/* C-Netz audio processing * * (C) 2016 by Andreas Eversberg * All Rights Reserved * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include "../common/debug.h" #include "../common/timer.h" #include "cnetz.h" #include "sysinfo.h" #include "telegramm.h" #include "dsp.h" /* test function to mirror received audio from ratio back to radio */ //#define TEST_SCRABLE /* test the audio quality after cascading two scramblers (TEST_SCRABLE must be defined) */ //#define TEST_UNSCRABLE #define PI M_PI #define BITRATE 5280.0 /* bits per second */ #define BLOCK_BITS 198 /* duration of one time slot including pause at beginning and end */ #ifdef TEST_SCRABLE jitter_t scrambler_test_jb; scrambler_t scrambler_test_scrambler1; scrambler_t scrambler_test_scrambler2; #endif static int16_t ramp_up[256], ramp_down[256]; void dsp_init(void) { } static void dsp_init_ramp(cnetz_t *cnetz) { double c; int i; int16_t deviation = cnetz->fsk_deviation; PDEBUG(DDSP, DEBUG_DEBUG, "Generating smooth ramp table.\n"); for (i = 0; i < 256; i++) { c = cos((double)i / 256.0 * PI); #if 0 if (c < 0) c = -sqrt(-c); else c = sqrt(c); #endif ramp_down[i] = (int)(c * (double)deviation); ramp_up[i] = -ramp_down[i]; } } /* Init transceiver instance. */ int dsp_init_sender(cnetz_t *cnetz, int measure_speed, double clock_speed[2], double deviation, double noise) { int rc = 0; double size; PDEBUG(DDSP, DEBUG_DEBUG, "Init FSK for 'Sender'.\n"); if (measure_speed) { cnetz->measure_speed = measure_speed; cant_recover = 1; } if (clock_speed[0] > 1000 || clock_speed[0] < -1000 || clock_speed[1] > 1000 || clock_speed[1] < -1000) { PDEBUG(DDSP, DEBUG_ERROR, "Clock speed %.1f,%.1f ppm out of range! Plese use range between +-1000 ppm!\n", clock_speed[0], clock_speed[1]); return -EINVAL; } PDEBUG(DDSP, DEBUG_INFO, "Using clock speed of %.1f ppm (RX) and %.1f ppm (TX) to correct sound card's clock.\n", clock_speed[0], clock_speed[1]); cnetz->fsk_bitduration = (double)cnetz->sender.samplerate / ((double)BITRATE / (1.0 + clock_speed[1] / 1000000.0)); cnetz->fsk_tx_bitstep = 1.0 / cnetz->fsk_bitduration; PDEBUG(DDSP, DEBUG_DEBUG, "Use %.4f samples for one bit duration @ %d.\n", cnetz->fsk_bitduration, cnetz->sender.samplerate); size = cnetz->fsk_bitduration * (double)BLOCK_BITS * 16.0; /* 16 blocks for distributed frames */ cnetz->fsk_tx_buffer_size = size * 1.1; /* more to compensate clock speed */ cnetz->fsk_tx_buffer = calloc(sizeof(int16_t), cnetz->fsk_tx_buffer_size); if (!cnetz->fsk_tx_buffer) { PDEBUG(DDSP, DEBUG_DEBUG, "No memory!\n"); rc = -ENOMEM; goto error; } /* create devation and ramp */ if (deviation > 1.0) deviation = 1.0; cnetz->fsk_deviation = (int16_t)(deviation * 32766.9); /* be sure not to overflow -32767 .. 32767 */ dsp_init_ramp(cnetz); cnetz->fsk_noise = noise; /* create speech buffer */ cnetz->dsp_speech_buffer = calloc(sizeof(int16_t), cnetz->sender.samplerate); /* buffer is greater than sr/1.1, just to be secure */ if (!cnetz->dsp_speech_buffer) { PDEBUG(DDSP, DEBUG_DEBUG, "No memory!\n"); rc = -ENOMEM; goto error; } /* reinit the sample rate to shrink/expand audio */ init_samplerate(&cnetz->sender.srstate, (double)cnetz->sender.samplerate / 1.1); /* 66 <-> 60 */ rc = fsk_fm_init(&cnetz->fsk_demod, cnetz, cnetz->sender.samplerate, (double)BITRATE / (1.0 + clock_speed[0] / 1000000.0)); if (rc < 0) goto error; /* init scrambler for shrinked audio */ scrambler_setup(&cnetz->scrambler_tx, (double)cnetz->sender.samplerate / 1.1); scrambler_setup(&cnetz->scrambler_rx, (double)cnetz->sender.samplerate / 1.1); /* reinit jitter buffer for 8000 kHz */ jitter_destroy(&cnetz->sender.audio); rc = jitter_create(&cnetz->sender.audio, 8000 / 5); if (rc < 0) goto error; /* init compander, according to C-Netz specs, attack and recovery time * shall not exceed according to ITU G.162 */ init_compander(&cnetz->cstate, 8000, 5.0, 22.5, 32767); #ifdef TEST_SCRABLE rc = jitter_create(&scrambler_test_jb, cnetz->sender.samplerate / 5); if (rc < 0) { PDEBUG(DDSP, DEBUG_ERROR, "Failed to init jitter buffer for scrambler test!