osmo-pcu/src/encoding.cpp

1807 lines
59 KiB
C++
Raw Normal View History

/* encoding.cpp
*
* Copyright (C) 2012 Ivan Klyuchnikov
* Copyright (C) 2012 Andreas Eversberg <jolly@eversberg.eu>
* Copyright (C) 2013 by Holger Hans Peter Freyther
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <encoding.h>
#include <gprs_rlcmac.h>
#include <bts.h>
#include <tbf.h>
#include <tbf_ul.h>
#include <tbf_dl.h>
#include <gprs_debug.h>
#include <egprs_rlc_compression.h>
extern "C" {
#include <osmocom/gprs/protocol/gsm_04_60.h>
#include <osmocom/gsm/protocol/gsm_04_08.h>
#include <osmocom/gsm/gsm48.h>
}
#include <stdbool.h>
#include <errno.h>
#include <string.h>
#define CHECK(rc) { if (rc < 0) return rc; }
#define SET_X(bv, x) { if (bitvec_set_bit(bv, x) < 0) return -EOWNERDEAD; }
#define SET_0(bv) SET_X(bv, ZERO)
#define SET_1(bv) SET_X(bv, ONE)
#define SET_L(bv) SET_X(bv, L)
#define SET_H(bv) SET_X(bv, H)
/* 3GPP TS 44.018 § 10.5.2.16:
{ 0 | 1 < ALPHA : bit (4) > }
< GAMMA : bit (5) >
*/
static int write_alpha_gamma(bitvec *dest, uint8_t alpha, uint8_t gamma)
{
int rc;
if (alpha) {
SET_1(dest);
rc = bitvec_set_u64(dest, alpha, 4, false);
CHECK(rc);
} else
SET_0(dest);
rc = bitvec_set_u64(dest, gamma, 5, false);
CHECK(rc);
return 0;
}
/* TBF_STARTING_TIME -- same as 3GPP TS 44.018 §10.5.2.38 Starting Time without tag: */
static int write_tbf_start_time(bitvec *dest, uint32_t fn)
{
int rc;
/* Set values according to 3GPP TS 44.018 Table 10.5.2.38.1 */
/* T1' */
rc = bitvec_set_u64(dest, (fn / (26 * 51)) % 32, 5, false);
CHECK(rc);
/* T3 */
rc = bitvec_set_u64(dest, fn % 51, 6, false);
CHECK(rc);
/* T2 */
rc = bitvec_set_u64(dest, fn % 26, 5, false);
CHECK(rc);
return rc;
}
/* 3GPP TS 44.018 §10.5.2.16:
< TFI_ASSIGNMENT : bit (5) >
< POLLING : bit >
0 -- The value '1' was allocated in an earlier version of the protocol and shall not be used.
< USF: bit (3) >
< USF_GRANULARITY : bit >
{ 0 | 1 < P0 : bit (4) > < PR_MODE : bit (1) > }
*/
static int write_tfi_usf(bitvec *dest, const gprs_rlcmac_ul_tbf *tbf, uint8_t usf)
{
int rc = bitvec_set_u64(dest, tbf->tfi(), 5, false); /* TFI_ASSIGNMENT */
CHECK(rc);
SET_0(dest); /* POLLING -- no action is required from MS */
SET_0(dest);
rc = bitvec_set_u64(dest, usf, 3, false); /* USF */
CHECK(rc);
SET_0(dest); /* USF_GRANULARITY -- the mobile station shall transmit one RLC/MAC block */
SET_0(dest); /* No P0 nor PR_MODE */
return 0;
}
/* { 0 | 1 < TIMING_ADVANCE_INDEX : bit (4) > } */
static int write_ta_index(bitvec *dest, int8_t tai)
{
int rc;
if (tai < 0) { /* No TIMING_ADVANCE_INDEX: */
SET_0(dest);
} else { /* TIMING_ADVANCE_INDEX: */
SET_1(dest);
rc = bitvec_set_u64(dest, tai, 4, false);
CHECK(rc);
}
return 0;
}
static inline bool write_tai(bitvec *dest, unsigned& wp, int8_t tai)
{
if (tai < 0) { /* No TIMING_ADVANCE_INDEX: */
bitvec_write_field(dest, &wp, 0, 1);
return false;
}
/* TIMING_ADVANCE_INDEX: */
bitvec_write_field(dest, &wp, 1, 1);
bitvec_write_field(dest, &wp, tai, 4);
return true;
}
/* { 0 | 1 < TIMING_ADVANCE_VALUE : bit (6) > } */
static inline void write_ta(bitvec *dest, unsigned& wp, uint8_t ta)
{
if (ta > 63) /* No TIMING_ADVANCE_VALUE: */
bitvec_write_field(dest, &wp, 0, 1);
else { /* TIMING_ADVANCE_VALUE: */
bitvec_write_field(dest, &wp, 1, 1);
bitvec_write_field(dest, &wp, ta, 6);
}
}
/* 3GPP TS 44.060 Table 12.5.2.1 */
static inline uint16_t enc_ws(uint16_t ws)
{
return (ws - 64) / 32;
}
static inline void write_ws(bitvec *dest, unsigned int *write_index, uint16_t ws)
{
dest->cur_bit = *write_index;
int rc = bitvec_set_u64(dest, enc_ws(ws), 5, false);
OSMO_ASSERT(rc == 0);
*write_index += 5;
}
/* 3GPP TS 44.060 § 12.12:
{ 0 | 1 < TIMING_ADVANCE_VALUE : bit (6) > }
{ 0 | 1 < TIMING_ADVANCE_INDEX : bit (4) >
< TIMING_ADVANCE_TIMESLOT_NUMBER : bit (3) > }
*/
