osmocom-analog/src/sim/sniffer.c

810 lines
21 KiB
C

/* SIM card sniffer
*
* (C) 2020 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ARDUINO
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "../liblogging/logging.h"
#include "sim.h"
#include "sniffer.h"
extern const char *write_pdu_file;
/* Layer 7 */
static void rx_icl_sdu(uint8_t *data, int length)
{
uint8_t I, cla_ccrc, ins_aprc;
uint16_t dlng;
int i;
if (length < 3) {
LOGP(DSIM7, LOGL_NOTICE, "Message too short\n");
return;
}
I = *data >> 7;
cla_ccrc = (*data++ & 0x7f);
ins_aprc = *data++;
dlng = *data++;
length -= 3;
LOGP(DSIM7, LOGL_INFO, "Layer 7:\n");
if (I == 0) {
LOGP(DSIM7, LOGL_INFO, " I = Command\n");
LOGP(DSIM7, LOGL_INFO, " CLA = 0x%02x\n", cla_ccrc);
switch (cla_ccrc) {
case CLA_CNTR:
LOGP(DSIM7, LOGL_INFO, " -> CNTR (Control Class)\n");
break;
case CLA_STAT:
LOGP(DSIM7, LOGL_INFO, " -> STAT (Status Class)\n");
break;
case CLA_WRTE:
LOGP(DSIM7, LOGL_INFO, " -> WRTE (Write Class)\n");
break;
case CLA_READ:
LOGP(DSIM7, LOGL_INFO, " -> READ (Read Class)\n");
break;
case CLA_EXEC:
LOGP(DSIM7, LOGL_INFO, " -> EXEC (Execute Class)\n");
break;
case CLA_AUTO:
LOGP(DSIM7, LOGL_INFO, " -> AUTO (Authentication Class)\n");
break;
default:
LOGP(DSIM7, LOGL_INFO, " -> unknown class\n");
break;
}
LOGP(DSIM7, LOGL_INFO, " INS = 0x%02x\n", ins_aprc);
switch (cla_ccrc) {
case CLA_CNTR:
switch (ins_aprc) {
case SL_APPL:
LOGP(DSIM7, LOGL_INFO, " -> SL-APPL (Select Application)\n");
break;
case CL_APPL:
LOGP(DSIM7, LOGL_INFO, " -> CL-APPL (Close Application)\n");
break;
case SH_APPL:
LOGP(DSIM7, LOGL_INFO, " -> SH-APPL (Show Application)\n");
break;
}
break;
case CLA_STAT:
switch (ins_aprc) {
case CHK_KON:
LOGP(DSIM7, LOGL_INFO, " -> CHK-KCON (Consistency Check)\n");
break;
}
break;
case CLA_WRTE:
switch (ins_aprc) {
case WT_RUFN:
LOGP(DSIM7, LOGL_INFO, " -> WR-RUFN (Write Rufnummernsatz)\n");
break;
}
break;
case CLA_READ:
switch (ins_aprc) {
case RD_EBDT:
LOGP(DSIM7, LOGL_INFO, " -> RD-EBDT (Read Einbuchdaten)\n");
break;
case RD_RUFN:
LOGP(DSIM7, LOGL_INFO, " -> RD-RUFN (Read Rufnummernsatz)\n");
break;
case RD_GEBZ:
LOGP(DSIM7, LOGL_INFO, " -> RD-GEBZ (Read Gebuehrenzaehler)\n");
break;
}
break;
case CLA_EXEC:
switch (ins_aprc) {
case CHK_PIN:
LOGP(DSIM7, LOGL_INFO, " -> CHK-PIN (Check PIN)\n");
break;
case SET_PIN:
LOGP(DSIM7, LOGL_INFO, " -> SET-PIN (Set PIN)\n");
break;
case EH_GEBZ:
LOGP(DSIM7, LOGL_INFO, " -> EH-GEBZ (Increment Gebuehrenzaehler)\n");
break;
case CL_GEBZ:
LOGP(DSIM7, LOGL_INFO, " -> CL-GEBZ (Clear Gebuehrenzaehler)\n");
break;
}
break;
case CLA_AUTO:
switch (ins_aprc) {
case AUT_1:
LOGP(DSIM7, LOGL_INFO, " -> AUTO-1 (Authorization)\n");
break;
}
break;
}
} else {
LOGP(DSIM7, LOGL_INFO, " I = Response\n");
LOGP(DSIM7, LOGL_INFO, " CCRC = 0x%02x\n", cla_ccrc);
