osmo-pcu/src/gprs_bssgp_pcu.cpp

1016 lines
27 KiB
C++

/* gprs_bssgp_pcu.cpp
*
* Copyright (C) 2012 Ivan Klyuchnikov
* Copyright (C) 2013 by Holger Hans Peter Freyther
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <gprs_rlcmac.h>
#include <gprs_bssgp_pcu.h>
#include <pcu_l1_if.h>
#include <bts.h>
#include <tbf.h>
#include <decoding.h>
#define BSSGP_TIMER_T1 30 /* Guards the (un)blocking procedures */
#define BSSGP_TIMER_T2 30 /* Guards the reset procedure */
/* Tuning parameters for BSSGP flow control */
#define FC_DEFAULT_LIFE_TIME_SECS 10 /* experimental value, 10s */
#define FC_MS_BUCKET_SIZE_BY_BMAX(bmax) ((bmax) / 2 + 500) /* experimental */
#define FC_FALLBACK_BVC_BUCKET_SIZE 2000 /* e.g. on R = 0, value taken from PCAP files */
#define FC_MS_MAX_RX_SLOTS 4 /* limit MS default R to 4 TS per MS */
/* Constants for BSSGP flow control */
#define FC_MAX_BUCKET_LEAK_RATE (6553500 / 8) /* Byte/s */
#define FC_MAX_BUCKET_SIZE 6553500 /* Octets */
static struct gprs_bssgp_pcu the_pcu = { 0, };
extern void *tall_pcu_ctx;
extern uint16_t spoof_mcc, spoof_mnc;
static void bvc_timeout(void *_priv);
static int parse_imsi(struct tlv_parsed *tp, char *imsi)
{
uint8_t imsi_len;
uint8_t *bcd_imsi;
int i, j;
if (!TLVP_PRESENT(tp, BSSGP_IE_IMSI))
return -EINVAL;
imsi_len = TLVP_LEN(tp, BSSGP_IE_IMSI);
bcd_imsi = (uint8_t *) TLVP_VAL(tp, BSSGP_IE_IMSI);
if ((bcd_imsi[0] & 0x08))
imsi_len = imsi_len * 2 - 1;
else
imsi_len = (imsi_len - 1) * 2;
for (i = 0, j = 0; j < imsi_len && j < 15; j++)
{
if (!(j & 1)) {
imsi[j] = (bcd_imsi[i] >> 4) + '0';
i++;
} else
imsi[j] = (bcd_imsi[i] & 0xf) + '0';
}
imsi[j] = '\0';
return 0;
}
static int parse_ra_cap(struct tlv_parsed *tp, MS_Radio_Access_capability_t *rac)
{
bitvec *block;
uint8_t cap_len;
uint8_t *cap;
memset(rac, 0, sizeof(*rac));
if (!TLVP_PRESENT(tp, BSSGP_IE_MS_RADIO_ACCESS_CAP))
return -EINVAL;
cap_len = TLVP_LEN(tp, BSSGP_IE_MS_RADIO_ACCESS_CAP);
cap = (uint8_t *) TLVP_VAL(tp, BSSGP_IE_MS_RADIO_ACCESS_CAP);
LOGP(DBSSGP, LOGL_DEBUG, "Got BSSGP RA Capability of size %d\n", cap_len);
block = bitvec_alloc(cap_len);
bitvec_unpack(block, cap);
/* TS 24.008, 10.5.5.12a */
decode_gsm_ra_cap(block, rac);
bitvec_free(block);
return 0;
}
#if 0
struct gprs_ra_cap
{
uint8_t ms_class;
uint8_t exist_egprs_ms_class;
uint8_t egprs_ms_class;
uint8_t support_8psk_uplink;
};
static int parse_ra_cap(struct tlv_parsed *tp struct gprs_ra_cap *rac)
{
bitvec *block;
unsigned rp = 0;
uint8_t ms_class = 0;
uint8_t cap_len;
uint8_t *cap;
memset(rac, 0, sizeof(gprs_ra_cap));
if (!TLVP_PRESENT(tp, BSSGP_IE_MS_RADIO_ACCESS_CAP))
return -EINVAL;
cap_len = TLVP_LEN(tp, BSSGP_IE_MS_RADIO_ACCESS_CAP);
cap = (uint8_t *) TLVP_VAL(tp, BSSGP_IE_MS_RADIO_ACCESS_CAP);
block = bitvec_alloc(cap_len);
bitvec_unpack(block, cap);
bitvec_read_field(block, rp, 4); // Access Technology Type
bitvec_read_field(block, rp, 7); // Length of Access Capabilities
bitvec_read_field(block, rp, 3); // RF Power Capability
if (bitvec_read_field(block, rp, 1)) // A5 Bits Present
bitvec_read_field(block, rp, 7); // A5 Bits
bitvec_read_field(block, rp, 1); // ES IND
bitvec_read_field(block, rp, 1); // PS
bitvec_read_field(block, rp, 1); // VGCS
bitvec_read_field(block, rp, 1); // VBS
if (bitvec_read_field(block, rp, 1)) { // Multislot Cap Present
if (bitvec_read_field(block, rp, 1)) // HSCSD Present
bitvec_read_field(block, rp, 5); // Class
if (bitvec_read_field(block, rp, 1)) { // GPRS Present
rac->ms_class = bitvec_read_field(block, rp, 5); // Class
bitvec_read_field(block, rp, 1); // Ext.