static inline void write_ta_ie(bitvec *dest, unsigned& wp,
uint8_t ta, int8_t tai, uint8_t ts)
{
write_ta(dest, wp, ta);
if (write_tai(dest, wp, tai)) /* TIMING_ADVANCE_TIMESLOT_NUMBER: */
bitvec_write_field(dest, &wp, ts, 3);
}
static int write_ia_rest_downlink(const gprs_rlcmac_dl_tbf *tbf, bitvec * dest, bool polling, bool ta_valid,
uint32_t fn, uint8_t alpha, uint8_t gamma, int8_t ta_idx)
{
int rc = 0;
SET_H(dest); SET_H(dest);
SET_0(dest); SET_1(dest); /* 00 Packet Downlink Assignment */
rc = bitvec_set_u64(dest, tbf->tlli(), 32, false); /* TLLI */
CHECK(rc);
SET_1(dest);
rc = bitvec_set_u64(dest, tbf->tfi(), 5, false); /* TFI_ASSIGNMENT */
CHECK(rc);
/* RLC acknowledged mode */
rc = bitvec_set_bit(dest, (bit_value) RLC_MODE_ACKNOWLEDGED);
CHECK(rc);
rc = write_alpha_gamma(dest, alpha, gamma);
CHECK(rc);
rc = bitvec_set_bit(dest, (bit_value) polling); /* POLLING */
CHECK(rc);
/* N. B: NOT related to TAI! */
rc = bitvec_set_bit(dest, (bit_value) ta_valid); /* TA_VALID */
CHECK(rc);
rc = write_ta_index(dest, ta_idx);
CHECK(rc);
if (polling) {
SET_1(dest);
rc = write_tbf_start_time(dest, fn);
CHECK(rc);
} else
SET_0(dest);
SET_0(dest); /* No P0 nor PR_MODE */
if (tbf->is_egprs_enabled()) {
SET_H(dest);
rc = bitvec_set_u64(dest, enc_ws(tbf->window_size()), 5, false); /* EGPRS Window Size */
CHECK(rc);
/* The mobile station shall not report measurements: (see 3GPP TS 44.060 Table 11.2.7.1) */
SET_0(dest); SET_0(dest); /* LINK_QUALITY_MEASUREMENT_MODE */
SET_1(dest); /* No BEP_PERIOD2 */
} else
SET_L(dest); /* No Additions for Rel-6 */
return rc;
}
/* 3GPP TS 44.018 Table 10.5.2.16.1 < Packet Uplink Assignment > -- Single Block Allocation */
static int write_ia_rest_uplink_sba(bitvec *dest, uint32_t fn, uint8_t alpha, uint8_t gamma)
{
int rc = 0;
SET_0(dest); /* Single Block Allocation */
rc = write_alpha_gamma(dest, alpha, gamma);
CHECK(rc);
/* A 'Timing Advance index' shall not be allocated at a Single Block allocation.
A 'TBF Starting Time' shall be allocated at a Single Block allocation. */
SET_0(dest);
SET_1(dest);
rc = write_tbf_start_time(dest, fn);
CHECK(rc);
/* No P0 nor PR_MODE */
SET_L(dest);
/* No Additions for R99 */
SET_L(dest);
/* No Additions for Rel-6 */
SET_L(dest);
return rc;
}
static int write_ia_rest_uplink_mba(const gprs_rlcmac_ul_tbf *tbf, bitvec *dest, uint8_t usf,
uint8_t alpha, uint8_t gamma, int8_t ta_idx)
{
int rc = 0;
SET_1(dest); /* Multi Block Allocation */
rc = write_tfi_usf(dest, tbf, usf);
CHECK(rc);
/* 3GPP TS 44.060 Table 11.2.28.2 Channel Coding Indicator */
rc = bitvec_set_u64(dest, mcs_chan_code(tbf->current_cs()), 2, false); /* CHANNEL_CODING_COMMAND */
CHECK(rc);
/* TLLI_BLOCK_CHANNEL_CODING */
SET_1(dest); /* use coding scheme as specified by the corresponding CHANNEL CODING COMMAND */
rc = write_alpha_gamma(dest, alpha, gamma);
CHECK(rc);
rc = write_ta_index(dest, ta_idx);
CHECK(rc);
/* No TBF_STARTING_TIME */
SET_0(dest);
return rc;
}
static int write_ia_rest_egprs_uplink_mba(bitvec * dest, uint32_t fn, uint8_t alpha, uint8_t gamma)
{
int rc = 0;
SET_0(dest); /* Multi Block Allocation */
rc = write_alpha_gamma(dest, alpha, gamma);
CHECK(rc);
rc = write_tbf_start_time(dest, fn);
CHECK(rc);
SET_0(dest); /* NUMBER OF RADIO BLOCKS ALLOCATED: */
SET_0(dest); /* 1 radio block reserved for uplink transmission */
SET_0(dest); /* No P0 */
return rc;
}
static int write_ia_rest_egprs_uplink_sba(const gprs_rlcmac_ul_tbf *tbf, bitvec * dest, uint8_t usf,
uint8_t alpha, uint8_t gamma, int8_t ta_idx)
{
int rc = 0;
SET_1(dest); /* Single Block Allocation */
rc = write_tfi_usf(dest, tbf, usf);
CHECK(rc);
/* 3GPP TS 44.060 §12.10d EGPRS Modulation and coding Scheme description: */
rc = bitvec_set_u64(dest, mcs_chan_code(tbf->current_cs()), 4, false); /* EGPRS CHANNEL_CODING_COMMAND */
CHECK(rc);
/* TLLI_BLOCK_CHANNEL_CODING */