if (cla_ccrc & CCRC_PIN_NOK)
LOGP(DSIM7, LOGL_INFO, " -> PIN-NOT-OK\n");
if (cla_ccrc & CCRC_AFBZ_NULL)
LOGP(DSIM7, LOGL_INFO, " -> AFBZ = NULL\n");
if (cla_ccrc & CCRC_APRC_VALID)
LOGP(DSIM7, LOGL_INFO, " -> APRC valid\n");
if (cla_ccrc & 0x08)
LOGP(DSIM7, LOGL_INFO, " -> reserved\n");
if (cla_ccrc & 0x10)
LOGP(DSIM7, LOGL_INFO, " -> reserved\n");
if (cla_ccrc & 0x20)
LOGP(DSIM7, LOGL_INFO, " -> reserved\n");
if (cla_ccrc & CCRC_ERROR)
LOGP(DSIM7, LOGL_INFO, " -> GENERAL ERROR\n");
LOGP(DSIM7, LOGL_INFO, " APRC = 0x%02x\n", ins_aprc);
if (ins_aprc & APRC_PIN_REQ)
LOGP(DSIM7, LOGL_INFO, " -> Bit 2 = 1:PIN-Check required\n");
else
LOGP(DSIM7, LOGL_INFO, " -> Bit 2 = 0:PIN-Check not required\n");
if (ins_aprc & APRC_APP_LOCKED)
LOGP(DSIM7, LOGL_INFO, " -> Bit 3 = 1:Application locked\n");
else
LOGP(DSIM7, LOGL_INFO, " -> Bit 3 = 0:Application unlocked\n");
if (ins_aprc & APRC_GEBZ_LOCK)
LOGP(DSIM7, LOGL_INFO, " -> Bit 5 = 1:GEBZ/RUFN locked\n");
else
LOGP(DSIM7, LOGL_INFO, " -> Bit 5 = 0:GEBZ/RUFN unlocked\n");
if (ins_aprc & APRC_GEBZ_FULL)
LOGP(DSIM7, LOGL_INFO, " -> Bit 6 = 1:GEBZ full\n");
else
LOGP(DSIM7, LOGL_INFO, " -> Bit 6 = 0:GEBZ not full\n");
}
if (dlng == 255) {
LOGP(DSIM7, LOGL_NOTICE, " Unsupported length 255!\n");
return;
}
LOGP(DSIM7, LOGL_INFO, " DLNG = %d\n", dlng);
if (dlng != length) {
LOGP(DSIM7, LOGL_NOTICE, " DLNG does not match message body!\n");
return;
}
for (i = 0; i < length; i++) {
LOGP(DSIM7, LOGL_INFO, " DATA(%d) = 0x%02x '%c' %d\n", i, data[i], (data[i] >= 32 && data[i] <= 126) ? data[i] : '.', data[i]);
}
}
/* ICL layer */
static void rx_icl_pdu(uint8_t *data, int length)
{
int icb_count, ext = 1;
if (ext) {
if (length < 1) {
LOGP(DSIMI, LOGL_NOTICE, "Message too short\n");
return;
}
LOGP(DSIMI, LOGL_INFO, "Interface control layer ICB1:\n");
if (*data & ICB1_ONLINE)
LOGP(DSIMI, LOGL_INFO, " ON-LINE-BIT: 1 = On-line data\n");
else
LOGP(DSIMI, LOGL_INFO, " ON-LINE-BIT: 0 = Off-line data\n");
if (*data & ICB1_CONFIRM)
LOGP(DSIMI, LOGL_INFO, " CONFIRM-BIT: 1 = Confirmation\n");
else
LOGP(DSIMI, LOGL_INFO, " CONFIRM-BIT: 0 = No meaning\n");
if (*data & ICB1_MASTER)
LOGP(DSIMI, LOGL_INFO, " MASTER/SLAVE-BIT: 1 = Sender is master\n");
else
LOGP(DSIMI, LOGL_INFO, " MASTER/SLAVE-BIT: 0 = Sender is slave\n");
if (*data & ICB1_WT_EXT)
LOGP(DSIMI, LOGL_INFO, " WT-EXTENSION-BIT: 1 = Request for WT-Extension\n");
else
LOGP(DSIMI, LOGL_INFO, " WT-EXTENSION-BIT: 0 = No request for WT-Extension\n");
if (*data & ICB1_ABORT)
LOGP(DSIMI, LOGL_INFO, " ABORT/TERMINATE-BIT: 1 = Abort/Terminate request\n");
else
LOGP(DSIMI, LOGL_INFO, " ABORT/TERMINATE-BIT: 0 = No meaning\n");
if (*data & ICB1_ERROR)
LOGP(DSIMI, LOGL_INFO, " ERROR-BIT: 1 = Error\n");
else
LOGP(DSIMI, LOGL_INFO, " ERROR-BIT: 0 = No meaning\n");