}
if (bitvec_read_field(block, rp, 1)) // SMS Present
bitvec_read_field(block, rp, 4); // SMS Value
/* Additions in release 99 */
if (bitvec_read_field(block, rp, 1)) // ECSD multislot class Present
bitvec_read_field(block, rp, 5); // Class
if (bitvec_read_field(block, rp, 1)) { // EGPRS Present
rac->egprs_ms_class = bitvec_read_field(block, rp, 5); // Class
bitvec_read_field(block, rp, 1); // Ext.
}
if (bitvec_read_field(block, rp, 1)) { // DTM Present
bitvec_read_field(block, rp, 2); // GPRS Class
bitvec_read_field(block, rp, 1); // Single Slot DTM
if (bitvec_read_field(block, rp, 1)) // EGPRS Present
bitvec_read_field(block, rp, 2); // EGPRS Class
}
}
if (bitvec_read_field(block, rp, 1)) // 8PSK Power Cap Present
rac->support_8psk_uplink = bitvec_read_field(block, rp, 2); // Power Cap
bitvec_free(block);
return ms_class;
}
#endif
static int gprs_bssgp_pcu_rx_dl_ud(struct msgb *msg, struct tlv_parsed *tp)
{
struct bssgp_ud_hdr *budh;
uint32_t tlli;
uint32_t tlli_old = 0;
uint8_t *data;
uint16_t len;
char imsi[16] = "000";
uint8_t ms_class = 0;
uint8_t egprs_ms_class = 0;
#if 0
MS_Radio_Access_capability_t rac;
#endif
budh = (struct bssgp_ud_hdr *)msgb_bssgph(msg);
tlli = ntohl(budh->tlli);
/* LLC_PDU is mandatory IE */
if (!TLVP_PRESENT(tp, BSSGP_IE_LLC_PDU))
{
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP TLLI=0x%08x Rx UL-UD missing mandatory IE\n", tlli);
return bssgp_tx_status(BSSGP_CAUSE_MISSING_MAND_IE, NULL, msg);
}
data = (uint8_t *) TLVP_VAL(tp, BSSGP_IE_LLC_PDU);
len = TLVP_LEN(tp, BSSGP_IE_LLC_PDU);
if (len > sizeof(gprs_llc::frame))
{
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP TLLI=0x%08x Rx UL-UD IE_LLC_PDU too large\n", tlli);
return bssgp_tx_status(BSSGP_CAUSE_COND_IE_ERR, NULL, msg);
}
/* read IMSI. if no IMSI exists, use first paging block (any paging),
* because during attachment the IMSI might not be known, so the MS
* will listen to all paging blocks. */
parse_imsi(tp, imsi);
#if 0 /* Do not rely on this IE. TODO: make this configurable */
/* parse ms radio access capability */
if (parse_ra_cap(tp, &rac) >= 0) {
/* Get the EGPRS class from the RA capability */
ms_class = Decoding::get_ms_class_by_capability(&rac);
egprs_ms_class =
Decoding::get_egprs_ms_class_by_capability(&rac);
LOGP(DBSSGP, LOGL_DEBUG, "Got downlink MS class %d/%d\n",
ms_class, egprs_ms_class);
}
#endif
/* get lifetime */
uint16_t delay_csec = 0xffff;
if (TLVP_PRESENT(tp, BSSGP_IE_PDU_LIFETIME))
{
uint8_t lt_len = TLVP_LEN(tp, BSSGP_IE_PDU_LIFETIME);
uint16_t *lt = (uint16_t *) TLVP_VAL(tp, BSSGP_IE_PDU_LIFETIME);
if (lt_len == 2)
delay_csec = ntohs(*lt);
else
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP invalid length of "
"PDU_LIFETIME IE\n");
} else
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP missing mandatory "
"PDU_LIFETIME IE\n");
/* get optional TLLI old */
if (TLVP_PRESENT(tp, BSSGP_IE_TLLI))
{
uint8_t tlli_len = TLVP_LEN(tp, BSSGP_IE_PDU_LIFETIME);
uint16_t *e_tlli_old = (uint16_t *) TLVP_VAL(tp, BSSGP_IE_TLLI);
if (tlli_len == 2)
tlli_old = ntohs(*e_tlli_old);
else
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP invalid length of "
"TLLI (old) IE\n");
}
LOGP(DBSSGP, LOGL_INFO, "LLC [SGSN -> PCU] = TLLI: 0x%08x IMSI: %s len: %d\n", tlli, imsi, len);
return gprs_rlcmac_dl_tbf::handle(the_pcu.bts, tlli, tlli_old, imsi,
ms_class, egprs_ms_class, delay_csec, data, len);