rc = bitvec_set_bit(dest, (bit_value)tbf->tlli());
CHECK(rc);
/* No BEP_PERIOD2 */
SET_0(dest);
/* Retransmitted RLC data blocks shall not be re-segmented: (see 3GPP TS 44.060 §12.10e) */
SET_0(dest); /* RESEGMENT */
rc = bitvec_set_u64(dest, enc_ws(tbf->window_size()), 5, false); /* EGPRS Window Size */
CHECK(rc);
rc = write_alpha_gamma(dest, alpha, gamma);
CHECK(rc);
rc = write_ta_index(dest, ta_idx);
CHECK(rc);
/* No TBF_STARTING_TIME */
SET_0(dest);
/* No Additions for Rel-7 */
SET_0(dest);
return rc;
}
/*
* Immediate assignment reject, sent on the CCCH/AGCH
* see GSM 44.018, 9.1.20 + 10.5.2.30
*/
int Encoding::write_immediate_assignment_reject(bitvec *dest, uint16_t ra,
uint32_t ref_fn, enum ph_burst_type burst_type, uint8_t t3142)
{
unsigned wp = 0;
int plen;
int i;
bitvec_write_field(dest, &wp, 0x0, 4); // Skip Indicator
bitvec_write_field(dest, &wp, 0x6, 4); // Protocol Discriminator
bitvec_write_field(dest, &wp, 0x3A, 8); // Immediate Assign Message Type
// feature indicator
bitvec_write_field(dest, &wp, 0x0, 1); // spare
bitvec_write_field(dest, &wp, 0x0, 1); // spare
bitvec_write_field(dest, &wp, 0x0, 1); // no cs
bitvec_write_field(dest, &wp, 0x1, 1); // implicit detach for PS
bitvec_write_field(dest, &wp, 0x0, 4); // Page Mode
/*
* 9.1.20.2 of 44.018 version 11.7.0 Release 11
* Filling of the message
* If necessary the request reference information element and the
* wait indication information element should be duplicated to
* fill the message.
* TODO: group rejection for multiple MS
*/
for (i = 0; i < 4; i++) {
//10.5.2.30 Request Reference
if (((burst_type == GSM_L1_BURST_TYPE_ACCESS_1) ||
(burst_type == GSM_L1_BURST_TYPE_ACCESS_2))) {
//9.1.20.2a of 44.018 version 11.7.0 Release 11
bitvec_write_field(dest, &wp, 0x7f, 8); /* RACH value */
} else {
bitvec_write_field(dest, &wp, ra, 8); /* RACH value */
}
bitvec_write_field(dest, &wp,
(ref_fn / (26 * 51)) % 32, 5); // T1'
bitvec_write_field(dest, &wp, ref_fn % 51, 6); // T3
bitvec_write_field(dest, &wp, ref_fn % 26, 5); // T2
/* 10.5.2.43 Wait Indication */
bitvec_write_field(dest, &wp, t3142, 8);
}
plen = wp / 8;
if ((wp % 8)) {
LOGP(DRLCMACUL, LOGL_ERROR, "Length of IMM.ASS.Rej without"
"rest octets is not multiple of 8 bits, PLEASE FIX!\n");
return -1;
}
// Extended RA
else if (((burst_type == GSM_L1_BURST_TYPE_ACCESS_1) ||
(burst_type == GSM_L1_BURST_TYPE_ACCESS_2))) {
//9.1.20.2a of 44.018 version 11.7.0 Release 11
uint8_t extended_ra = 0;
extended_ra = (ra & 0x1F);
bitvec_write_field(dest, &wp, 0x1, 1);
bitvec_write_field(dest, &wp, extended_ra, 5); /* Extended RA */
} else {
bitvec_write_field(dest, &wp, 0x0, 1);
}
bitvec_write_field(dest, &wp, 0x0, 1);
bitvec_write_field(dest, &wp, 0x0, 1);
bitvec_write_field(dest, &wp, 0x0, 1);
return plen;
}
/*
* Immediate assignment, sent on the CCCH/AGCH
* see GSM 04.08, 9.1.18 and GSM 44.018, 9.1.18 + 10.5.2.16
*/
int Encoding::write_immediate_assignment(
const struct gprs_rlcmac_pdch *pdch,
struct gprs_rlcmac_tbf *tbf,
bitvec * dest, bool downlink, uint16_t ra,
uint32_t ref_fn, uint8_t ta,
uint8_t usf, bool polling, uint32_t fn, uint8_t alpha,
uint8_t gamma, int8_t ta_idx, enum ph_burst_type burst_type)
{
unsigned wp = 0;
int plen;
int rc;
bitvec_write_field(dest, &wp,0x0,4); // Skip Indicator
bitvec_write_field(dest, &wp,0x6,4); // Protocol Discriminator
bitvec_write_field(dest, &wp,0x3F,8); // Immediate Assignment Message Type
// 10.5.2.25b Dedicated mode or TBF
bitvec_write_field(dest, &wp,0x0,1); // spare
bitvec_write_field(dest, &wp,0x0,1); // TMA : Two-message assignment: No meaning
bitvec_write_field(dest, &wp,downlink,1); // Downlink : Downlink assignment to mobile in packet idle mode
bitvec_write_field(dest, &wp,0x1,1); // T/D : TBF or dedicated mode: this message assigns a Temporary Block Flow (TBF).
