osmocom-analog/src/libsamplerate/samplerate.c

202 lines
5.2 KiB
C

/* Sample rate conversion
*
* (C) 2016 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include "../libsample/sample.h"
#include "samplerate.h"
int init_samplerate(samplerate_t *state, double low_samplerate, double high_samplerate, double filter_cutoff)
{
memset(state, 0, sizeof(*state));
state->factor = high_samplerate / low_samplerate;
if (state->factor < 1.0) {
fprintf(stderr, "Software error: Low sample rate must be lower than high sample rate, aborting!\n");
abort();
}
state->filter_cutoff = filter_cutoff;
if (state->filter_cutoff) {
iir_lowpass_init(&state->up.lp, filter_cutoff, high_samplerate, 2);
iir_lowpass_init(&state->down.lp, filter_cutoff, high_samplerate, 2);
}
return 0;
}
/* convert high sample rate to low sample rate */
int samplerate_downsample(samplerate_t *state, sample_t *samples, int input_num)
{
int output_num = 0, i, idx;
double factor = state->factor, in_index, diff;
sample_t output[(int)((double)input_num / factor + 0.5) + 10]; /* add some safety */
sample_t last_sample;
/* filter down */
if (state->filter_cutoff)
iir_process(&state->down.lp, samples, input_num);
/* get last sample for interpolation */
last_sample = state->down.last_sample;
/* resample filtered result */
in_index = state->down.in_index;
for (i = 0; ; i++) {
/* convert index to int */
idx = (int)in_index;
/* if index is outside input sample range, we are done */
if (idx >= input_num)
break;
/* linear interpolation */
diff = in_index - (double)idx;
if (idx)
output[i] = samples[idx - 1] * (1.0 - diff) + samples[idx] * diff;
else
output[i] = last_sample * (1.0 - diff) + samples[idx] * diff;
/* count output number */
output_num++;
/* increment input index */
in_index += factor;
}
/* store last sample for interpolation */
if (input_num)
state->down.last_sample = samples[input_num - 1];
/* remove number of input samples from index */
in_index -= (double)input_num;
/* in_index cannot be negative, except due to rounding error, so... */
if ((int)in_index < 0)
in_index = 0.0;
state->down.in_index = in_index;
/* copy samples */
for (i = 0; i < output_num; i++)
*samples++ = output[i];
return output_num;
}
int samplerate_upsample_input_num(samplerate_t *state, int output_num)
{
double factor = 1.0 / state->factor, in_index;
int idx = 0;
/* count output */
in_index = state->up.in_index;
while (output_num--) {
/* increment input index */
in_index += factor;
/* count index on overflow */
if (in_index >= 1.0) {
idx++;
in_index -= 1.0;
}
}
return idx;
}
int samplerate_upsample_output_num(samplerate_t *state, int input_num)
{
double factor = 1.0 / state->factor, in_index;
int output_num = 0, idx = 0;
/* count output */
in_index = state->up.in_index;
while (idx < input_num) {
/* count output number */
output_num++;
/* increment input index */
in_index += factor;
/* count index on overflow */
if (in_index >= 1.0) {
idx++;
in_index -= 1.0;
}
}
return output_num;
}
/* convert low sample rate to high sample rate */
void samplerate_upsample(samplerate_t *state, sample_t *input, int input_num, sample_t *output, int output_num)
{
int i, idx;
double factor = 1.0 / state->factor, in_index;
sample_t buff[output_num];
sample_t *samples, current_sample, last_sample;
/* get last sample for interpolation */
current_sample = state->up.current_sample;
last_sample = state->up.last_sample;
if (input == output)
samples = buff;
else
samples = output;
/* resample input */
in_index = state->up.in_index;
idx = 0;
for (i = 0; i < output_num; i++) {
/* linear interpolation */
samples[i] = last_sample * (1.0 - in_index) + current_sample * in_index;
/* increment input index */
in_index += factor;
/* get next sample on overflow */
if (in_index >= 1.0) {
if (idx == input_num) {
fprintf(stderr, "Given input_num is too small, please fix!\n");
}
last_sample = current_sample;
current_sample = input[idx++];
in_index -= 1.0;
}
}
if (idx < input_num) {
fprintf(stderr, "Given input_num is too large, please fix!\n");
abort();
}
/* store last sample for interpolation */
state->up.last_sample = last_sample;
state->up.current_sample = current_sample;
state->up.in_index = in_index;
/* filter up */
if (state->filter_cutoff)
iir_process(&state->up.lp, samples, output_num);
if (input == output) {
/* copy samples */
for (i = 0; i < output_num; i++)
*output++ = samples[i];
}
}