\n"); exit(0); } scrambler_setup(&scrambler_test_scrambler1, cnetz->sender.samplerate); scrambler_setup(&scrambler_test_scrambler2, cnetz->sender.samplerate); #endif return 0; error: dsp_cleanup_sender(cnetz); return rc; } void dsp_cleanup_sender(cnetz_t *cnetz) { PDEBUG(DDSP, DEBUG_DEBUG, "Cleanup FSK for 'Sender'.\n"); if (cnetz->fsk_tx_buffer) free(cnetz->fsk_tx_buffer); if (cnetz->dsp_speech_buffer) free(cnetz->dsp_speech_buffer); } /* receive sample time and calculate speed against system clock * tx: indicates transmit stream * result: if set the actual signal speed is used (instead of sample rate) */ void calc_clock_speed(cnetz_t *cnetz, uint64_t samples, int tx, int result) { struct clock_speed *cs = &cnetz->clock_speed; double ti; double speed_ppm_rx[2], speed_ppm_tx[2]; if (!cnetz->measure_speed) return; if (result) tx += 2; ti = get_time(); /* skip some time to avoid false mesurement due to filling of buffers */ if (cs->meas_ti == 0.0) { cs->meas_ti = ti + 1.0; return; } if (cs->meas_ti > ti) return; /* start sample counting */ if (cs->start_ti[tx] == 0.0) { cs->start_ti[tx] = ti; cs->spl_count[tx] = 0; return; } /* add elapsed time */ cs->last_ti[tx] = ti; cs->spl_count[tx] += samples; /* only calculate speed, if one second has elapsed */ if (ti - cs->meas_ti <= 1.0) return; cs->meas_ti += 1.0; if (!cs->spl_count[2] || !cs->spl_count[3]) return; speed_ppm_rx[0] = ((double)cs->spl_count[0] / (double)cnetz->sender.samplerate) / (cs->last_ti[0] - cs->start_ti[0]) * 1000000.0 - 1000000.0; speed_ppm_tx[0] = ((double)cs->spl_count[1] / (double)cnetz->sender.samplerate) / (cs->last_ti[1] - cs->start_ti[1]) * 1000000.0 - 1000000.0; speed_ppm_rx[1] = ((double)cs->spl_count[2] / (double)cnetz->sender.samplerate) / (cs->last_ti[2] - cs->start_ti[2]) * 1000000.0 - 1000000.0; speed_ppm_tx[1] = ((double)cs->spl_count[3] / (double)cnetz->sender.samplerate) / (cs->last_ti[3] - cs->start_ti[3]) * 1000000.0 - 1000000.0; PDEBUG(DDSP, DEBUG_NOTICE, "Clock: RX=%.2f TX=%.2f; Signal: RX=%.2f TX=%.2f ppm\n", speed_ppm_rx[0], speed_ppm_tx[0], speed_ppm_rx[1], speed_ppm_tx[1]); } static int fsk_nothing_encode(cnetz_t *cnetz) { int16_t *spl; double phase, bitstep, r; int i, count; spl = cnetz->fsk_tx_buffer; phase = cnetz->fsk_tx_phase; bitstep = cnetz->fsk_tx_bitstep * 256.0; if (cnetz->fsk_noise) { r = cnetz->fsk_noise; /* add 198 bits of noise */ for (i = 0; i < 198; i++) { do { *spl++ = (double)((int16_t)(random() & 0xffff)) * r; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } } else { /* add 198 bits of silence */ for (i = 0; i < 198; i++) { do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } } /* depending on the number of samples, return the number */ count = ((uintptr_t)spl - (uintptr_t)cnetz->fsk_tx_buffer) / sizeof(*spl); cnetz->fsk_tx_phase = phase; cnetz->fsk_tx_buffer_length = count; return count; } /* encode one data block into samples * input: 184 data bits (including barker code) * output: samples * return number of samples */ static int fsk_block_encode(cnetz_t *cnetz, const char *bits) { /* alloc samples, add 1 in case there is a rest */ int16_t *spl; double phase, bitstep, deviation; int i, count; char last; deviation = cnetz->fsk_deviation; spl = cnetz->fsk_tx_buffer; phase = cnetz->fsk_tx_phase; bitstep = cnetz->fsk_tx_bitstep * 256.0; /* add 7 bits of pause */ for (i = 0; i < 7; i++) { do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } /* add 184 bits */ last = ' '; for (i = 0; i < 184; i++) { switch (last) { case ' ': if (bits[i] == '1') { /* ramp up from 0 */ do { *spl++ = ramp_up[(int)phase] / 2 + deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* ramp down from 0 */ do { *spl++ = ramp_down[(int)phase] / 2 - deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } break; case '1': if (bits[i] == '1') { /* stay up */ do { *spl++ = deviation; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* ramp down */ do { *spl++ = ramp_down[(int)phase]; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } break; case '0': if (bits[i] == '1') { /* ramp up */ do { *spl++ = ramp_up[(int)phase]; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* stay down */ do { *spl++ = -deviation; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } break; } last = bits[i]; } /* add 7 bits of pause */ if (last == '0') { /* ramp up to 0 */ do { *spl++ = ramp_up[(int)phase] / 2 - deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* ramp down to 0 */ do { *spl++ = ramp_down[(int)phase] / 2 + deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } for (i = 1; i < 7; i++) { do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } /* depending on the number of samples, return the number */ count = ((uintptr_t)spl - (uintptr_t)cnetz->fsk_tx_buffer) / sizeof(*spl); cnetz->fsk_tx_phase = phase; cnetz->fsk_tx_buffer_length = count; return count; } /* encode one distributed data block into samples * input: 184 data bits (including barker code) * output: samples * if a sample contains 0x8000, it indicates where to insert speech block * return number of samples */ static int fsk_distributed_encode(cnetz_t *cnetz, const char *bits) { /* alloc samples, add 1 in case there is a rest */ int16_t *spl, *marker; double phase, bitstep, deviation; int i, j, count; char last; deviation = cnetz->fsk_deviation; spl = cnetz->fsk_tx_buffer; phase = cnetz->fsk_tx_phase; bitstep = cnetz->fsk_tx_bitstep * 256.0; /* add 2 * (1+4+1 + 60) bits of pause / for speech */ for (i = 0; i < 2; i++) { for (j = 0; j < 6; j++) { do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } marker = spl; for (j = 0; j < 60; j++) { do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } *marker = -32768; /* indicator for inserting speech */ } /* add 46 * (1+4+1 + 60) bits */ for (i = 0; i < 46; i++) { /* unmodulated bit */ do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; last = ' '; for (j = 0; j < 4; j++) { switch (last) { case ' ': if (bits[i * 4 + j] == '1') { /* ramp up from 0 */ do { *spl++ = ramp_up[(int)phase] / 2 + deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* ramp down from 0 */ do { *spl++ = ramp_down[(int)phase] / 2 - deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } break; case '1': if (bits[i * 4 + j] == '1') { /* stay up */ do { *spl++ = deviation; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* ramp down */ do { *spl++ = ramp_down[(int)phase]; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } break; case '0': if (bits[i * 4 + j] == '1') { /* ramp up */ do { *spl++ = ramp_up[(int)phase]; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* stay down */ do { *spl++ = -deviation; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } break; } last = bits[i * 4 + j]; } /* unmodulated bit */ if (last == '0') { /* ramp up to 0 */ do { *spl++ = ramp_up[(int)phase] / 2 - deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } else { /* ramp down to 0 */ do { *spl++ = ramp_down[(int)phase] / 2 + deviation / 2; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } marker = spl; for (j = 0; j < 60; j++) { do { *spl++ = 0; phase += bitstep; } while (phase < 256.0); phase -= 256.0; } *marker = -32768; /* indicator for inserting speech */ } /* depending on the number of samples, return the number */ count = ((uintptr_t)spl - (uintptr_t)cnetz->fsk_tx_buffer) / sizeof(*spl); cnetz->fsk_tx_phase = phase; cnetz->fsk_tx_buffer_length = count; return count; } void show_level(double level) { char text[42] = " "; if (level > 1.0) level = 1.0; if (level < -1.0) level = -1.0; text[20 - (int)(level * 20)] = '*'; printf("%s\n", text); } /* decode samples and hut for bit changes * use deviation to find greatest slope of the signal (bit change) */ void sender_receive(sender_t *sender, int16_t *samples, int length) { cnetz_t *cnetz = (cnetz_t *) sender; /* measure rx sample speed */ calc_clock_speed(cnetz, length, 0, 0); #ifdef TEST_SCRABLE #ifdef TEST_UNSCRABLE scrambler(&scrambler_test_scrambler1, samples, length); #endif