if (*data & ICB1_CHAINING)
LOGP(DSIMI, LOGL_INFO, " CHAINING-BIT: 1 = More ICL data follows\n");
else
LOGP(DSIMI, LOGL_INFO, " CHAINING-BIT: 0 = No more ICL data follows\n");
if (*data & ICB_EXT)
LOGP(DSIMI, LOGL_INFO, " ICB-EXTENSION-BIT: 1 = ICB2 follows\n");
else {
LOGP(DSIMI, LOGL_INFO, " ICB-EXTENSION-BIT: 0 = no ICB follows\n");
ext = 0;
}
data++;
length--;
}
if (ext) {
if (length < 1) {
LOGP(DSIMI, LOGL_NOTICE, "Message too short\n");
return;
}
LOGP(DSIMI, LOGL_INFO, "Interface control layer ICB2:\n");
if (*data & ICB2_DYNAMIC)
LOGP(DSIMI, LOGL_INFO, " DYN-BUFFER-SIZE-BIT: 1 = Buffer size %d\n", (*data & ICB2_BUFFER) * 8);
else
LOGP(DSIMI, LOGL_INFO, " DYN-BUFFER-SIZE-BIT: 0 = No meaning\n");
if (*data & ICB2_ISO_L2)
LOGP(DSIMI, LOGL_INFO, " ISO-7816-BLOCK-BIT: 1 = Compatible\n");
else
LOGP(DSIMI, LOGL_INFO, " ISO-7816-BLOCK-BIT: 0 = Incompatible\n");
if (*data & ICB2_PRIVATE)
LOGP(DSIMI, LOGL_INFO, " PRIVATE-USE-BIT: 1 = Private use layer 7 protocol\n");
else
LOGP(DSIMI, LOGL_INFO, " PRIVATE-USE-BIT: 0 = No meaning\n");
if (*data & ICB_EXT)
LOGP(DSIMI, LOGL_INFO, " ICB-EXTENSION-BIT: 1 = ICB3 follows\n");
else {
LOGP(DSIMI, LOGL_INFO, " ICB-EXTENSION-BIT: 0 = no ICB follows\n");
ext = 0;
}
data++;
length--;
}
icb_count = 2;
while (ext) {
if (length < 1) {
LOGP(DSIMI, LOGL_NOTICE, "Message too short\n");
return;
}
LOGP(DSIMI, LOGL_INFO, "Interface control layer ICB%d:\n", ++icb_count);
LOGP(DSIMI, LOGL_INFO, " Value: 0x%02x\n", *data);
if (!(*data & 0x80))
ext = 0;
data++;
length--;
}
rx_icl_sdu(data, length);
}
/* Layer 2 */
static uint8_t flip(uint8_t c)
{
c = ((c&0x55) << 1) | ((c&0xaa) >> 1); /* 67452301 */
c = ((c&0x33) << 2) | ((c&0xcc) >> 2); /* 45670123 */
c = (c << 4) | (c >> 4); /* 01234567 */
return c;
}
void sniffer_reset(sim_sniffer_t *sim)
{
LOGP(DSIM1, LOGL_INFO, "Resetting sniffer\n");
memset(sim, 0, sizeof(*sim));
}
static void decode_ta1(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
int fi = -1, di = -1;
double fmax = 0.0;
switch (c >> 4) {
case 0:
fi = 372; fmax = 4.0;
break;
case 1:
fi = 372; fmax = 5.0;
break;
case 2:
fi = 558; fmax = 6.0;
break;
case 3:
fi = 744; fmax = 8.0;
break;
case 4:
fi = 1116; fmax = 12.0;
break;
case 5:
fi = 1488; fmax = 16.0;
break;
case 6:
fi = 1860; fmax = 20.0;
break;
case 9:
fi = 512; fmax = 5.0;
break;
case 10:
fi = 768; fmax = 7.5;
break;
case 11:
fi = 1014; fmax = 10.0;
break;
case 12:
fi = 1536; fmax = 15.0;
break;
case 13:
fi = 2048; fmax = 20.0;
break;
}
switch (c & 0xf) {
case 1:
di = 1;
break;
case 2:
di = 2;
break;
case 3:
di = 4;
break;
case 4:
di = 8;
break;
case 5:
di = 16;
break;
case 6:
di = 32;
break;
case 7:
di = 64;
break;
case 8:
di = 12;
break;
case 9:
di = 20;
break;
}
if (fi > 0)
LOGP(DSIM2, LOGL_INFO, " TA%d Fi = %d, f(max.) = %.1f MHz\n", count, fi, fmax);
