osmo-pcu/gprs_rlcmac.cpp

539 lines
17 KiB
C++

/* gprs_rlcmac.cpp
*
* Copyright (C) 2012 Ivan Klyuchnikov
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <gprs_bssgp_pcu.h>
#include <pcu_l1_if.h>
#include <Threads.h>
#include <gprs_rlcmac.h>
LLIST_HEAD(gprs_rlcmac_tbfs);
void *rlcmac_tall_ctx;
int tfi_alloc()
{
struct gprs_rlcmac_tbf *tbf;
uint32_t tfi_map = 0;
uint32_t tfi_ind = 0;
uint32_t mask = 1;
uint8_t i;
llist_for_each_entry(tbf, &gprs_rlcmac_tbfs, list) {
tfi_ind = 1 << tbf->tfi;
tfi_map = tfi_map|tfi_ind;
}
for (i = 0; i < 32; i++) {
if(((tfi_map >> i) & mask) == 0) {
return i;
}
}
return -1;
}
/* lookup TBF Entity (by TFI) */
static struct gprs_rlcmac_tbf *tbf_by_tfi(uint8_t tfi)
{
struct gprs_rlcmac_tbf *tbf;
llist_for_each_entry(tbf, &gprs_rlcmac_tbfs, list) {
if (tbf->tfi == tfi)
return tbf;
}
return NULL;
}
static struct gprs_rlcmac_tbf *tbf_by_tlli(uint32_t tlli)
{
struct gprs_rlcmac_tbf *tbf;
llist_for_each_entry(tbf, &gprs_rlcmac_tbfs, list) {
if ((tbf->tlli == tlli)&&(tbf->direction == GPRS_RLCMAC_UL_TBF))
return tbf;
}
return NULL;
}
struct gprs_rlcmac_tbf *tbf_alloc(uint8_t tfi)
{
struct gprs_rlcmac_tbf *tbf;
tbf = talloc_zero(rlcmac_tall_ctx, struct gprs_rlcmac_tbf);
if (!tbf)
return NULL;
tbf->tfi = tfi;
llist_add(&tbf->list, &gprs_rlcmac_tbfs);
return tbf;
}
static void tbf_free(struct gprs_rlcmac_tbf *tbf)
{
llist_del(&tbf->list);
talloc_free(tbf);
}
void write_packet_downlink_assignment(BitVector * dest, uint8_t tfi, uint32_t tlli)
{
// TODO We should use our implementation of encode RLC/MAC Control messages.
unsigned wp = 0;
dest->writeField(wp,0x1,2); // Payload Type
dest->writeField(wp,0x0,2); // Uplink block with TDMA framenumber
dest->writeField(wp,0x1,1); // Suppl/Polling Bit
dest->writeField(wp,0x1,3); // Uplink state flag
dest->writeField(wp,0x2,6); // MESSAGE TYPE
dest->writeField(wp,0x0,2); // Page Mode
dest->writeField(wp,0x0,1); // switch PERSIST_LEVEL: off
dest->writeField(wp,0x2,2); // switch TLLI : on
dest->writeField(wp,tlli,32); // TLLI
dest->writeField(wp,0x0,1); // Message escape
dest->writeField(wp,0x0,2); // Medium Access Method: Dynamic Allocation
dest->writeField(wp,0x0,1); // RLC acknowledged mode
dest->writeField(wp,0x0,1); // the network establishes no new downlink TBF for the mobile station
dest->writeField(wp,0x1,8); // timeslot 7
dest->writeField(wp,0x1,8); // TIMING_ADVANCE_INDEX
dest->writeField(wp,0x0,1); // switch TIMING_ADVANCE_VALUE = off
dest->writeField(wp,0x1,1); // switch TIMING_ADVANCE_INDEX = on
dest->writeField(wp,0xC,4); // TIMING_ADVANCE_INDEX
dest->writeField(wp,0x7,3); // TIMING_ADVANCE_TIMESLOT_NUMBER
dest->writeField(wp,0x0,1); // switch POWER CONTROL = off
dest->writeField(wp,0x1,1); // Frequency Parameters information elements = present
dest->writeField(wp,0x2,3); // Training Sequence Code (TSC) = 2
dest->writeField(wp,0x1,2); // Indirect encoding struct = present
dest->writeField(wp,0x0,6); // MAIO
dest->writeField(wp,0xE,4); // MA_Number
dest->writeField(wp,0x8,4); // CHANGE_MARK_1 CHANGE_MARK_2
dest->writeField(wp,0x1,1); // switch TFI : on