bitvec_write_field(dest, &wp,0x0,4); // Page Mode
// GSM 04.08 10.5.2.25a Packet Channel Description
bitvec_write_field(dest, &wp, 0x01, 5); // Channel type
bitvec_write_field(dest, &wp, pdch->ts_no, 3); // TN
bitvec_write_field(dest, &wp, pdch->tsc, 3); // TSC
/* RF channel configuraion: hopping or non-hopping */
if (pdch->fh.enabled) {
bitvec_write_field(dest, &wp, 0x01, 1); /* direct encoding */
bitvec_write_field(dest, &wp, pdch->fh.maio, 6);
bitvec_write_field(dest, &wp, pdch->fh.hsn, 6);
} else {
bitvec_write_field(dest, &wp, 0x00, 3);
bitvec_write_field(dest, &wp, pdch->trx->arfcn, 10);
}
//10.5.2.30 Request Reference
if (((burst_type == GSM_L1_BURST_TYPE_ACCESS_1) ||
(burst_type == GSM_L1_BURST_TYPE_ACCESS_2))) {
bitvec_write_field(dest, &wp, 0x7f, 8); /* RACH value */
} else {
bitvec_write_field(dest, &wp, ra, 8); /* RACH value */
}
bitvec_write_field(dest, &wp,(ref_fn / (26 * 51)) % 32,5); // T1'
bitvec_write_field(dest, &wp,ref_fn % 51,6); // T3
bitvec_write_field(dest, &wp,ref_fn % 26,5); // T2
// 10.5.2.40 Timing Advance
bitvec_write_field(dest, &wp,0x0,2); // spare
bitvec_write_field(dest, &wp,ta,6); // Timing Advance value
/* 10.5.2.21 Mobile Allocation */
if (pdch->fh.enabled) {
bitvec_write_field(dest, &wp, pdch->fh.ma_oct_len, 8);
for (int i = 0; i < pdch->fh.ma_oct_len; i++)
bitvec_write_field(dest, &wp, pdch->fh.ma[i], 8);
} else {
// No mobile allocation in non-hopping systems.
// A zero-length LV. Just write L=0.
bitvec_write_field(dest, &wp, 0x00, 8);
}
OSMO_ASSERT(wp % 8 == 0);
plen = wp / 8;
/* 3GPP TS 44.018 §10.5.2.16 IA Rest Octets */
dest->cur_bit = wp;
if (downlink) {
OSMO_ASSERT(as_dl_tbf(tbf) != NULL);
rc = write_ia_rest_downlink(as_dl_tbf(tbf), dest, polling, gsm48_ta_is_valid(ta), fn, alpha, gamma,
ta_idx);
} else if (((burst_type == GSM_L1_BURST_TYPE_ACCESS_1) || (burst_type == GSM_L1_BURST_TYPE_ACCESS_2))) {
SET_L(dest); SET_H(dest); // "LH"
SET_0(dest); SET_0(dest); // "00" < EGPRS Packet Uplink Assignment >
rc = bitvec_set_u64(dest, ra & 0x1F, 5, false); // < Extended RA >
CHECK(rc);
SET_0(dest); // No < Access Technologies Request struct >
if (as_ul_tbf(tbf) != NULL)
rc = write_ia_rest_egprs_uplink_sba(as_ul_tbf(tbf), dest, usf, alpha, gamma, ta_idx);
else
rc = write_ia_rest_egprs_uplink_mba(dest, fn, alpha, gamma);
} else {
OSMO_ASSERT(!tbf || !tbf->is_egprs_enabled());
SET_H(dest); SET_H(dest); // "HH"
SET_0(dest); SET_0(dest); // "00" < Packet Uplink Assignment >
if (as_ul_tbf(tbf) != NULL)
rc = write_ia_rest_uplink_mba(as_ul_tbf(tbf), dest, usf, alpha, gamma, ta_idx);
else
rc = write_ia_rest_uplink_sba(dest, fn, alpha, gamma);
}
if (rc < 0) {
LOGP(DRLCMAC, LOGL_ERROR,
"Failed to create IMMEDIATE ASSIGNMENT (%s) for %s\n",
downlink ? "downlink" : "uplink",
tbf ? tbf->name() : "single block allocation");
return rc;
}
return plen;
}
/* Prepare to be encoded Frequency Parameters IE (see Table 12.8.1) */
static void gen_freq_params(Frequency_Parameters_t *freq_params,
const struct gprs_rlcmac_tbf *tbf)
{
const struct gprs_rlcmac_pdch *pdch;
Direct_encoding_1_t fh_params;
/* Check one PDCH, if it's hopping then all other should too */
pdch = tbf->pdch[tbf->first_ts];
OSMO_ASSERT(pdch != NULL);
/* Training Sequence Code */
freq_params->TSC = pdch->tsc;
/* If frequency hopping is not in use, encode a single ARFCN */
if (!pdch->fh.enabled) {
freq_params->UnionType = 0x00;
freq_params->u.ARFCN = tbf->trx->arfcn;
return;
}
/* Direct encoding 1 (see Table 12.8.1) */
freq_params->UnionType = 0x2;
/* HSN / MAIO */
fh_params.MAIO = pdch->fh.maio;
fh_params.GPRS_Mobile_Allocation.HSN = pdch->fh.hsn;
fh_params.GPRS_Mobile_Allocation.ElementsOf_RFL_NUMBER = 0;
/* Mobile Allocation bitmap */
fh_params.GPRS_Mobile_Allocation.UnionType = 0; /* MA bitmap */
fh_params.GPRS_Mobile_Allocation.u.MA.MA_LENGTH = pdch->fh.ma_oct_len; /* in bytes */
fh_params.GPRS_Mobile_Allocation.u.MA.MA_BitLength = pdch->fh.ma_bit_len; /* in bits */
memcpy(fh_params.GPRS_Mobile_Allocation.u.MA.MA_BITMAP, pdch->fh.ma, pdch->fh.ma_oct_len);
freq_params->u.Direct_encoding_1 = fh_params;
}
/* Generate Packet Uplink Assignment as per 3GPP TS 44.060, section 11.2.29.
