/* SDR processing * * (C) 2017 by Andreas Eversberg * All Rights Reserved * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include "sample.h" #include "filter.h" #include "sender.h" #ifdef HAVE_UHD #include "uhd.h" #endif #include "debug.h" //#define FAST_SINE typedef struct sdr_chan { double tx_frequency; /* frequency used */ double rx_frequency; /* frequency used */ double offset; /* offset to calculated center frequency */ double tx_phase; /* current phase of FM (used to shift and modulate ) */ double rx_rot; /* rotation step per sample to shift rx frequency (used to shift) */ double rx_phase; /* current rotation phase (used to shift) */ double rx_last_phase; /* last phase of FM (used to demodulate) */ filter_t rx_lp[2]; /* filters received IQ signal */ } sdr_chan_t; typedef struct sdr { sdr_chan_t *chan; /* settings for all channels */ int paging_channel; /* if set, points to paging channel */ sdr_chan_t paging_chan; /* settings for extra paging channel */ int channels; /* number of frequencies */ double samplerate; /* IQ rate */ double amplitude; /* amplitude of each carrier */ wave_rec_t wave_rx_rec; wave_rec_t wave_tx_rec; wave_play_t wave_rx_play; } sdr_t; static const char *sdr_device_args; static double sdr_rx_gain, sdr_tx_gain; const char *sdr_write_iq_rx_wave, *sdr_write_iq_tx_wave, *sdr_read_iq_rx_wave; #ifdef FAST_SINE static float sdr_sine[256]; #endif int sdr_init(const char *device_args, double rx_gain, double tx_gain, const char *write_iq_rx_wave, const char *write_iq_tx_wave, const char *read_iq_rx_wave) { #ifdef FAST_SINE int i; for (i = 0; i < 256; i++) { sdr_sine[i] = sin(2.0*M_PI*i/256); } #endif sdr_device_args = strdup(device_args); sdr_rx_gain = rx_gain; sdr_tx_gain = tx_gain; sdr_write_iq_rx_wave = write_iq_rx_wave; sdr_write_iq_tx_wave = write_iq_tx_wave; sdr_read_iq_rx_wave = read_iq_rx_wave; return 0; } void *sdr_open(const char __attribute__((__unused__)) *audiodev, double *tx_frequency, double *rx_frequency, int channels, double paging_frequency, int samplerate, double max_deviation, double max_modulation) { sdr_t *sdr; double bandwidth; double tx_center_frequency, rx_center_frequency; int rc; int c; display_iq_init(samplerate); display_spectrum_init(samplerate); bandwidth = 2.0 * (max_deviation + max_modulation); PDEBUG(DSDR, DEBUG_INFO, "Using Bandwidth of 2 * (%.1f + %.1f) = %.1f\n", max_deviation / 1000, max_modulation / 1000, bandwidth / 1000); if (channels < 1) { PDEBUG(DSDR, DEBUG_ERROR, "No channel given, please fix!\n"); abort(); } sdr = calloc(sizeof(*sdr), 1); if (!sdr) { PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n"); goto error; } sdr->channels = channels; sdr->samplerate = samplerate; sdr->amplitude = 0.4 / (double)channels; // FIXME: actual amplitude 0.1? /* special case where we use a paging frequency */ if (paging_frequency) { /* add extra paging channel */ sdr->paging_channel = channels; } /* create list of channel states */ sdr->chan = calloc(sizeof(*sdr->chan), channels + (sdr->paging_channel != 0)); if (!sdr->chan) { PDEBUG(DSDR, DEBUG_ERROR, "NO MEM!\n"); goto error; } for (c = 0; c < channels; c++) { PDEBUG(DSDR, DEBUG_INFO, "Frequency #%d: TX = %.6f MHz, RX = %.6f MHz\n", c, tx_frequency[c] / 1e6, rx_frequency[c] / 1e6); sdr->chan[c].tx_frequency = tx_frequency[c]; sdr->chan[c].rx_frequency = rx_frequency[c]; filter_lowpass_init(&sdr->chan[c].rx_lp[0], bandwidth / 2.0, samplerate, 1); filter_lowpass_init(&sdr->chan[c].rx_lp[1], bandwidth / 2.0, samplerate, 1); } if (sdr->paging_channel) { PDEBUG(DSDR, DEBUG_INFO, "Paging Frequency: TX = %.6f MHz\n", paging_frequency / 1e6); sdr->chan[sdr->paging_channel].tx_frequency = paging_frequency; } /* calculate required bandwidth (IQ rate) */ double tx_low_frequency = sdr->chan[0].tx_frequency, tx_high_frequency = sdr->chan[0].tx_frequency; double rx_low_frequency = sdr->chan[0].rx_frequency, rx_high_frequency = sdr->chan[0].rx_frequency; double range; for (c = 1; c < channels; c++) { if (sdr->chan[c].tx_frequency < tx_low_frequency) tx_low_frequency = sdr->chan[c].tx_frequency; if (sdr->chan[c].tx_frequency > tx_high_frequency) tx_high_frequency = sdr->chan[c].tx_frequency; if (sdr->chan[c].rx_frequency < rx_low_frequency) rx_low_frequency = sdr->chan[c].rx_frequency; if (sdr->chan[c].rx_frequency > rx_high_frequency) rx_high_frequency = sdr->chan[c].rx_frequency; } if (sdr->paging_channel) { if (sdr->chan[sdr->paging_channel].tx_frequency < tx_low_frequency) tx_low_frequency = sdr->chan[sdr->paging_channel].tx_frequency; if (sdr->chan[sdr->paging_channel].tx_frequency > tx_high_frequency) tx_high_frequency = sdr->chan[sdr->paging_channel].tx_frequency; } /* range of TX */ range = tx_high_frequency - tx_low_frequency; if (range) PDEBUG(DSDR, DEBUG_DEBUG, "Range between all TX Frequencies: %.6f MHz\n", range / 1e6); if (range * 2 > sdr->samplerate) { // why that? actually i don't know. i just want to be safe.... PDEBUG(DSDR, DEBUG_NOTICE, "The sample rate must be at least twice the range between frequencies.\n"); PDEBUG(DSDR, DEBUG_NOTICE, "The given rate is %.6f MHz, but required rate must be >= %.6f MHz\n", sdr->samplerate / 1e6, range * 2.0 / 1e6); PDEBUG(DSDR, DEBUG_NOTICE, "Please increase samplerate!\n"); goto error; } tx_center_frequency = (tx_high_frequency + tx_low_frequency) / 2.0; /* range of RX */ range = rx_high_frequency - rx_low_frequency; if (range) PDEBUG(DSDR, DEBUG_DEBUG, "Range between all RX Frequencies: %.6f MHz\n", range / 1e6); if (range * 2.0 > sdr->samplerate) { // why that? actually i don't know. i just want to be safe.... PDEBUG(DSDR, DEBUG_NOTICE, "The sample rate must be at least twice the range between frequencies. Please increment samplerate!\n"); goto error; } rx_center_frequency = (rx_high_frequency + rx_low_frequency) / 2.0; PDEBUG(DSDR, DEBUG_INFO, "Using center frequency: TX %.6f MHz, RX %.6f\n", tx_center_frequency / 1e6, rx_center_frequency / 1e6); /* set offsets to center frequency */ for (c = 0; c < channels; c++) { double rx_offset; sdr->chan[c].offset = sdr->chan[c].tx_frequency - tx_center_frequency; rx_offset = sdr->chan[c].rx_frequency - rx_center_frequency; sdr->chan[c].rx_rot = 2 * M_PI * -rx_offset / sdr->samplerate; PDEBUG(DSDR, DEBUG_DEBUG, "Frequency #%d: TX offset: %.6f MHz, RX offset: %.6f MHz\n", c, sdr->chan[c].offset / 1e6, rx_offset / 1e6); } if (sdr->paging_channel) { sdr->chan[sdr->paging_channel].offset = sdr->chan[sdr->paging_channel].tx_frequency - tx_center_frequency; PDEBUG(DSDR, DEBUG_DEBUG, "Paging Frequency: TX offset: %.6f MHz\n", sdr->chan[sdr->paging_channel].offset / 1e6); } PDEBUG(DSDR, DEBUG_INFO, "Using gain: TX %.1f dB, RX %.1f dB\n", sdr_tx_gain, sdr_rx_gain); if (sdr_write_iq_rx_wave) { rc = wave_create_record(&sdr->wave_rx_rec, sdr_write_iq_rx_wave, sdr->samplerate, 2, 1.0); if (rc < 0) { PDEBUG(DSENDER, DEBUG_ERROR, "Failed to create WAVE recoding instance!\n"); goto error; } } if (sdr_write_iq_tx_wave) { rc = wave_create_record(&sdr->wave_tx_rec, sdr_write_iq_tx_wave, sdr->samplerate, 2, 1.0); if (rc < 0) { PDEBUG(DSENDER, DEBUG_ERROR, "Failed to create WAVE recoding instance!\n"); goto error; } } if (sdr_read_iq_rx_wave) { rc = wave_create_playback(&sdr->wave_rx_play, sdr_read_iq_rx_wave, sdr->samplerate, 2, 1.0); if (rc < 0) { PDEBUG(DSENDER, DEBUG_ERROR, "Failed to create WAVE playback instance!