dest->writeField(wp,tfi,5);// TFI
dest->writeField(wp,0x1,1); // Power Control Parameters IE = present
dest->writeField(wp,0x0,4); // ALPHA power control parameter
dest->writeField(wp,0x0,1); // switch GAMMA_TN0 = off
dest->writeField(wp,0x0,1); // switch GAMMA_TN1 = off
dest->writeField(wp,0x0,1); // switch GAMMA_TN2 = off
dest->writeField(wp,0x0,1); // switch GAMMA_TN3 = off
dest->writeField(wp,0x0,1); // switch GAMMA_TN4 = off
dest->writeField(wp,0x0,1); // switch GAMMA_TN5 = off
dest->writeField(wp,0x0,1); // switch GAMMA_TN6 = off
dest->writeField(wp,0x1,1); // switch GAMMA_TN7 = on
dest->writeField(wp,0x0,5); // GAMMA_TN7
dest->writeField(wp,0x0,1); // TBF Starting TIME IE not present
dest->writeField(wp,0x0,1); // Measurement Mapping struct not present
}
void write_packet_uplink_assignment(BitVector * dest, uint8_t tfi, uint32_t tlli)
{
// TODO We should use our implementation of encode RLC/MAC Control messages.
unsigned wp = 0;
dest->writeField(wp,0x1,2); // Payload Type
dest->writeField(wp,0x0,2); // Uplink block with TDMA framenumber
dest->writeField(wp,0x1,1); // Suppl/Polling Bit
dest->writeField(wp,0x1,3); // Uplink state flag
dest->writeField(wp,0xa,6); // MESSAGE TYPE
dest->writeField(wp,0x0,2); // Page Mode
dest->writeField(wp,0x0,1); // switch PERSIST_LEVEL: off
dest->writeField(wp,0x2,2); // switch TLLI : on
dest->writeField(wp,tlli,32); // TLLI
dest->writeField(wp,0x0,1); // Message escape
dest->writeField(wp,0x0,2); // CHANNEL_CODING_COMMAND
dest->writeField(wp,0x0,1); // TLLI_BLOCK_CHANNEL_CODING
dest->writeField(wp,0x1,1); // switch TIMING_ADVANCE_VALUE = on
dest->writeField(wp,0x0,6); // TIMING_ADVANCE_VALUE
dest->writeField(wp,0x0,1); // switch TIMING_ADVANCE_INDEX = off
dest->writeField(wp,0x0,1); // Frequency Parameters = off
dest->writeField(wp,0x1,2); // Dynamic Allocation = off
dest->writeField(wp,0x0,1); // Dynamic Allocation
dest->writeField(wp,0x0,1); // P0 = off
dest->writeField(wp,0x1,1); // USF_GRANULARITY
dest->writeField(wp,0x1,1); // switch TFI : on
dest->writeField(wp,tfi,5);// TFI
dest->writeField(wp,0x0,1); //
dest->writeField(wp,0x0,1); // TBF Starting Time = off
dest->writeField(wp,0x0,1); // Timeslot Allocation
dest->writeField(wp,0x0,5); // USF_TN 0 - 4
dest->writeField(wp,0x1,1); // USF_TN 5
dest->writeField(wp,0x1,3); // USF_TN 5
dest->writeField(wp,0x0,2); // USF_TN 6 - 7
// dest->writeField(wp,0x0,1); // Measurement Mapping struct not present
}
void write_ia_rest_octets_downlink_assignment(BitVector * dest, uint8_t tfi, uint32_t tlli)
{
// GMS 04.08 10.5.2.37b 10.5.2.16
unsigned wp = 0;
dest->writeField(wp, 3, 2); // "HH"
dest->writeField(wp, 1, 2); // "01" Packet Downlink Assignment
dest->writeField(wp,tlli,32); // TLLI
dest->writeField(wp,0x1,1); // switch TFI : on
dest->writeField(wp,tfi,5); // TFI
dest->writeField(wp,0x0,1); // RLC acknowledged mode
dest->writeField(wp,0x0,1); // ALPHA = present
//dest->writeField(wp,0x0,4); // ALPHA power control parameter
dest->writeField(wp,0x0,5); // GAMMA power control parameter
dest->writeField(wp,0x1,1); // Polling Bit
dest->writeField(wp,0x1,1); // TA_VALID ???
