osmocom-analog/src/libfft/fft.c

97 lines
2.1 KiB
C

/* Fast Fourier Transformation (FFT)
*
* (C) 2016 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <math.h>
#include <string.h>
#include "fft.h"
/*
* Code based closely to work by Paul Bourke
*
* This computes an in-place complex-to-complex FFT
* x and y are the real and imaginary arrays of 2^m points.
* dir = 1 gives forward transform
* dir = -1 gives reverse transform
*/
void fft_process(int dir, int m, double *x, double *y)
{
int n, i, i1, j, k, i2, l, l1, l2;
double c1, c2, tx, ty, t1, t2, u1, u2, z;
/* Calculate the number of points */
n = 1 << m;
/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i = 0; i < n - 1; i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l = 0; l < m; l++) {
l1 = l2;
l2 <<= 1;
u1 = 1.0;
u2 = 0.0;
for (j = 0; j < l1; j++) {
for (i = j; i < n; i += l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i = 0; i < n; i++) {
x[i] /= n;
y[i] /= n;
}
}
}