* NOTE: 'block' is expected to be zero-initialized by the caller. */
void write_packet_uplink_assignment(RlcMacDownlink_t *block, uint8_t old_tfi,
uint8_t old_downlink, uint32_t tlli, uint8_t use_tlli,
const struct gprs_rlcmac_ul_tbf *tbf, uint8_t poll, uint8_t rrbp, uint8_t alpha,
uint8_t gamma, int8_t ta_idx, bool use_egprs)
{
Packet_Uplink_Assignment_t *pua;
Packet_Timing_Advance_t *pta;
Frequency_Parameters_t *fp;
Dynamic_Allocation_t *da;
/* RLC/MAC control block without the optional RLC/MAC control header */
block->PAYLOAD_TYPE = 0x01; // Payload Type
block->RRBP = rrbp; // RRBP (e.g. N+13)
block->SP = poll; // RRBP field is valid
block->USF = 0x00; // Uplink state flag
/* See 3GPP TS 44.060, section 11.2.29 */
pua = &block->u.Packet_Uplink_Assignment;
pua->MESSAGE_TYPE = 0x0a; // Packet Uplink Assignment
pua->PAGE_MODE = 0x00; // Normal Paging
/* TLLI or Global (UL/DL) TFI */
if (use_tlli) {
pua->ID.UnionType = 0x01;
pua->ID.u.TLLI = tlli;
} else {
pua->ID.UnionType = 0x00;
pua->ID.u.Global_TFI.UnionType = old_downlink;
pua->ID.u.Global_TFI.u.UPLINK_TFI = old_tfi;
}
/* GPRS/EGPRS specific parameters */
pua->UnionType = use_egprs ? 0x01 : 0x00;
if (!use_egprs) {
PUA_GPRS_t *gprs = &pua->u.PUA_GPRS_Struct;
/* Use the commanded CS/MCS value during the content resolution */
gprs->CHANNEL_CODING_COMMAND = mcs_chan_code(tbf->current_cs());
gprs->TLLI_BLOCK_CHANNEL_CODING = 0x01; // ^^^
/* Dynamic allocation */
gprs->UnionType = 0x01;
/* Frequency Parameters IE is present */
gprs->Exist_Frequency_Parameters = 0x01;
/* Common parameters to be set below */
pta = &gprs->Packet_Timing_Advance;
fp = &gprs->Frequency_Parameters;
da = &gprs->u.Dynamic_Allocation;
} else {
PUA_EGPRS_00_t *egprs = &pua->u.PUA_EGPRS_Struct.u.PUA_EGPRS_00;
pua->u.PUA_EGPRS_Struct.UnionType = 0x00; // 'Normal' EGPRS, not EGPRS2
/* Use the commanded CS/MCS value during the content resolution */
egprs->EGPRS_CHANNEL_CODING_COMMAND = mcs_chan_code(tbf->current_cs());
egprs->TLLI_BLOCK_CHANNEL_CODING = 0x01; // ^^^
egprs->RESEGMENT = 0x01; // Enable segmentation
egprs->EGPRS_WindowSize = tbf->window_size();
/* Dynamic allocation */
egprs->UnionType = 0x01;
/* Frequency Parameters IE is present */
egprs->Exist_Frequency_Parameters = 0x01;
/* Common parameters to be set below */
pta = &egprs->Packet_Timing_Advance;
fp = &egprs->Frequency_Parameters;
da = &egprs->u.Dynamic_Allocation;
}
/* Packet Timing Advance (if known) */
if (gsm48_ta_is_valid(tbf->ta())) { /* { 0 | 1 < TIMING_ADVANCE_VALUE : bit (6) > } */
pta->Exist_TIMING_ADVANCE_VALUE = 0x01; // Present
pta->TIMING_ADVANCE_VALUE = tbf->ta();
}
/* Continuous Timing Advance Control */
if (ta_idx >= 0 && ta_idx < 16) {
pta->Exist_IndexAndtimeSlot = 0x01; // Present
pta->TIMING_ADVANCE_TIMESLOT_NUMBER = 0; // FIXME!
pta->TIMING_ADVANCE_INDEX = ta_idx;
}
/* Frequency Parameters IE */
gen_freq_params(fp, tbf);
/* Dynamic allocation parameters */
da->USF_GRANULARITY = 0x00;
/* Assign an Uplink TFI */
da->Exist_UPLINK_TFI_ASSIGNMENT = 0x01;
da->UPLINK_TFI_ASSIGNMENT = tbf->tfi();
/* Timeslot Allocation with or without Power Control */
da->UnionType = (alpha || gamma) ? 0x01 : 0x00;
if (da->UnionType == 0x01)
da->u.Timeslot_Allocation_Power_Ctrl_Param.ALPHA = alpha;
for (unsigned int tn = 0; tn < 8; tn++) {
if (tbf->pdch[tn] == NULL)
continue;
if (da->UnionType == 0x01) {
Timeslot_Allocation_Power_Ctrl_Param_t *params = \
&da->u.Timeslot_Allocation_Power_Ctrl_Param;
params->Slot[tn].Exist = 0x01; // Enable this timeslot
params->Slot[tn].USF_TN = tbf->m_usf[tn]; // USF_TN(i)
params->Slot[tn].GAMMA_TN = gamma;
} else {
Timeslot_Allocation_t *slot = &da->u.Timeslot_Allocation[tn];
slot->Exist = 0x01; // Enable this timeslot
slot->USF_TN = tbf->m_usf[tn]; // USF_TN(i)
}
}
}
/* Generate Packet Downlink Assignment as per 3GPP TS 44.060, section 11.2.7.