dest->writeField(wp,0x1,1); // switch TIMING_ADVANCE_INDEX = on
dest->writeField(wp,0xC,4); // TIMING_ADVANCE_INDEX
dest->writeField(wp,0x1,1); // TBF Starting TIME present
dest->writeField(wp,0xffff,16); // TBF Starting TIME (we should set it in OpenBTS)
dest->writeField(wp,0x0,1); // P0 not present
}
void write_packet_uplink_ack(BitVector * dest, uint8_t tfi, uint32_t tlli, unsigned cv, unsigned bsn)
{
// TODO We should use our implementation of encode RLC/MAC Control messages.
unsigned wp = 0;
dest->writeField(wp,0x1,2); // payload
dest->writeField(wp,0x0,2); // Uplink block with TDMA framenumber
if (cv == 0) dest->writeField(wp,0x1,1); // Suppl/Polling Bit
else dest->writeField(wp,0x0,1); //Suppl/Polling Bit
dest->writeField(wp,0x1,3); // Uplink state flag
//dest->writeField(wp,0x0,1); // Reduced block sequence number
//dest->writeField(wp,BSN+6,5); // Radio transaction identifier
//dest->writeField(wp,0x1,1); // Final segment
//dest->writeField(wp,0x1,1); // Address control
//dest->writeField(wp,0x0,2); // Power reduction: 0
//dest->writeField(wp,TFI,5); // Temporary flow identifier
//dest->writeField(wp,0x1,1); // Direction
dest->writeField(wp,0x09,6); // MESSAGE TYPE
dest->writeField(wp,0x0,2); // Page Mode
dest->writeField(wp,0x0,2);
dest->writeField(wp,tfi,5); // Uplink TFI
dest->writeField(wp,0x0,1);
dest->writeField(wp,0x0,2); // CS1
if (cv == 0) dest->writeField(wp,0x1,1); // FINAL_ACK_INDICATION
else dest->writeField(wp,0x0,1); // FINAL_ACK_INDICATION
dest->writeField(wp,bsn + 1,7); // STARTING_SEQUENCE_NUMBER
// RECEIVE_BLOCK_BITMAP
for (unsigned i=0; i<8; i++) {
dest->writeField(wp,0xff,8);
}
dest->writeField(wp,0x1,1); // CONTENTION_RESOLUTION_TLLI = present
dest->writeField(wp,tlli,8*4);
dest->writeField(wp,0x00,4); //spare
}
void gprs_rlcmac_tx_ul_ack(uint8_t tfi, uint32_t tlli, RlcMacUplinkDataBlock_t * ul_data_block)
{
BitVector packet_uplink_ack_vec(23*8);
packet_uplink_ack_vec.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
write_packet_uplink_ack(&packet_uplink_ack_vec, tfi, tlli, ul_data_block->CV, ul_data_block->BSN);
COUT("RLCMAC_CONTROL_BLOCK>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>");
RlcMacDownlink_t * packet_uplink_ack = (RlcMacDownlink_t *)malloc(sizeof(RlcMacUplink_t));
decode_gsm_rlcmac_downlink(&packet_uplink_ack_vec, packet_uplink_ack);
free(packet_uplink_ack);
COUT("RLCMAC_CONTROL_BLOCK_END------------------------------");
pcu_l1if_tx(&packet_uplink_ack_vec);
}
void gprs_rlcmac_data_block_parse(gprs_rlcmac_tbf* tbf, RlcMacUplinkDataBlock_t * ul_data_block)
{
unsigned block_data_len = 0;
unsigned data_octet_num = 0;
if (ul_data_block->E_1 == 0) // Extension octet follows immediately
{
// TODO We should implement case with several LLC PDU in one data block.