jitter_save(&scrambler_test_jb, samples, length); return; #endif fsk_fm_demod(&cnetz->fsk_demod, samples, length); return; } static int fsk_telegramm(cnetz_t *cnetz, int16_t *samples, int length) { int count = 0, pos, copy, i, speech_length, speech_pos; int16_t *spl, *speech_buffer; const char *bits; speech_buffer = cnetz->dsp_speech_buffer; speech_length = cnetz->dsp_speech_length; speech_pos = cnetz->dsp_speech_pos; again: /* there must be length, otherwise we would skip blocks */ if (!length) return count; pos = cnetz->fsk_tx_buffer_pos; spl = cnetz->fsk_tx_buffer + pos; /* start new telegramm, so we generate one */ if (pos == 0) { /* measure actual signal speed */ if (cnetz->sched_ts == 0 && cnetz->sched_r_m == 0) calc_clock_speed(cnetz, cnetz->sender.samplerate * 24 / 10, 1, 1); /* switch to speech channel */ if (cnetz->sched_switch_mode && cnetz->sched_r_m == 0) { if (--cnetz->sched_switch_mode == 0) { /* OgK / SpK(K) / SpK(V) */ PDEBUG(DDSP, DEBUG_INFO, "Switching channel (mode)\n"); cnetz->dsp_mode = cnetz->sched_dsp_mode; } } switch (cnetz->dsp_mode) { case DSP_MODE_OGK: if (((1 << cnetz->sched_ts) & si.ogk_timeslot_mask)) { if (cnetz->sched_r_m == 0) { /* set last time slot, so we can match received message from mobile station */ cnetz->last_tx_timeslot = cnetz->sched_ts; PDEBUG(DDSP, DEBUG_DEBUG, "Transmitting 'Rufblock' at timeslot %d\n", cnetz->sched_ts); bits = cnetz_encode_telegramm(cnetz); } else { PDEBUG(DDSP, DEBUG_DEBUG, "Transmitting 'Meldeblock' at timeslot %d\n", cnetz->sched_ts); bits = cnetz_encode_telegramm(cnetz); } fsk_block_encode(cnetz, bits); } else { fsk_nothing_encode(cnetz); } break; case DSP_MODE_SPK_K: PDEBUG(DDSP, DEBUG_DEBUG, "Transmitting 'Konzentrierte Signalisierung'\n"); bits = cnetz_encode_telegramm(cnetz); fsk_block_encode(cnetz, bits); break; case DSP_MODE_SPK_V: PDEBUG(DDSP, DEBUG_DEBUG, "Transmitting 'Verteilte Signalisierung'\n"); bits = cnetz_encode_telegramm(cnetz); fsk_distributed_encode(cnetz, bits); break; default: fsk_nothing_encode(cnetz); } if (cnetz->dsp_mode == DSP_MODE_SPK_V) { /* count sub frame */ cnetz->sched_ts += 8; } else { /* count slot */ if (cnetz->sched_r_m == 0) cnetz->sched_r_m = 1; else { cnetz->sched_r_m = 0; cnetz->sched_ts++; } } if (cnetz->sched_ts == 32) cnetz->sched_ts = 0; } copy = cnetz->fsk_tx_buffer_length - pos; if (length < copy) copy = length; for (i = 0; i < copy; i++) { if (*spl == -32768) { /* marker found to insert new chunk of audio */ jitter_load(&cnetz->sender.audio, speech_buffer, 100); compress_audio(&cnetz->cstate, speech_buffer, 100); speech_length = samplerate_upsample(&cnetz->sender.srstate, speech_buffer, 100, speech_buffer); if (cnetz->scrambler) scrambler(&cnetz->scrambler_tx, speech_buffer, speech_length); /* pre-emphasis is done by cnetz code, not by common code */ /* pre-emphasis makes bad sound in conjunction with scrambler, so we disable */ if (cnetz->pre_emphasis && !cnetz->scrambler) pre_emphasis(&cnetz->estate, speech_buffer, speech_length); speech_pos = 0; } /* copy speech as long as we have something left in buffer */ if (speech_pos < speech_length) *samples++ = speech_buffer[speech_pos++]; else *samples++ = *spl; spl++; } cnetz->dsp_speech_length = speech_length; cnetz->dsp_speech_pos = speech_pos; pos += copy; count += copy; length -= copy; if (pos == cnetz->fsk_tx_buffer_length) { cnetz->fsk_tx_buffer_pos = 0; goto again; } cnetz->fsk_tx_buffer_pos = pos; return count; } /* Provide stream of audio toward radio unit */ void sender_send(sender_t *sender, int16_t *samples, int length) { cnetz_t *cnetz = (cnetz_t *) sender; int count; /* measure tx sample speed */ calc_clock_speed(cnetz, length, 1, 0); #ifdef TEST_SCRABLE jitter_load(&scrambler_test_jb, samples, length); scrambler(&scrambler_test_scrambler2, samples, length); return; #endif count = fsk_telegramm(cnetz, samples, length); if (count < length) { printf("length=%d < count=%d\n", length, count); printf("this shall not happen, so please fix!\n"); exit(0); } }