}
int gprs_bssgp_pcu_rx_paging_ps(struct msgb *msg, struct tlv_parsed *tp)
{
char imsi[16];
uint8_t *ptmsi = (uint8_t *) TLVP_VAL(tp, BSSGP_IE_TMSI);
uint16_t ptmsi_len = TLVP_LEN(tp, BSSGP_IE_TMSI);
LOGP(DBSSGP, LOGL_NOTICE, " P-TMSI = ");
for (int i = 0; i < ptmsi_len; i++)
{
LOGPC(DBSSGP, LOGL_NOTICE, "%02x", ptmsi[i]);
}
LOGPC(DBSSGP, LOGL_NOTICE, "\n");
if (parse_imsi(tp, imsi))
{
LOGP(DBSSGP, LOGL_ERROR, "No IMSI\n");
return -EINVAL;
}
return gprs_rlcmac_paging_request(ptmsi, ptmsi_len, imsi);
}
/* Receive a BSSGP PDU from a BSS on a PTP BVCI */
static int gprs_bssgp_pcu_rx_ptp(struct msgb *msg, struct tlv_parsed *tp, struct bssgp_bvc_ctx *bctx)
{
struct bssgp_normal_hdr *bgph = (struct bssgp_normal_hdr *) msgb_bssgph(msg);
uint8_t pdu_type = bgph->pdu_type;
unsigned rc = 0;
if (!bctx)
return -EINVAL;
/* If traffic is received on a BVC that is marked as blocked, the
* received PDU shall not be accepted and a STATUS PDU (Cause value:
* BVC Blocked) shall be sent to the peer entity on the signalling BVC */
if (bctx->state & BVC_S_BLOCKED && pdu_type != BSSGP_PDUT_STATUS)
{
uint16_t bvci = msgb_bvci(msg);
LOGP(DBSSGP, LOGL_NOTICE, "rx BVC_S_BLOCKED\n");
return bssgp_tx_status(BSSGP_CAUSE_BVCI_BLOCKED, &bvci, msg);
}
switch (pdu_type) {
case BSSGP_PDUT_DL_UNITDATA:
LOGP(DBSSGP, LOGL_DEBUG, "RX: [SGSN->PCU] BSSGP_PDUT_DL_UNITDATA\n");
if (the_pcu.on_dl_unit_data)
the_pcu.on_dl_unit_data(&the_pcu, msg, tp);
gprs_bssgp_pcu_rx_dl_ud(msg, tp);
break;
case BSSGP_PDUT_PAGING_PS:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_PAGING_PS\n");
break;
case BSSGP_PDUT_PAGING_CS:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_PAGING_CS\n");
break;
case BSSGP_PDUT_RA_CAPA_UPDATE_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_RA_CAPA_UPDATE_ACK\n");
break;
case BSSGP_PDUT_FLOW_CONTROL_BVC_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_FLOW_CONTROL_BVC_ACK\n");
break;
case BSSGP_PDUT_FLOW_CONTROL_MS_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_FLOW_CONTROL_MS_ACK\n");
break;
default:
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP BVCI=%u PDU type 0x%02x unknown\n", bctx->bvci, pdu_type);
rc = bssgp_tx_status(BSSGP_CAUSE_PROTO_ERR_UNSPEC, NULL, msg);
break;
}
return rc;
}
/* Receive a BSSGP PDU from a SGSN on a SIGNALLING BVCI */
static int gprs_bssgp_pcu_rx_sign(struct msgb *msg, struct tlv_parsed *tp, struct bssgp_bvc_ctx *bctx)
{
struct bssgp_normal_hdr *bgph = (struct bssgp_normal_hdr *) msgb_bssgph(msg);
int rc = 0;
int bvci = bctx ? bctx->bvci : -1;
switch (bgph->pdu_type) {
case BSSGP_PDUT_STATUS:
/* Some exception has occurred */
DEBUGP(DBSSGP, "BSSGP BVCI=%d Rx BVC STATUS\n", bvci);
/* FIXME: send NM_STATUS.ind to NM */
break;
case BSSGP_PDUT_SUSPEND_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_SUSPEND_ACK\n");
break;
case BSSGP_PDUT_SUSPEND_NACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_SUSPEND_NACK\n");
break;
case BSSGP_PDUT_BVC_RESET_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_BVC_RESET_ACK\n");
if (!the_pcu.bvc_sig_reset)
the_pcu.bvc_sig_reset = 1;
else
the_pcu.bvc_reset = 1;
bvc_timeout(NULL);
break;
case BSSGP_PDUT_PAGING_PS:
LOGP(DBSSGP, LOGL_NOTICE, "RX: [SGSN->PCU] BSSGP_PDUT_PAGING_PS\n");
gprs_bssgp_pcu_rx_paging_ps(msg, tp);
break;
case BSSGP_PDUT_PAGING_CS:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_PAGING_CS\n");