block_data_len = ul_data_block->LENGTH_INDICATOR[0];
}
else
{
block_data_len = 20; // RLC data length without 3 header octets.
if(ul_data_block->TI == 1) // TLLI field is present
{
tbf->tlli = ul_data_block->TLLI;
block_data_len -= 4; // TLLI length
if (ul_data_block->PI == 1) // PFI is present if TI field indicates presence of TLLI
{
block_data_len -= 1; // PFI length
}
}
}
for (unsigned i = tbf->data_index; i < tbf->data_index + block_data_len; i++)
{
tbf->rlc_data[i] = ul_data_block->RLC_DATA[data_octet_num];
data_octet_num++;
}
tbf->data_index += block_data_len;
}
/* Received Uplink RLC data block. */
int gprs_rlcmac_rcv_data_block(BitVector *rlc_block)
{
struct gprs_rlcmac_tbf *tbf;
COUT("RLCMAC_DATA_BLOCK<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
RlcMacUplinkDataBlock_t * ul_data_block = (RlcMacUplinkDataBlock_t *)malloc(sizeof(RlcMacUplinkDataBlock_t));
decode_gsm_rlcmac_uplink_data(rlc_block, ul_data_block);
COUT("RLCMAC_DATA_BLOCK_END------------------------------");
tbf = tbf_by_tfi(ul_data_block->TFI);
if (!tbf) {
tbf = tbf_alloc(ul_data_block->TFI);
if (tbf) {
tbf->tlli = ul_data_block->TLLI;
tbf->direction = GPRS_RLCMAC_UL_TBF;
tbf->state = GPRS_RLCMAC_WAIT_DATA_SEQ_START;
} else {
return 0;
}
}
switch (tbf->state) {
case GPRS_RLCMAC_WAIT_DATA_SEQ_START:
if (ul_data_block->BSN == 0) {
tbf->data_index = 0;
gprs_rlcmac_data_block_parse(tbf, ul_data_block);
gprs_rlcmac_tx_ul_ack(tbf->tfi, tbf->tlli, ul_data_block);
tbf->state = GPRS_RLCMAC_WAIT_NEXT_DATA_BLOCK;
tbf->bsn = ul_data_block->BSN;
}
break;
case GPRS_RLCMAC_WAIT_NEXT_DATA_BLOCK:
if (tbf->bsn == (ul_data_block->BSN - 1)) {
gprs_rlcmac_data_block_parse(tbf, ul_data_block);
gprs_rlcmac_tx_ul_ack(tbf->tfi, tbf->tlli, ul_data_block);
if (ul_data_block->CV == 0) {
// Recieved last Data Block in this sequence.
gsmtap_send_llc(tbf->rlc_data, tbf->data_index);
tbf->state = GPRS_RLCMAC_WAIT_NEXT_DATA_SEQ;
} else {
tbf->bsn = ul_data_block->BSN;
tbf->state = GPRS_RLCMAC_WAIT_NEXT_DATA_BLOCK;
}
} else {
// Recieved Data Block with unexpected BSN.
