpower && 0) ioctl(ppdrvdev, PPDRV_IOC_PINSET, DTX_TXPWR );
}
else
{
ioctl(ppdrvdev, PPDRV_IOC_PINCLEAR, DTX_TX | DTX_TXPWR );
}
#endif
}
/* dedrift
reconciles clock differences between the usb adapter and
asterisk's frame rate clock
take out all accumulated drift error on these events:
before transmitter on
when ptt release from mobile units detected
*/
void dedrift(t_pmr_chan *pChan)
{
TRACEC(5,("dedrift()\n"));
if(pChan->dd.option==9)
{
TRACEF(1,("dedrift(9)\n"));
pChan->dd.framesize=DDB_FRAME_SIZE;
pChan->dd.frames=DDB_FRAMES_IN_BUFF;
pChan->dd.buffersize = pChan->dd.frames * pChan->dd.framesize;
pChan->dd.buff=calloc(DDB_FRAME_SIZE*DDB_FRAMES_IN_BUFF,2);
pChan->dd.modulus=DDB_ERR_MODULUS;
pChan->dd.inputindex=0;
pChan->dd.outputindex=0;
pChan->dd.skew = pChan->dd.lead=0;
pChan->dd.z1=0;
pChan->dd.debug=0;
pChan->dd.debugcnt=0;
pChan->dd.lock=pChan->dd.b.txlock=pChan->dd.b.rxlock=0;
pChan->dd.initcnt=2;
pChan->dd.timer=10000/20;
pChan->dd.drift=0;
pChan->dd.factor=pChan->dd.x1 = pChan->dd.x0 = pChan->dd.y1 = pChan->dd.y0 = 0;
pChan->dd.txframecnt=pChan->dd.rxframecnt=0;
// clear the buffer too!
return;
}
else if(pChan->dd.option==8)
{
free(pChan->dd.buff);
pChan->dd.lock=0;
pChan->dd.b.txlock=pChan->dd.b.rxlock=0;
return;
}
else if(pChan->dd.initcnt==0)
{
const i32 a0 = 26231;
const i32 a1 = 26231;
const i32 b0 = 32768;
const i32 b1 = -32358;
const i32 dg = 128;
void *vptr;
i16 inputindex;
i16 indextweak;
i32 accum;
inputindex = pChan->dd.inputindex;
pChan->dd.skew = pChan->dd.txframecnt-pChan->dd.rxframecnt;
pChan->dd.rxframecnt++;
// pull data from buffer
if( (pChan->dd.outputindex + pChan->dd.framesize) > pChan->dd.buffersize )
{
i16 dofirst,donext;
dofirst = pChan->dd.buffersize - pChan->dd.outputindex;
donext = pChan->dd.framesize - dofirst;
vptr = (void*)(pChan->dd.ptr);
memcpy(vptr,(void*)(pChan->dd.buff + pChan->dd.outputindex),dofirst*2);
vptr=(void*)(pChan->dd.ptr + dofirst);
memcpy(vptr,(void*)(pChan->dd.buff),donext*2);
}
else
{
memcpy(pChan->dd.ptr,(void*)(pChan->dd.buff + pChan->dd.outputindex),pChan->dd.framesize*2);
}
// compute clock error and correction factor
if(pChan->dd.outputindex > inputindex)
{
pChan->dd.lead = (inputindex + pChan->dd.buffersize) - pChan->dd.outputindex;
}
else
{
pChan->dd.lead = inputindex - pChan->dd.outputindex;
}
pChan->dd.err = pChan->dd.lead - (pChan->dd.buffersize/2);
// WinFilter, IIR Fs=50, Fc=0.1
pChan->dd.x1 = pChan->dd.x0;
pChan->dd.y1 = pChan->dd.y0;
pChan->dd.x0 = pChan->dd.err;
pChan->dd.y0 = a0 * pChan->dd.x0;
pChan->dd.y0 += (a1 * pChan->dd.x1 - (b1 * pChan->dd.y1));
pChan->dd.y0 /= b0;
accum = pChan->dd.y0/dg;
pChan->dd.factor=accum;
indextweak=0;
#if 1
// event sync'd correction
if(pChan->dd.b.doitnow)
{
pChan->dd.b.doitnow=0;
indextweak=pChan->dd.factor;
pChan->dd.factor = pChan->dd.x1 = pChan->dd.x0 = pChan->dd.y1 = pChan->dd.y0 = 0;
pChan->dd.timer=20000/MS_PER_FRAME;
}
// coarse lead adjustment if really far out of range
else if( pChan->dd.lead >= pChan->dd.framesize*(DDB_FRAMES_IN_BUFF-2) )
{
pChan->dd.factor = pChan->dd.x1 = pChan->dd.x0 = pChan->dd.y1 = pChan->dd.y0 = 0;
indextweak += (pChan->dd.framesize*5/4);
}
else if(pChan->dd.lead <= pChan->dd.framesize*2 )
{
pChan->dd.factor = pChan->dd.x1 = pChan->dd.x0 = pChan->dd.y1 = pChan->dd.y0 = 0;
indextweak -= (pChan->dd.framesize*5/4);
}
#endif
#if 1
if(pChan->dd.timer>0)pChan->dd.timer--;
if(pChan->dd.timer==0 && abs(pChan->dd.factor)>=16)
{
indextweak=pChan->dd.factor;
pChan->dd.factor = pChan->dd.x1 = pChan->dd.x0 = pChan->dd.y1 = pChan->dd.y0 = 0;
pChan->dd.timer=20000/MS_PER_FRAME;
}
#endif
#if XPMR_DEBUG0 == 1
if(indextweak!=0)TRACEF(4,("%08i indextweak %+4i %+4i %+5i %5i %5i %5i %+4i\n",pChan->dd.rxframecnt, indextweak, pChan->dd.err, accum, inputindex, pChan->dd.outputindex, pChan->dd.lead, pChan->dd.skew));
#endif
// set the output index based on lead and clock offset
pChan->dd.outputindex = (pChan->dd.outputindex + pChan->dd.framesize + indextweak)%pChan->dd.buffersize;
}
}
/*
*/
void dedrift_write(t_pmr_chan *pChan, i16 *src )
{
void *vptr;
TRACEF(5,("dedrift_write()\n"));
vptr = pChan->dd.buff + pChan->dd.inputindex;
memcpy(vptr, src, pChan->dd.framesize*2);
pChan->dd.inputindex = (pChan->dd.inputindex + pChan->dd.framesize) % pChan->dd.buffersize;
pChan->dd.txframecnt++;
if(pChan->dd.initcnt!=0)pChan->dd.initcnt--;
pChan->dd.accum+=pChan->dd.framesize;
}
/* end of file */