break;
case BSSGP_PDUT_RESUME_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_RESUME_ACK\n");
break;
case BSSGP_PDUT_RESUME_NACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_RESUME_NACK\n");
break;
case BSSGP_PDUT_FLUSH_LL:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_FLUSH_LL\n");
break;
case BSSGP_PDUT_BVC_BLOCK_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_SUSPEND_ACK\n");
break;
case BSSGP_PDUT_BVC_UNBLOCK_ACK:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_BVC_UNBLOCK_ACK\n");
the_pcu.bvc_unblocked = 1;
if (the_pcu.on_unblock_ack)
the_pcu.on_unblock_ack(&the_pcu);
bvc_timeout(NULL);
break;
case BSSGP_PDUT_SGSN_INVOKE_TRACE:
LOGP(DBSSGP, LOGL_DEBUG, "rx BSSGP_PDUT_SGSN_INVOKE_TRACE\n");
break;
default:
LOGP(DBSSGP, LOGL_NOTICE, "BSSGP BVCI=%d Rx PDU type 0x%02x unknown\n",
bvci, bgph->pdu_type);
rc = bssgp_tx_status(BSSGP_CAUSE_PROTO_ERR_UNSPEC, NULL, msg);
break;
}
return rc;
}
static int gprs_bssgp_pcu_rcvmsg(struct msgb *msg)
{
struct bssgp_normal_hdr *bgph = (struct bssgp_normal_hdr *) msgb_bssgph(msg);
struct bssgp_ud_hdr *budh = (struct bssgp_ud_hdr *) msgb_bssgph(msg);
struct tlv_parsed tp;
uint8_t pdu_type = bgph->pdu_type;
uint16_t ns_bvci = msgb_bvci(msg);
int data_len;
int rc = 0;
struct bssgp_bvc_ctx *bctx;
if (pdu_type == BSSGP_PDUT_STATUS)
/* Pass the message to the generic BSSGP parser, which handles
* STATUS message in either direction. */
return bssgp_rcvmsg(msg);
/* Identifiers from DOWN: NSEI, BVCI (both in msg->cb) */
/* UNITDATA BSSGP headers have TLLI in front */
if (pdu_type != BSSGP_PDUT_UL_UNITDATA && pdu_type != BSSGP_PDUT_DL_UNITDATA)
{
data_len = msgb_bssgp_len(msg) - sizeof(*bgph);
rc = bssgp_tlv_parse(&tp, bgph->data, data_len);
}
else
{
data_len = msgb_bssgp_len(msg) - sizeof(*budh);
rc = bssgp_tlv_parse(&tp, budh->data, data_len);
}
/* look-up or create the BTS context for this BVC */
bctx = btsctx_by_bvci_nsei(ns_bvci, msgb_nsei(msg));
if (!bctx
&& pdu_type != BSSGP_PDUT_BVC_RESET_ACK
&& pdu_type != BSSGP_PDUT_BVC_UNBLOCK_ACK
&& pdu_type != BSSGP_PDUT_PAGING_PS)
{
LOGP(DBSSGP, LOGL_NOTICE, "NSEI=%u/BVCI=%u Rejecting PDU "
"type %u for unknown BVCI\n", msgb_nsei(msg), ns_bvci,
pdu_type);
return bssgp_tx_status(BSSGP_CAUSE_UNKNOWN_BVCI, NULL, msg);
}
if (bctx)
{
log_set_context(BSC_CTX_BVC, bctx);
rate_ctr_inc(&bctx->ctrg->ctr[BSSGP_CTR_PKTS_IN]);
rate_ctr_add(&bctx->ctrg->ctr[BSSGP_CTR_BYTES_IN], msgb_bssgp_len(msg));
}
if (ns_bvci == BVCI_SIGNALLING)
{
LOGP(DBSSGP, LOGL_DEBUG, "rx BVCI_SIGNALLING gprs_bssgp_rx_sign\n");
rc = gprs_bssgp_pcu_rx_sign(msg, &tp, bctx);
}
else if (ns_bvci == BVCI_PTM)
{
LOGP(DBSSGP, LOGL_DEBUG, "rx BVCI_PTM bssgp_tx_status\n");
rc = bssgp_tx_status(BSSGP_CAUSE_PDU_INCOMP_FEAT, NULL, msg);
}
else
{
LOGP(DBSSGP, LOGL_DEBUG, "rx BVCI_PTP gprs_bssgp_rx_ptp\n");
rc = gprs_bssgp_pcu_rx_ptp(msg, &tp, bctx);
}
return rc;
}
static void handle_nm_status(struct osmo_bssgp_prim *bp)
{
enum gprs_bssgp_cause cause;
LOGP(DPCU, LOGL_DEBUG,
"Got NM-STATUS.ind, BVCI=%d, NSEI=%d\n",
bp->bvci, bp->nsei);
if (!TLVP_PRESENT(bp->tp, BSSGP_IE_CAUSE))
return;
cause = (enum gprs_bssgp_cause)*TLVP_VAL(bp->tp, BSSGP_IE_CAUSE);
if (cause != BSSGP_CAUSE_BVCI_BLOCKED &&
cause != BSSGP_CAUSE_UNKNOWN_BVCI)
return;
if (!TLVP_PRESENT(bp->tp, BSSGP_IE_BVCI))
return;
if (gprs_bssgp_pcu_current_bctx()->bvci != bp->bvci) {