else
LOGP(DSIM2, LOGL_INFO, " TA%d Fi = RFU\n", count);
if (di > 0)
LOGP(DSIM2, LOGL_INFO, " TA%d Di = %d\n", count, di);
else
LOGP(DSIM2, LOGL_INFO, " TA%d Di = RFU\n", count);
}
static void decode_ta2(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
LOGP(DSIM2, LOGL_INFO, " TA%d T = %d\n", count, c & 0xf);
if (!(c & 0x10))
LOGP(DSIM2, LOGL_INFO, " TA%d : Fi and Di by TA1 shall apply.\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TA%d : Implicit values (and not Di / Di by TA1) sall apply.\n", count);
if (!(c & 0x80))
LOGP(DSIM2, LOGL_INFO, " TA%d : Capable to change negotiable/specific mode.\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TA%d : Unable to change negotiable/specific mode.\n", count);
}
static void decode_tai(sim_sniffer_t *sim, uint8_t c, int count)
{
if ((sim->atr_td & 0xf) != 14) {
LOGP(DSIM2, LOGL_INFO, " TA%d Value = 0x%02x\n", count, c);
return;
}
if (count == 3) {
switch (c & 0xf) {
case 0:
LOGP(DSIM2, LOGL_INFO, " TA%d fsmin = Default\n", count);
break;
case 1:
case 2:
case 3:
LOGP(DSIM2, LOGL_INFO, " TA%d fsmin = %d MHz\n", count, c & 0xf);
break;
default:
LOGP(DSIM2, LOGL_INFO, " TA%d fsmin = reserved\n", count);
break;
}
switch (c >> 4) {
case 0:
case 1:
case 2:
case 3:
LOGP(DSIM2, LOGL_INFO, " TA%d fsmax = reserved\n", count);
break;
case 5:
LOGP(DSIM2, LOGL_INFO, " TA%d fsmax = 5 MHz (Default)\n", count);
break;
default:
LOGP(DSIM2, LOGL_INFO, " TA%d fsmax = %d MHz\n", count, c >> 4);
break;
}
} else {
LOGP(DSIM2, LOGL_INFO, " TA%d Block Waiting Time = %d\n", count, c);
}
}
static void decode_tb1(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
if ((c & 0x1f) == 0)
LOGP(DSIM2, LOGL_INFO, " TB%d PI1=0: VPP not connected\n", count);
else if ((c & 0x1f) == 5)
LOGP(DSIM2, LOGL_INFO, " TB%d PI1=5: VPP is 5 Volts (default)\n", count);
else if ((c & 0x1f) >= 6 && (c & 0x1f) <= 25)
LOGP(DSIM2, LOGL_INFO, " TB%d PI1=%d: VPP is %d Volts\n", count, c & 0x1f, (c & 0x1f) - 1);
else
LOGP(DSIM2, LOGL_INFO, " TB%d PI1=%d: not defined\n", count, c & 0x1f);
LOGP(DSIM2, LOGL_INFO, " TB%d II = %d\n", count, (c >> 5) & 0x3);
}
static void decode_tb2(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
LOGP(DSIM2, LOGL_INFO, " TB%d Value = 0x%02x\n", count, c);
}
static void decode_tbi(sim_sniffer_t *sim, uint8_t c, int count)
{
if ((sim->atr_td & 0xf) != 14) {
LOGP(DSIM2, LOGL_INFO, " TB%d Value = 0x%02x\n", count, c);
return;
}
if (count == 3) {
LOGP(DSIM2, LOGL_INFO, " TB%d Maximum block size = %d\n", count, c);
} else {
if (!(c & 0x01))
LOGP(DSIM2, LOGL_INFO, " TB%d XOR Checksum\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TB%d CRC Checksum\n", count);
if (!(c & 0x02))
LOGP(DSIM2, LOGL_INFO, " TB%d 12-etu frame\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TB%d 11-etu frame\n", count);