* NOTE: 'block' is expected to be zero-initialized by the caller. */
void write_packet_downlink_assignment(RlcMacDownlink_t * block,
bool old_tfi_is_valid, uint8_t old_tfi, uint8_t old_downlink,
const struct gprs_rlcmac_dl_tbf *tbf, uint8_t poll, uint8_t rrbp,
uint8_t alpha, uint8_t gamma, int8_t ta_idx,
uint8_t ta_ts, bool use_egprs, uint8_t control_ack)
{
PDA_AdditionsR99_t *pda_r99;
uint8_t tn;
block->PAYLOAD_TYPE = 0x1; // RLC/MAC control block that does not include the optional octets of the RLC/MAC control header
block->RRBP = rrbp; // 0: N+13
block->SP = poll; // RRBP field is valid
block->USF = 0x0; // Uplink state flag
block->u.Packet_Downlink_Assignment.MESSAGE_TYPE = 0x2; // Packet Downlink Assignment
block->u.Packet_Downlink_Assignment.PAGE_MODE = 0x0; // Normal Paging
block->u.Packet_Downlink_Assignment.Exist_PERSISTENCE_LEVEL = 0x0; // PERSISTENCE_LEVEL: off
if (old_tfi_is_valid) {
block->u.Packet_Downlink_Assignment.ID.UnionType = 0x0; // TFI = on
block->u.Packet_Downlink_Assignment.ID.u.Global_TFI.UnionType = old_downlink; // 0=UPLINK TFI, 1=DL TFI
block->u.Packet_Downlink_Assignment.ID.u.Global_TFI.u.UPLINK_TFI = old_tfi; // TFI
} else {
block->u.Packet_Downlink_Assignment.ID.UnionType = 0x1; // TLLI
block->u.Packet_Downlink_Assignment.ID.u.TLLI = tbf->tlli();
}
block->u.Packet_Downlink_Assignment.MAC_MODE = 0x0; // Dynamic Allocation
block->u.Packet_Downlink_Assignment.RLC_MODE = RLC_MODE_ACKNOWLEDGED;
block->u.Packet_Downlink_Assignment.CONTROL_ACK = control_ack; // NW establishes no new DL TBF for the MS with running timer T3192
block->u.Packet_Downlink_Assignment.TIMESLOT_ALLOCATION = 0; // timeslot(s)
for (tn = 0; tn < 8; tn++) {
if (tbf->pdch[tn])
block->u.Packet_Downlink_Assignment.TIMESLOT_ALLOCATION |= 0x80 >> tn; // timeslot(s)
}
if (tbf->ta() > 63) { /* { 0 | 1 < TIMING_ADVANCE_VALUE : bit (6) > } */
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.Exist_TIMING_ADVANCE_VALUE = 0x0; // TIMING_ADVANCE_VALUE = off
} else {
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.Exist_TIMING_ADVANCE_VALUE = 0x1; // TIMING_ADVANCE_VALUE = on
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.TIMING_ADVANCE_VALUE = tbf->ta(); // TIMING_ADVANCE_VALUE
}
if (ta_idx < 0) {
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.Exist_IndexAndtimeSlot = 0x0; // TIMING_ADVANCE_INDEX = off
} else {
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.Exist_IndexAndtimeSlot = 0x1; // TIMING_ADVANCE_INDEX = on
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.TIMING_ADVANCE_INDEX = ta_idx; // TIMING_ADVANCE_INDEX
block->u.Packet_Downlink_Assignment.Packet_Timing_Advance.TIMING_ADVANCE_TIMESLOT_NUMBER = ta_ts; // TIMING_ADVANCE_TS
}
block->u.Packet_Downlink_Assignment.Exist_P0_and_BTS_PWR_CTRL_MODE = 0x0; // POWER CONTROL = off
block->u.Packet_Downlink_Assignment.Exist_Frequency_Parameters = 0x1; // Frequency Parameters = on
gen_freq_params(&block->u.Packet_Downlink_Assignment.Frequency_Parameters, tbf);
block->u.Packet_Downlink_Assignment.Exist_DOWNLINK_TFI_ASSIGNMENT = 0x1; // DOWNLINK TFI ASSIGNMENT = on
block->u.Packet_Downlink_Assignment.DOWNLINK_TFI_ASSIGNMENT = tbf->tfi(); // TFI
block->u.Packet_Downlink_Assignment.Exist_Power_Control_Parameters = 0x1; // Power Control Parameters = on
block->u.Packet_Downlink_Assignment.Power_Control_Parameters.ALPHA = alpha; // ALPHA
for (tn = 0; tn < 8; tn++)
{
if (tbf->pdch[tn])
{
block->u.Packet_Downlink_Assignment.Power_Control_Parameters.Slot[tn].Exist = 0x1; // Slot[i] = on
block->u.Packet_Downlink_Assignment.Power_Control_Parameters.Slot[tn].GAMMA_TN = gamma; // GAMMA_TN
}
else
{
block->u.Packet_Downlink_Assignment.Power_Control_Parameters.Slot[tn].Exist = 0x0; // Slot[i] = off
}
}
block->u.Packet_Downlink_Assignment.Exist_TBF_Starting_Time = 0x0; // TBF Starting TIME = off
block->u.Packet_Downlink_Assignment.Exist_Measurement_Mapping = 0x0; // Measurement_Mapping = off
if (!use_egprs) {
block->u.Packet_Downlink_Assignment.Exist_AdditionsR99 = 0x0; // AdditionsR99 = off
return;
}
block->u.Packet_Downlink_Assignment.Exist_AdditionsR99 = 0x1; // AdditionsR99 = on
pda_r99 = &block->u.Packet_Downlink_Assignment.AdditionsR99;
pda_r99->Exist_EGPRS_Params = 1;
pda_r99->EGPRS_WindowSize = enc_ws(tbf->window_size()); /* see TS 44.060, table 12.5.2.1 */
pda_r99->LINK_QUALITY_MEASUREMENT_MODE = 0x0; /* no meas, see TS 44.060, table 11.2.7.2 */