LOGP(DPCU, LOGL_NOTICE,
"Received BSSGP STATUS message for an unknown BVCI (%d), "
"ignored\n",
bp->bvci);
return;
}
switch (cause) {
case BSSGP_CAUSE_BVCI_BLOCKED:
if (the_pcu.bvc_unblocked) {
the_pcu.bvc_unblocked = 0;
bvc_timeout(NULL);
}
break;
case BSSGP_CAUSE_UNKNOWN_BVCI:
if (the_pcu.bvc_reset) {
the_pcu.bvc_reset = 0;
bvc_timeout(NULL);
}
break;
default:
break;
}
}
int bssgp_prim_cb(struct osmo_prim_hdr *oph, void *ctx)
{
struct osmo_bssgp_prim *bp;
bp = container_of(oph, struct osmo_bssgp_prim, oph);
switch (oph->sap) {
case SAP_BSSGP_NM:
if (oph->primitive == PRIM_NM_STATUS)
handle_nm_status(bp);
break;
default:
break;
}
return 0;
}
static int sgsn_ns_cb(enum gprs_ns_evt event, struct gprs_nsvc *nsvc, struct msgb *msg, uint16_t bvci)
{
int rc = 0;
switch (event) {
case GPRS_NS_EVT_UNIT_DATA:
/* hand the message into the BSSGP implementation */
rc = gprs_bssgp_pcu_rcvmsg(msg);
break;
default:
LOGP(DPCU, LOGL_NOTICE, "RLCMAC: Unknown event %u from NS\n", event);
rc = -EIO;
break;
}
return rc;
}
static int nsvc_signal_cb(unsigned int subsys, unsigned int signal,
void *handler_data, void *signal_data)
{
struct ns_signal_data *nssd;
if (subsys != SS_L_NS)
return -EINVAL;
nssd = (struct ns_signal_data *)signal_data;
if (nssd->nsvc != the_pcu.nsvc) {
LOGP(DPCU, LOGL_ERROR, "Signal received of unknown NSVC\n");
return -EINVAL;
}
switch (signal) {
case S_NS_UNBLOCK:
if (!the_pcu.nsvc_unblocked) {
the_pcu.nsvc_unblocked = 1;
LOGP(DPCU, LOGL_NOTICE, "NS-VC %d is unblocked.\n",
the_pcu.nsvc->nsvci);
the_pcu.bvc_sig_reset = 0;
the_pcu.bvc_reset = 0;
the_pcu.bvc_unblocked = 0;
bvc_timeout(NULL);
}
break;
case S_NS_BLOCK:
if (the_pcu.nsvc_unblocked) {
the_pcu.nsvc_unblocked = 0;
osmo_timer_del(&the_pcu.bvc_timer);
the_pcu.bvc_sig_reset = 0;
the_pcu.bvc_reset = 0;
the_pcu.bvc_unblocked = 0;
LOGP(DPCU, LOGL_NOTICE, "NS-VC is blocked.\n");
}
break;
case S_NS_ALIVE_EXP:
LOGP(DPCU, LOGL_NOTICE, "Tns alive expired too often, "
"re-starting RESET procedure\n");
gprs_ns_reconnect(nssd->nsvc);
break;
}
return 0;
}
static unsigned count_pdch(const struct gprs_rlcmac_bts *bts)
{
size_t trx_no, ts_no;
unsigned num_pdch = 0;
for (trx_no = 0; trx_no < ARRAY_SIZE(bts->trx); ++trx_no) {
const struct gprs_rlcmac_trx *trx = &bts->trx[trx_no];
for (ts_no = 0; ts_no < ARRAY_SIZE(trx->pdch); ++ts_no) {
const struct gprs_rlcmac_pdch *pdch = &trx->pdch[ts_no];
if (pdch->is_enabled())
num_pdch += 1;
}
}
return num_pdch;
}
static uint32_t gprs_bssgp_max_leak_rate(GprsCodingScheme cs, int num_pdch)
{
int bytes_per_rlc_block = cs.maxDataBlockBytes() * cs.numDataBlocks();
/* n byte payload per 20ms */
return bytes_per_rlc_block * (1000 / 20) * num_pdch;
}
static uint32_t compute_bucket_size(struct gprs_rlcmac_bts *bts,
uint32_t leak_rate, uint32_t fallback)
{
uint32_t bucket_size = 0;
uint16_t bucket_time = bts->fc_bucket_time;
if (bucket_time == 0)
bucket_time = bts->force_llc_lifetime;
if (bucket_time == 0xffff)
bucket_size = FC_MAX_BUCKET_SIZE;
if (bucket_size == 0 && bucket_time && leak_rate)
bucket_size = (uint64_t)leak_rate * bucket_time / 100;
if (bucket_size == 0 && leak_rate)
bucket_size = leak_rate * FC_DEFAULT_LIFE_TIME_SECS;
if (bucket_size == 0)
bucket_size = fallback;
if (bucket_size > FC_MAX_BUCKET_SIZE)
bucket_size = FC_MAX_BUCKET_SIZE;
return bucket_size;
}
static uint32_t get_and_reset_avg_queue_delay(void)