if (!(c & 0x04))
LOGP(DSIM2, LOGL_INFO, " TB%d No Chaining in ICL-Layer-Protocol\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TB%d Chaining in ICL-Layer-Protocol\n", count);
if (!(c & 0x08))
LOGP(DSIM2, LOGL_INFO, " TB%d Incompatible to ISO 7816 (Character Protocol)\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TB%d Compatible to ISO 7816 (Character Protocol)\n", count);
if (!(c & 0x10))
LOGP(DSIM2, LOGL_INFO, " TB%d No private in ICL-Layer-Protocol\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TB%d Private in ICL-Layer-Protocol\n", count);
if (!(c & 0x20))
LOGP(DSIM2, LOGL_INFO, " TB%d No ICB-Extension in ICL-Layer-Protocol\n", count);
else
LOGP(DSIM2, LOGL_INFO, " TB%d ICB-Extension in ICL-Layer-Protocol\n", count);
}
}
static void decode_tc1(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
LOGP(DSIM2, LOGL_INFO, " TC%d N = %d\n", count, c);
}
static void decode_tc2(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
LOGP(DSIM2, LOGL_INFO, " TC%d Value = 0x%02x\n", count, c);
}
static void decode_tci(sim_sniffer_t *sim, uint8_t c, int count)
{
if ((sim->atr_td & 0xf) != 14) {
LOGP(DSIM2, LOGL_INFO, " TC%d Value = 0x%02x\n", count, c);
return;
}
LOGP(DSIM2, LOGL_INFO, " TC%d Character Waiting Time = %d\n", count, c);
}
static void decode_td(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
switch (c & 0xf) {
case 0:
LOGP(DSIM2, LOGL_INFO, " TD%d T=1: Half-duplex transmission of characters (ISO 7816).\n", count);
break;
case 1:
LOGP(DSIM2, LOGL_INFO, " TD%d T=1: Half-duplex transmission of blocks (ISO 7816).\n", count);
break;
case 2:
case 3:
LOGP(DSIM2, LOGL_INFO, " TD%d T=%d: Reserved for future full-duplex operations.\n", count, c & 0xf);
break;
case 4:
LOGP(DSIM2, LOGL_INFO, " TD%d T=4: Reserved for an enhanced half-duplex transmission of characters.\n", count);
break;
case 5:
case 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
case 13:
LOGP(DSIM2, LOGL_INFO, " TD%d T=%d: Reserved for future use by ISO/IEC JTC 1/SC 17.\n", count, c & 0xf);
break;
case 14:
LOGP(DSIM2, LOGL_INFO, " TD%d T=14: Refers to transmission protocols not standardized by ISO/IEC JTC 1/SC 17.\n", count);
break;
case 15:
LOGP(DSIM2, LOGL_INFO, " TD%d T=15: Does not refer to a transmission protocol, but only qualifies global interface bytes.\n", count);
break;
}
}
static void decode_if(sim_sniffer_t *sim, int count)
{
switch (count) {
case 1:
if (sim->atr_if_mask & 0x10)
decode_ta1(sim, sim->atr_ta, count);
if (sim->atr_if_mask & 0x20)
decode_tb1(sim, sim->atr_tb, count);
if (sim->atr_if_mask & 0x40)
decode_tc1(sim, sim->atr_tc, count);
if (sim->atr_if_mask & 0x80)
decode_td(sim, sim->atr_td, count);
break;
case 2:
if (sim->atr_if_mask & 0x10)
decode_ta2(sim, sim->atr_ta, count);
if (sim->atr_if_mask & 0x20)