// We should try to find nesessary Data Block.
tbf->state = GPRS_RLCMAC_WAIT_NEXT_DATA_BLOCK;
}
break;
case GPRS_RLCMAC_WAIT_NEXT_DATA_SEQ:
// Now we just ignore all Data Blocks and wait next Uplink TBF
break;
}
free(ul_data_block);
return 1;
}
/* Received Uplink RLC control block. */
int gprs_rlcmac_rcv_control_block(BitVector *rlc_block)
{
//static unsigned shutUp = 0;
uint8_t tfi = 0;
uint32_t tlli = 0;
struct gprs_rlcmac_tbf *tbf;
COUT("RLCMAC_CONTROL_BLOCK<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<");
RlcMacUplink_t * ul_control_block = (RlcMacUplink_t *)malloc(sizeof(RlcMacUplink_t));
decode_gsm_rlcmac_uplink(rlc_block, ul_control_block);
COUT("RLCMAC_CONTROL_BLOCK_END------------------------------");
//gprs_rlcmac_control_block_get_tfi_tlli(ul_control_block, &tfi, &tlli);
//tbf = tbf_by_tfi(tfi);
//if (!tbf) {
// return 0;
//}
switch (ul_control_block->u.MESSAGE_TYPE) {
case MT_PACKET_CONTROL_ACK:
tlli = ul_control_block->u.Packet_Control_Acknowledgement.TLLI;
tbf = tbf_by_tlli(tlli);
if (!tbf) {
return 0;
}
gprs_rlcmac_tx_ul_ud(tbf);
tbf_free(tbf);
break;
case MT_PACKET_DOWNLINK_ACK_NACK:
tfi = ul_control_block->u.Packet_Downlink_Ack_Nack.DOWNLINK_TFI;
tbf = tbf_by_tfi(tfi);
if (!tbf) {
return 0;
}
COUT("SEND PacketUplinkAssignment>>>>>>>>>>>>>>>>>>");
BitVector packet_uplink_assignment(23*8);
packet_uplink_assignment.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
write_packet_uplink_assignment(&packet_uplink_assignment, tbf->tfi, tbf->tlli);
pcu_l1if_tx(&packet_uplink_assignment);
break;
}
free(ul_control_block);
return 1;
}
void gprs_rlcmac_rcv_block(BitVector *rlc_block)
{
unsigned readIndex = 0;
unsigned payload = rlc_block->readField(readIndex, 2);
switch (payload) {
case GPRS_RLCMAC_DATA_BLOCK:
gprs_rlcmac_rcv_data_block(rlc_block);
break;
case GPRS_RLCMAC_CONTROL_BLOCK:
gprs_rlcmac_rcv_control_block(rlc_block);
break;
case GPRS_RLCMAC_CONTROL_BLOCK_OPT:
COUT("GPRS_RLCMAC_CONTROL_BLOCK_OPT block payload is not supported.\n");
default:
COUT("Unknown RLCMAC block payload.\n");
}
}
// Send RLC data to OpenBTS.