{
struct timeval *delay_sum = &the_pcu.queue_delay_sum;
uint32_t delay_sum_ms = delay_sum->tv_sec * 1000 +
delay_sum->tv_usec / 1000000;
uint32_t avg_delay_ms = 0;
if (the_pcu.queue_delay_count > 0)
avg_delay_ms = delay_sum_ms / the_pcu.queue_delay_count;
/* Reset accumulator */
delay_sum->tv_sec = delay_sum->tv_usec = 0;
the_pcu.queue_delay_count = 0;
return avg_delay_ms;
}
static int get_and_reset_measured_leak_rate(int *usage_by_1000, unsigned num_pdch)
{
int rate; /* byte per second */
if (the_pcu.queue_frames_sent == 0)
return -1;
if (the_pcu.queue_frames_recv == 0)
return -1;
*usage_by_1000 = the_pcu.queue_frames_recv * 1000 /
the_pcu.queue_frames_sent;
/* 20ms/num_pdch is the average RLC block duration, so the rate is
* calculated as:
* rate = bytes_recv / (block_dur * block_count) */
rate = the_pcu.queue_bytes_recv * 1000 * num_pdch /
(20 * the_pcu.queue_frames_recv);
the_pcu.queue_frames_sent = 0;
the_pcu.queue_bytes_recv = 0;
the_pcu.queue_frames_recv = 0;
return rate;
}
static GprsCodingScheme max_coding_scheme_dl(struct gprs_rlcmac_bts *bts)
{
int num;
if (bts->egprs_enabled) {
if (!bts->cs_adj_enabled) {
if (bts->initial_mcs_dl)
num = bts->initial_mcs_dl;
else
num = 1;
} else if (bts->max_mcs_dl) {
num = bts->max_mcs_dl;
} else {
num = 9;
}
return GprsCodingScheme::getEgprsByNum(num);
}
if (!bts->cs_adj_enabled) {
if (bts->initial_cs_dl)
num = bts->initial_cs_dl;
else if (bts->cs4)
num = 4;
else if (bts->cs3)
num = 3;
else if (bts->cs2)
num = 2;
else
num = 1;
} else if (bts->max_cs_dl) {
num = bts->max_cs_dl;
} else {
num = 4;
}
return GprsCodingScheme::getGprsByNum(num);
}
int gprs_bssgp_tx_fc_bvc(void)
{
struct gprs_rlcmac_bts *bts;
uint32_t bucket_size; /* oct */
uint32_t ms_bucket_size; /* oct */
uint32_t leak_rate; /* oct/s */
uint32_t ms_leak_rate; /* oct/s */
uint32_t avg_delay_ms;
int num_pdch = -1;
GprsCodingScheme max_cs_dl;
if (!the_pcu.bctx) {
LOGP(DBSSGP, LOGL_ERROR, "No bctx\n");
return -EIO;
}
bts = bts_main_data();
max_cs_dl = max_coding_scheme_dl(bts);
bucket_size = bts->fc_bvc_bucket_size;
leak_rate = bts->fc_bvc_leak_rate;
ms_bucket_size = bts->fc_ms_bucket_size;
ms_leak_rate = bts->fc_ms_leak_rate;
if (leak_rate == 0) {
int meas_rate;
int usage; /* in 0..1000 */
if (num_pdch < 0)
num_pdch = count_pdch(bts);
meas_rate = get_and_reset_measured_leak_rate(&usage, num_pdch);
if (meas_rate > 0) {
leak_rate = gprs_bssgp_max_leak_rate(max_cs_dl, num_pdch);
leak_rate =
(meas_rate * usage + leak_rate * (1000 - usage)) /
1000;
LOGP(DBSSGP, LOGL_DEBUG,
"Estimated BVC leak rate = %d "
"(measured %d, usage %d%%)\n",
leak_rate, meas_rate, usage/10);
}
}
if (leak_rate == 0) {
if (num_pdch < 0)
num_pdch = count_pdch(bts);
leak_rate = gprs_bssgp_max_leak_rate(max_cs_dl, num_pdch);
LOGP(DBSSGP, LOGL_DEBUG,
"Computed BVC leak rate = %d, num_pdch = %d, cs = %s\n",
leak_rate, num_pdch, max_cs_dl.name());
};
if (ms_leak_rate == 0) {
int ms_num_pdch;
int max_pdch = gprs_alloc_max_dl_slots_per_ms(bts);
if (num_pdch < 0)
num_pdch = count_pdch(bts);
ms_num_pdch = num_pdch;
if (max_pdch > FC_MS_MAX_RX_SLOTS)
max_pdch = FC_MS_MAX_RX_SLOTS;
if (ms_num_pdch > max_pdch)
ms_num_pdch = max_pdch;
ms_leak_rate = gprs_bssgp_max_leak_rate(max_cs_dl, ms_num_pdch);
/* TODO: To properly support multiple TRX, the per MS leak rate
* should be derived from the max number of PDCH TS per TRX.