decode_tb2(sim, sim->atr_tb, count);
if (sim->atr_if_mask & 0x40)
decode_tc2(sim, sim->atr_tc, count);
if (sim->atr_if_mask & 0x80)
decode_td(sim, sim->atr_td, count);
break;
default:
if (sim->atr_if_mask & 0x10)
decode_tai(sim, sim->atr_ta, count);
if (sim->atr_if_mask & 0x20)
decode_tbi(sim, sim->atr_tb, count);
if (sim->atr_if_mask & 0x40)
decode_tci(sim, sim->atr_tc, count);
if (sim->atr_if_mask & 0x80)
decode_td(sim, sim->atr_td, count);
}
if ((sim->atr_td >> 4))
LOGP(DSIM2, LOGL_INFO, "----------------------------------------\n");
}
static void decode_hist(sim_sniffer_t __attribute__((unused)) *sim, uint8_t c, int count)
{
LOGP(DSIM2, LOGL_INFO, " History byte #%d: 0x%02x\n", count, c);
}
static void rx_atr(sim_sniffer_t *sim, uint8_t c)
{
/* TS */
if (sim->atr_count == 0) {
LOGP(DSIM1, LOGL_INFO, "----------------------------------------\n");
switch (c) {
case 0x3f:
LOGP(DSIM2, LOGL_INFO, "Reading ATR inverse bit order:\n");
sim->inverse_order = 1;
break;
case 0x3b:
LOGP(DSIM2, LOGL_INFO, "Reading ATR normal bit order:\n");
sim->inverse_order = 0;
break;
default:
sniffer_reset(sim);
return;
}
sim->atr_tck = c;
sim->atr_count++;
return;
}
if (sim->inverse_order)
c = flip (c);
sim->atr_tck ^= c;
if (sim->atr_count == 1) {
sim->atr_t0 = c;
sim->atr_if_mask = c;
sim->atr_count++;
return;
}
/* get TA, if included, or skip by inc. atr_count */
if (sim->atr_count == 2) {
if (sim->atr_if_mask & 0x10) {
sim->atr_ta = c;
sim->atr_count++;
return;
} else
sim->atr_count++;
}
/* get TB, if included, or skip by inc. atr_count */
if (sim->atr_count == 3) {
if (sim->atr_if_mask & 0x20) {
sim->atr_tb = c;
sim->atr_count++;
return;
} else
sim->atr_count++;
}
/* get TC, if included, or skip by inc. atr_count */
if (sim->atr_count == 4) {
if (sim->atr_if_mask & 0x40) {
sim->atr_tc = c;
sim->atr_count++;
return;
} else
sim->atr_count++;
}
/* get TD, if included, or skip by inc. atr_count */
if (sim->atr_count == 5) {
if (sim->atr_if_mask & 0x80) {
sim->atr_td = c;
/* decode content */
decode_if(sim, sim->atr_if_count + 1);
/* get new mask byte and start over */
sim->atr_count = 2;
sim->atr_if_mask = sim->atr_td;
sim->atr_if_count++;
return;
} else
sim->atr_count++;
}
/* decode content */
if (sim->atr_count == 6)
decode_if(sim, sim->atr_if_count + 1);
/* process historical character */
if (sim->atr_count < 6 + (sim->atr_t0 & 0xf)) {
decode_hist(sim, c, sim->atr_count - 6 + 1);
sim->atr_count++;
return;
}
if (sim->atr_tck == 0)
LOGP(DSIM2, LOGL_INFO, " Checksum 0x%02x ok.\n", c);
else
LOGP(DSIM2, LOGL_NOTICE, " Checksum 0x%02x error!\n", c);
sim->l1_state = L1_STATE_RECEIVE;
sim->block_state = BLOCK_STATE_ADDRESS;
LOGP(DSIM2, LOGL_INFO, "ATR done!\n");
}
static void rx_char(sim_sniffer_t *sim, uint8_t c)
{
if (sim->inverse_order)
c = flip(c);
sim->block_checksum ^= c;