\n"); goto error; } } #ifdef HAVE_UHD rc = uhd_open(sdr_device_args, tx_center_frequency, rx_center_frequency, sdr->samplerate, sdr_rx_gain, sdr_tx_gain); if (rc) goto error; #endif return sdr; error: sdr_close(sdr); return NULL; } void sdr_close(void *inst) { sdr_t *sdr = (sdr_t *)inst; #ifdef HAVE_UHD uhd_close(); #endif if (sdr) { wave_destroy_record(&sdr->wave_rx_rec); wave_destroy_record(&sdr->wave_tx_rec); wave_destroy_playback(&sdr->wave_rx_play); free(sdr->chan); free(sdr); sdr = NULL; } } int sdr_write(void *inst, sample_t **samples, int num, enum paging_signal __attribute__((unused)) *paging_signal, int *on, int channels) { sdr_t *sdr = (sdr_t *)inst; float buff[num * 2]; int c, s, ss; double rate, offset, phase, amplitude, dev; int sent; if (channels != sdr->channels) { PDEBUG(DSDR, DEBUG_ERROR, "Invalid number of channels, please fix!\n"); abort(); } /* process all channels */ rate = sdr->samplerate; amplitude = sdr->amplitude; memset(buff, 0, sizeof(buff)); for (c = 0; c < channels; c++) { phase = sdr->chan[c].tx_phase; /* switch offset to paging channel, if requested */ if (on[c] && sdr->paging_channel) offset = sdr->chan[sdr->paging_channel].offset; else offset = sdr->chan[c].offset; /* modulate */ for (s = 0, ss = 0; s < num; s++) { /* deviation is defined by the sample value and the offset */ dev = offset + samples[c][s]; #ifdef FAST_SINE phase += 256.0 * dev / rate; if (phase < 0.0) phase += 256.0; if (phase >= 256.0) phase -= 256.0; buff[ss++] += sdr_sine[((int)phase + 64) & 0xff] * amplitude; buff[ss++] += sdr_sine[(int)phase & 0xff] * amplitude; #else phase += 2.0 * M_PI * dev / rate; if (phase < 0.0) phase += 2.0 * M_PI; if (phase >= 2.0 * M_PI) phase -= 2.0 * M_PI; buff[ss++] += cos(phase) * amplitude; buff[ss++] += sin(phase) * amplitude; #endif } sdr->chan[c].tx_phase = phase; } if (sdr->wave_tx_rec.fp) { sample_t spl[2][num], *spl_list[2] = { spl[0], spl[1] }; for (s = 0, ss = 0; s < num; s++) { spl[0][s] = buff[ss++]; spl[1][s] = buff[ss++]; } wave_write(&sdr->wave_tx_rec, spl_list, num); } #ifdef HAVE_UHD sent = uhd_send(buff, num); #endif if (sent < 0) return sent; return sent; } int sdr_read(void *inst, sample_t **samples, int num, int channels) { sdr_t *sdr = (sdr_t *)inst; float buff[num * 2]; sample_t I[num], Q[num], i, q; int count; int c, s, ss; double phase, rot, last_phase, dev, rate; rate = sdr->samplerate; #ifdef HAVE_UHD count = uhd_receive(buff, num); #endif if (count <= 0) return count; if (sdr->wave_rx_rec.fp) { sample_t spl[2][count], *spl_list[2] = { spl[0], spl[1] }; for (s = 0, ss = 0; s < count; s++) { spl[0][s] = buff[ss++]; spl[1][s] = buff[ss++]; } wave_write(&sdr->wave_rx_rec, spl_list, count); } if (sdr->wave_rx_play.fp) { sample_t spl[2][count], *spl_list[2] = { spl[0], spl[1] }; wave_read(&sdr->wave_rx_play, spl_list, count); for (s = 0, ss = 0; s < count; s++) { buff[ss++] = spl[0][s]; buff[ss++] = spl[1][s]; } } display_iq(buff, count); display_spectrum(buff, count); for (c = 0; c < channels; c++) { rot = sdr->chan[c].rx_rot; phase = sdr->chan[c].rx_phase; for (s = 0, ss = 0; s < count; s++) { phase += rot; i = buff[ss++]; q = buff[ss++]; I[s] = i * cos(phase) - q * sin(phase); Q[s] = i * sin(phase) + q * cos(phase); } sdr->chan[c].rx_phase = phase; filter_process(&sdr->chan[c].rx_lp[0], I, count); filter_process(&sdr->chan[c].rx_lp[1], Q, count); last_phase = sdr->chan[c].rx_last_phase; for (s = 0; s < count; s++) { phase = atan2(Q[s], I[s]); dev = (phase - last_phase) / 2 / M_PI; last_phase = phase; if (dev < -0.49) dev += 1.0; else if (dev > 0.49) dev -= 1.0; dev *= rate; samples[c][s] = dev; } sdr->chan[c].rx_last_phase = last_phase; } return count; } /* how many delay (in audio sample duration) do we have in the buffer */ int sdr_get_inbuffer(void __attribute__((__unused__)) *inst) { // sdr_t *sdr = (sdr_t *)inst; int count; #ifdef HAVE_UHD count = uhd_get_inbuffer(); #endif if (count < 0) return count; return count; }