*/
LOGP(DBSSGP, LOGL_DEBUG,
"Computed MS default leak rate = %d, ms_num_pdch = %d, "
"cs = %s\n",
ms_leak_rate, ms_num_pdch, max_cs_dl.name());
};
/* TODO: Force leak_rate to 0 on buffer bloat */
if (bucket_size == 0)
bucket_size = compute_bucket_size(bts, leak_rate,
FC_FALLBACK_BVC_BUCKET_SIZE);
if (ms_bucket_size == 0)
ms_bucket_size = compute_bucket_size(bts, ms_leak_rate,
FC_MS_BUCKET_SIZE_BY_BMAX(bucket_size));
if (leak_rate > FC_MAX_BUCKET_LEAK_RATE)
leak_rate = FC_MAX_BUCKET_LEAK_RATE;
if (ms_leak_rate > FC_MAX_BUCKET_LEAK_RATE)
ms_leak_rate = FC_MAX_BUCKET_LEAK_RATE;
/* Avg queue delay monitoring */
avg_delay_ms = get_and_reset_avg_queue_delay();
/* Update tag */
the_pcu.fc_tag += 1;
LOGP(DBSSGP, LOGL_DEBUG,
"Sending FLOW CONTROL BVC, Bmax = %d, R = %d, Bmax_MS = %d, "
"R_MS = %d, avg_dly = %d\n",
bucket_size, leak_rate, ms_bucket_size, ms_leak_rate,
avg_delay_ms);
return bssgp_tx_fc_bvc(the_pcu.bctx, the_pcu.fc_tag,
bucket_size, leak_rate,
ms_bucket_size, ms_leak_rate,
NULL, &avg_delay_ms);
}
static void bvc_timeout(void *_priv)
{
if (!the_pcu.bvc_sig_reset) {
LOGP(DBSSGP, LOGL_INFO, "Sending reset on BVCI 0\n");
bssgp_tx_bvc_reset(the_pcu.bctx, 0, BSSGP_CAUSE_OML_INTERV);
osmo_timer_schedule(&the_pcu.bvc_timer, BSSGP_TIMER_T2, 0);
return;
}
if (!the_pcu.bvc_reset) {
LOGP(DBSSGP, LOGL_INFO, "Sending reset on BVCI %d\n",
the_pcu.bctx->bvci);
bssgp_tx_bvc_reset(the_pcu.bctx, the_pcu.bctx->bvci, BSSGP_CAUSE_OML_INTERV);
osmo_timer_schedule(&the_pcu.bvc_timer, BSSGP_TIMER_T2, 0);
return;
}
if (!the_pcu.bvc_unblocked) {
LOGP(DBSSGP, LOGL_INFO, "Sending unblock on BVCI %d\n",
the_pcu.bctx->bvci);
bssgp_tx_bvc_unblock(the_pcu.bctx);
osmo_timer_schedule(&the_pcu.bvc_timer, BSSGP_TIMER_T1, 0);
return;
}
LOGP(DBSSGP, LOGL_DEBUG, "Sending flow control info on BVCI %d\n",
the_pcu.bctx->bvci);
gprs_bssgp_tx_fc_bvc();
osmo_timer_schedule(&the_pcu.bvc_timer, the_pcu.bts->fc_interval, 0);
}
int gprs_ns_reconnect(struct gprs_nsvc *nsvc)
{
struct gprs_nsvc *nsvc2;
if (!bssgp_nsi) {
LOGP(DBSSGP, LOGL_ERROR, "NS instance does not exist\n");
return -EINVAL;
}
if (nsvc != the_pcu.nsvc) {
LOGP(DBSSGP, LOGL_ERROR, "NSVC is invalid\n");
return -EBADF;
}
nsvc2 = gprs_ns_nsip_connect(bssgp_nsi, &nsvc->ip.bts_addr,
nsvc->nsei, nsvc->nsvci);
if (!nsvc2) {
LOGP(DBSSGP, LOGL_ERROR, "Failed to reconnect NSVC\n");
return -EIO;
}
return 0;
}
/* create BSSGP/NS layer instances */
struct gprs_bssgp_pcu *gprs_bssgp_create_and_connect(struct gprs_rlcmac_bts *bts,
uint16_t local_port, uint32_t sgsn_ip,
uint16_t sgsn_port, uint16_t nsei, uint16_t nsvci, uint16_t bvci,
uint16_t mcc, uint16_t mnc, uint16_t lac, uint16_t rac,
uint16_t cell_id)
{
struct sockaddr_in dest;
int rc;