pda_r99->Exist_BEP_PERIOD2 = 0; /* No extra EGPRS BEP PERIOD */
pda_r99->Exist_Packet_Extended_Timing_Advance = 0;
pda_r99->Exist_COMPACT_ReducedMA = 0;
}
/* Generate paging request. See 44.018, sections 10 and 9.1.22 */
int Encoding::write_paging_request(bitvec * dest, const struct osmo_mobile_identity *mi)
{
uint8_t mi_buf[GSM48_MID_MAX_SIZE];
int mi_len;
unsigned wp = 0;
int plen;
bitvec_write_field(dest, &wp,0x0,4); // Skip Indicator
bitvec_write_field(dest, &wp,0x6,4); // Protocol Discriminator
bitvec_write_field(dest, &wp,0x21,8); // Paging Request Message Type 1
bitvec_write_field(dest, &wp,0x0,4); // Page Mode
bitvec_write_field(dest, &wp,0x0,4); // Channel Needed
mi_len = osmo_mobile_identity_encode_buf(mi_buf, sizeof(mi_buf), mi, true);
if (mi_len <= 0)
return mi_len;
bitvec_write_field(dest, &wp, mi_len, 8); // Mobile Identity length
bitvec_set_bytes(dest, mi_buf, mi_len); // Mobile Identity
wp += mi_len * 8;
OSMO_ASSERT(wp % 8 == 0);
plen = wp / 8;
bitvec_write_field(dest, &wp,0x0,1); // "L" Notification List Number; NLN(PCH) = off
bitvec_write_field(dest, &wp,0x0,1); // "L" Priority1 = off
bitvec_write_field(dest, &wp,0x1,1); // "L" Priority2 = off
bitvec_write_field(dest, &wp,0x0,1); // "L" Group Call information = off
bitvec_write_field(dest, &wp,0x0,1); // "H" Packet Page Indication 1 = packet paging procedure
bitvec_write_field(dest, &wp,0x1,1); // "H" Packet Page Indication 2 = packet paging procedure
return plen;
}
/**
* The index of the array show_rbb is the bit position inside the rbb
* (show_rbb[63] relates to BSN ssn-1)
*/
void Encoding::encode_rbb(const char *show_rbb, bitvec *bv)
{
// RECEIVE_BLOCK_BITMAP
for (int i = 0; i < 64; i++) {
/* Set bit at the appropriate position (see 3GPP TS 44.060 9.1.8.1) */
bitvec_set_bit(bv, show_rbb[i] == 'R' ? ONE : ZERO);
}
}
static void write_packet_ack_nack_desc_gprs(
bitvec * dest, unsigned& wp,
gprs_rlc_ul_window *window, bool is_final)
{
char rbb[65];
window->update_rbb(rbb);
rbb[64] = 0;
LOGP(DRLCMACUL, LOGL_DEBUG, "- V(N): \"%s\" R=Received "
"I=Invalid\n", rbb);
bitvec_write_field(dest, &wp, is_final, 1); // FINAL_ACK_INDICATION
bitvec_write_field(dest, &wp, window->ssn(), 7); // STARTING_SEQUENCE_NUMBER
for (int i = 0; i < 64; i++) {
/* Set bit at the appropriate position (see 3GPP TS 44.060 9.1.8.1) */
bool is_ack = (rbb[i] == 'R');
bitvec_write_field(dest, &wp, is_ack, 1);
}
}
static void write_packet_uplink_ack_gprs(
bitvec * dest, unsigned& wp,
struct gprs_rlcmac_ul_tbf *tbf, bool is_final)
{
gprs_rlc_ul_window *window = static_cast<gprs_rlc_ul_window *>(tbf->window());
bitvec_write_field(dest, &wp, mcs_chan_code(tbf->current_cs()), 2); // CHANNEL_CODING_COMMAND
write_packet_ack_nack_desc_gprs(dest, wp, window, is_final);
if (tbf->is_tlli_valid()) {
bitvec_write_field(dest, &wp, 1, 1); // 1: have CONTENTION_RESOLUTION_TLLI
bitvec_write_field(dest, &wp, tbf->tlli(), 32); // CONTENTION_RESOLUTION_TLLI
} else {
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have CONTENTION_RESOLUTION_TLLI
}
if (gsm48_ta_is_valid(tbf->ta())) {
bitvec_write_field(dest, &wp, 1, 1); // 1: have Packet Timing Advance IE (TS 44.060 12.12)
bitvec_write_field(dest, &wp, 1, 1); // 1: have TIMING_ADVANCE_VALUE
bitvec_write_field(dest, &wp, tbf->ta(), 6); // TIMING_ADVANCE_VALUE
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have TIMING_ADVANCE_INDEX
} else {
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Packet Timing Advance
}
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Power Control Parameters
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Extension Bits
bitvec_write_field(dest, &wp, 0, 1); // fixed 0
bitvec_write_field(dest, &wp, 1, 1); // 1: have Additions R99
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Packet Extended Timing Advance
bitvec_write_field(dest, &wp, 1, 1); // TBF_EST (enabled)
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have REL 5
};
/* Encode the Ack/Nack for EGPRS. 44.060
* The PCU encodes to receive block bitmap to the following rules:
* - always encode the lenght field
* - use compressed receive block bitmap if it's smaller than uncompressed
* receive block bitmap
* - use the remaining bits for an uncompressed receive block bitmap if needed
*
* Note: The spec also defines an Ack/Nack without length field, but the PCU's
* doesn't support this in UL. It would require a lot more code complexity
* and only saves 7 bit in lossy sitations.