switch (sim->block_state) {
case BLOCK_STATE_ADDRESS:
if ((c >> 4) != 1 && (c & 0xf) != 1) {
/* start over if we do not get a valid message start */
sniffer_reset(sim);
sniffer_rx(sim, c);
return;
}
LOGP(DSIM1, LOGL_INFO, "----------------------------------------\n");
sim->block_address = c;
sim->block_state = BLOCK_STATE_CONTROL;
sim->block_checksum = c;
return;
case BLOCK_STATE_CONTROL:
sim->block_control = c;
sim->block_state = BLOCK_STATE_LENGTH;
return;
case BLOCK_STATE_LENGTH:
sim->block_length = c;
sim->block_count = 0;
sim->block_state = BLOCK_STATE_DATA;
return;
case BLOCK_STATE_DATA:
if (sim->block_count < sim->block_length) {
sim->block_data[sim->block_count++] = c;
return;
}
LOGP(DSIM2, LOGL_INFO, "Layer 2:\n");
LOGP(DSIM2, LOGL_INFO, " source %d -> to %d\n", sim->block_address >> 4, sim->block_address & 0xf);
if ((sim->block_control & 0x11) == 0x00)
LOGP(DSIM2, LOGL_INFO, " control I: N(S)=%d N(R)=%d\n", (sim->block_control >> 1) & 7, sim->block_control >> 5);
else if ((sim->block_control & 0x1f) == 0x09)
LOGP(DSIM2, LOGL_INFO, " control REJ: N(R)=%d\n", sim->block_control >> 5);
else if (sim->block_control == 0xef)
LOGP(DSIM2, LOGL_INFO, " control RES\n");
else
LOGP(DSIM2, LOGL_INFO, " control unknown 0x%02x\n", sim->block_control);
LOGP(DSIM2, LOGL_INFO, " length %d\n", sim->block_length);
if (sim->block_checksum == 0) {
FILE *fp;
if (write_pdu_file && (fp = fopen(write_pdu_file, "a"))) {
int i;
fprintf(fp, "PDU: addr=0x%02x ctrl=0x%02x len=0x%02x data:", sim->block_address, sim->block_control, sim->block_length);
for (i = 0; i < sim->block_length; i++)
fprintf(fp, " 0x%02x", sim->block_data[i]);
fprintf(fp, "\n");
fclose (fp);
}
rx_icl_pdu(sim->block_data, sim->block_length);
} else
LOGP(DSIM2, LOGL_NOTICE, "Received message with checksum error!\n");
sim->block_state = BLOCK_STATE_ADDRESS;
}
}
void sniffer_rx(sim_sniffer_t *sim, uint8_t c)
{
LOGP(DSIM1, LOGL_DEBUG, "Serial RX '0x%02x'\n", c);
switch (sim->l1_state) {
case L1_STATE_RESET:
if (c != 0x3f && c != 0x3b) {
LOGP(DSIM1, LOGL_INFO, "Received garbage '0x%02x' while waiting for ATR\n", c);
break;
}
sim->l1_state = L1_STATE_ATR;
sim->atr_count = 0;
/* fall through */
case L1_STATE_ATR:
rx_atr(sim, c);
break;
case L1_STATE_RECEIVE:
rx_char(sim, c);
break;
default:
break;
}
}
void sniffer_timeout(sim_sniffer_t *sim)
{
switch (sim->l1_state) {
case L1_STATE_RESET:
case L1_STATE_ATR:
if (sim->l1_state == L1_STATE_ATR && sim->atr_count)
LOGP(DSIM1, LOGL_NOTICE, "Timeout while receiving ATR!\n");
sim->l1_state = L1_STATE_ATR;
sim->atr_count = 0;
break;
case L1_STATE_RECEIVE:
if (sim->block_state != BLOCK_STATE_ADDRESS)
LOGP(DSIM1, LOGL_NOTICE, "Timeout while receiving message!\n");
sim->block_state = BLOCK_STATE_ADDRESS;
break;
default:
break;
}
}
#endif /* ARDUINO */