void gprs_rlcmac_tx_dl_data_block(uint32_t tlli, uint8_t tfi, uint8_t *pdu, int start_index, int end_index, uint8_t bsn, uint8_t fbi)
{
int spare_len = 0;
BitVector data_block_vector(BLOCK_LEN*8);
data_block_vector.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
RlcMacDownlinkDataBlock_t * data_block = (RlcMacDownlinkDataBlock_t *)malloc(sizeof(RlcMacDownlinkDataBlock_t));
data_block->PAYLOAD_TYPE = 0;
data_block->RRBP = 0;
data_block->SP = 1;
data_block->USF = 1;
data_block->PR = 0;
data_block->TFI = tfi;
data_block->FBI = fbi;
data_block->BSN = bsn;
if ((end_index - start_index) < 20) {
data_block->E_1 = 0;
data_block->LENGTH_INDICATOR[0] = end_index-start_index;
data_block->M[0] = 0;
data_block->E[0] = 1;
spare_len = 19 - data_block->LENGTH_INDICATOR[0];
} else {
data_block->E_1 = 1;
}
int j = 0;
int i = 0;
for(i = start_index; i < end_index; i++) {
data_block->RLC_DATA[j] = pdu[i];
j++;
}
for(i = j; i < j + spare_len; i++) {
data_block->RLC_DATA[i] = 0x2b;
}
encode_gsm_rlcmac_downlink_data(&data_block_vector, data_block);
free(data_block);
pcu_l1if_tx(&data_block_vector);
}
int gprs_rlcmac_segment_llc_pdu(struct gprs_rlcmac_tbf *tbf)
{
int fbi = 0;
int num_blocks = 0;
int i;
if (tbf->data_index > BLOCK_DATA_LEN + 1)
{
int block_data_len = BLOCK_DATA_LEN;
num_blocks = tbf->data_index/BLOCK_DATA_LEN;
int rest_len = tbf->data_index%BLOCK_DATA_LEN;
int start_index = 0;
int end_index = 0;
if (tbf->data_index%BLOCK_DATA_LEN > 0)
{
num_blocks++;
}
for (i = 0; i < num_blocks; i++)
{
if (i == num_blocks-1)
{
if (rest_len > 0)
{
block_data_len = rest_len;
}
fbi = 1;
}
end_index = start_index + block_data_len;
gprs_rlcmac_tx_dl_data_block(tbf->tlli, tbf->tfi, tbf->rlc_data, start_index, end_index, i, fbi);
start_index += block_data_len;
}
}
else
{
gprs_rlcmac_tx_dl_data_block(tbf->tlli, tbf->tfi, tbf->rlc_data, 0, tbf->data_index, 0, 1);
}
}
/* Send Uplink unit-data to SGSN. */
void gprs_rlcmac_tx_ul_ud(gprs_rlcmac_tbf *tbf)
{
const uint8_t qos_profile = QOS_PROFILE;
struct msgb *llc_pdu;
unsigned msg_len = NS_HDR_LEN + BSSGP_HDR_LEN + tbf->data_index;
LOGP(DBSSGP, LOGL_DEBUG, "Data len %u TLLI 0x%08x , TFI 0x%02x", tbf->data_index, tbf->tlli, tbf->tfi);
//for (unsigned i = 0; i < dataLen; i++)
// LOGP(DBSSGP, LOGL_DEBUG, " Data[%u] = %u", i, rlc_data[i]);
bctx->cell_id = CELL_ID;
bctx->nsei = NSEI;
bctx->ra_id.mnc = MNC;
bctx->ra_id.mcc = MCC;
bctx->ra_id.lac = PCU_LAC;
bctx->ra_id.rac = PCU_RAC;
bctx->bvci = BVCI;
llc_pdu = msgb_alloc_headroom(msg_len, msg_len,"llc_pdu");
msgb_tvlv_push(llc_pdu, BSSGP_IE_LLC_PDU, sizeof(uint8_t)*tbf->data_index, tbf->rlc_data);
bssgp_tx_ul_ud(bctx, tbf->tlli, &qos_profile, llc_pdu);
}
void gprs_rlcmac_downlink_assignment(gprs_rlcmac_tbf *tbf)
{
COUT("SEND IA Rest Octets Downlink Assignment>>>>>>>>>>>>>>>>>>");
BitVector ia_rest_octets_downlink_assignment(23*8);
ia_rest_octets_downlink_assignment.unhex("2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b2b");
write_ia_rest_octets_downlink_assignment(&ia_rest_octets_downlink_assignment, tbf->tfi, tbf->tlli);
pcu_l1if_tx(&ia_rest_octets_downlink_assignment);
usleep(500000);
gprs_rlcmac_segment_llc_pdu(tbf);
}