mcc = ((mcc & 0xf00) >> 8) * 100 + ((mcc & 0x0f0) >> 4) * 10 + (mcc & 0x00f);
mnc = ((mnc & 0xf00) >> 8) * 100 + ((mnc & 0x0f0) >> 4) * 10 + (mnc & 0x00f);
cell_id = ntohs(cell_id);
/* if already created... return the current address */
if (the_pcu.bctx)
return &the_pcu;
the_pcu.bts = bts;
bssgp_nsi = gprs_ns_instantiate(&sgsn_ns_cb, tall_pcu_ctx);
if (!bssgp_nsi) {
LOGP(DBSSGP, LOGL_ERROR, "Failed to create NS instance\n");
return NULL;
}
gprs_ns_vty_init(bssgp_nsi);
bssgp_nsi->nsip.local_port = local_port;
rc = gprs_ns_nsip_listen(bssgp_nsi);
if (rc < 0) {
LOGP(DBSSGP, LOGL_ERROR, "Failed to create socket\n");
gprs_ns_destroy(bssgp_nsi);
bssgp_nsi = NULL;
return NULL;
}
dest.sin_family = AF_INET;
dest.sin_port = htons(sgsn_port);
dest.sin_addr.s_addr = htonl(sgsn_ip);
the_pcu.nsvc = gprs_ns_nsip_connect(bssgp_nsi, &dest, nsei, nsvci);
if (!the_pcu.nsvc) {
LOGP(DBSSGP, LOGL_ERROR, "Failed to create NSVCt\n");
gprs_ns_destroy(bssgp_nsi);
bssgp_nsi = NULL;
return NULL;
}
the_pcu.bctx = btsctx_alloc(bvci, nsei);
if (!the_pcu.bctx) {
LOGP(DBSSGP, LOGL_ERROR, "Failed to create BSSGP context\n");
the_pcu.nsvc = NULL;
gprs_ns_destroy(bssgp_nsi);
bssgp_nsi = NULL;
return NULL;
}
the_pcu.bctx->ra_id.mcc = spoof_mcc ? : mcc;
the_pcu.bctx->ra_id.mnc = spoof_mnc ? : mnc;
the_pcu.bctx->ra_id.lac = lac;
the_pcu.bctx->ra_id.rac = rac;
the_pcu.bctx->cell_id = cell_id;
osmo_signal_register_handler(SS_L_NS, nsvc_signal_cb, NULL);
the_pcu.bvc_timer.cb = bvc_timeout;
return &the_pcu;
}
void gprs_bssgp_destroy(void)
{
struct gprs_ns_inst *nsi = bssgp_nsi;
if (!nsi)
return;
bssgp_nsi = NULL;
osmo_timer_del(&the_pcu.bvc_timer);
osmo_signal_unregister_handler(SS_L_NS, nsvc_signal_cb, NULL);
the_pcu.nsvc = NULL;
/* FIXME: blocking... */
the_pcu.nsvc_unblocked = 0;
the_pcu.bvc_sig_reset = 0;
the_pcu.bvc_reset = 0;
the_pcu.bvc_unblocked = 0;
gprs_ns_destroy(nsi);
/* FIXME: move this to libgb: btsctx_free() */
llist_del(&the_pcu.bctx->list);
#warning "This causes ASAN to complain. It is not critical for normal operation but should be fixed nevertheless"
#if 0
talloc_free(the_pcu.bctx);
#endif
the_pcu.bctx = NULL;
}
struct bssgp_bvc_ctx *gprs_bssgp_pcu_current_bctx(void)
{
return the_pcu.bctx;
}
void gprs_bssgp_update_frames_sent()
{
the_pcu.queue_frames_sent += 1;
}
void gprs_bssgp_update_bytes_received(unsigned bytes_recv, unsigned frames_recv)
{
the_pcu.queue_bytes_recv += bytes_recv;
the_pcu.queue_frames_recv += frames_recv;
}
void gprs_bssgp_update_queue_delay(const struct timeval *tv_recv,
const struct timeval *tv_now)
{
struct timeval *delay_sum = &the_pcu.queue_delay_sum;
struct timeval tv_delay;
timersub(tv_now, tv_recv, &tv_delay);
timeradd(delay_sum, &tv_delay, delay_sum);
the_pcu.queue_delay_count += 1;
}