*/
static void write_packet_ack_nack_desc_egprs(
bitvec * dest, unsigned& wp,
gprs_rlc_ul_window *window, bool is_final, unsigned rest_bits)
{
unsigned int urbb_len = 0;
uint8_t crbb_len = 0;
uint8_t len;
bool bow = true;
bool eow = true;
uint16_t ssn = window->mod_sns(window->v_q() + 1);
unsigned int num_blocks = window->mod_sns(window->v_r() - window->v_q());
uint16_t esn_crbb = window->mod_sns(ssn - 1);
static uint8_t rbb[RLC_EGPRS_MAX_WS] = {'\0'};
uint8_t iter = 0;
int is_compressed = 0;
bool try_compression = false;
uint16_t ucmp_bmplen;
uint8_t crbb_bitmap[23] = {'\0'};
bitvec ucmp_vec;
bitvec crbb_vec;
uint8_t uclen_crbb = 0;
uint8_t crbb_start_clr_code;
uint8_t i;
/* static size of 16 bits
..1. .... = ACKNACK: (Union)
0 0000 000 Length
Desc
...0 .... = FINAL_ACK_INDICATION: False
.... 1... = BEGINNING_OF_WINDOW: 1
.... .1.. = END_OF_WINDOW: 1
.... ..10 0101 0001 1... .... = STARTING_SEQUENCE_NUMBER: 1187
.0.. .... = CRBB Exist: 0
minimal size is 24 rest_bits */
rest_bits -= 24;
if (num_blocks > 0)
/* V(Q) is NACK and omitted -> SSN = V(Q) + 1 */
num_blocks -= 1;
if (num_blocks > window->ws())
num_blocks = window->ws();
/* Try Compression as number of blocks does not fit */
if (num_blocks > rest_bits) {
try_compression = true;
}
if (try_compression == true) {
ucmp_bmplen = window->update_egprs_rbb(rbb);
ucmp_vec.data = rbb;
ucmp_vec.cur_bit = ucmp_bmplen;
ucmp_vec.data_len = 127;
crbb_vec.data = crbb_bitmap;
crbb_vec.cur_bit = 0;
crbb_vec.data_len = 127;
LOGP(DRLCMACUL, LOGL_DEBUG,
"rest_bits=%d uncompressed len %d and uncompressed bitmap = %s\n",
rest_bits, ucmp_bmplen,
osmo_hexdump(ucmp_vec.data, (ucmp_bmplen+7)/8));
is_compressed = egprs_compress::compress_rbb(&ucmp_vec, /* Uncompressed bitmap*/
&crbb_vec, /*Compressed bitmap vector */
&uclen_crbb,
(rest_bits - 16));/* CRBBlength:7 colourcode:1 dissector length:8*/
LOGP(DRLCMACUL, LOGL_DEBUG,
"the ucmp len=%d uclen_crbb=%d num_blocks=%d crbb length %d, "
"and the CRBB bitmap = %s\n",
ucmp_bmplen, uclen_crbb, num_blocks, crbb_vec.cur_bit,
osmo_hexdump(crbb_bitmap, (crbb_vec.cur_bit+7)/8));
crbb_len = crbb_vec.cur_bit;
}
if (is_compressed) {
/* 8 = 7 (CRBBlength) + 1 (CRBB starting color code) */
rest_bits -= 8;
} else {
uclen_crbb = 0;
crbb_len = 0;
}
if (num_blocks > uclen_crbb + rest_bits) {
eow = false;
urbb_len = rest_bits - crbb_len;
} else
urbb_len = num_blocks - uclen_crbb;
if (is_compressed)
len = urbb_len + crbb_len + 23;
else
len = urbb_len + 15;
/* EGPRS Ack/Nack Description IE
* do not support Ack/Nack without length */
bitvec_write_field(dest, &wp, 1, 1); // 1: have length
bitvec_write_field(dest, &wp, len, 8); // length
bitvec_write_field(dest, &wp, is_final, 1); // FINAL_ACK_INDICATION
bitvec_write_field(dest, &wp, bow, 1); // BEGINNING_OF_WINDOW
bitvec_write_field(dest, &wp, eow, 1); // END_OF_WINDOW
bitvec_write_field(dest, &wp, ssn, 11); // STARTING_SEQUENCE_NUMBER
if (is_compressed) {
bitvec_write_field(dest, &wp, 1, 1); // CRBB_Exist
bitvec_write_field(dest, &wp, crbb_len, 7); // CRBB_LENGTH
crbb_start_clr_code = (0x80 & ucmp_vec.data[0])>>7;
bitvec_write_field(dest, &wp, crbb_start_clr_code, 1); // CRBB_clr_code
LOGP(DRLCMACUL, LOGL_DEBUG,
"EGPRS CRBB, crbb_len = %d, crbb_start_clr_code = %d\n",
crbb_len, crbb_start_clr_code);
while (crbb_len != 0) {
if (crbb_len > 8) {
bitvec_write_field(dest, &wp, crbb_bitmap[iter], 8);
crbb_len = crbb_len - 8;
iter++;
} else {
bitvec_write_field(dest, &wp, crbb_bitmap[iter] >> (8 - crbb_len), crbb_len);
crbb_len = 0;
}
}
esn_crbb = window->mod_sns(esn_crbb + uclen_crbb);
} else {
bitvec_write_field(dest, &wp, 0, 1); // CRBB_Exist
}
LOGP(DRLCMACUL, LOGL_DEBUG,
"EGPRS URBB, urbb len = %d, SSN = %u, ESN_CRBB = %u, "
"desc len = %d, "
"SNS = %d, WS = %d, V(Q) = %d, V(R) = %d%s%s\n",
urbb_len, ssn, esn_crbb, len,
window->sns(), window->ws(), window->v_q(), window->v_r(),
bow ? ", BOW" : "", eow ? ", EOW" : "");
for (i = urbb_len; i > 0; i--) {
/* Set bit at the appropriate position (see 3GPP TS 44.060 12.3.1) */
bool is_ack = window->m_v_n.is_received(esn_crbb + i);
bitvec_write_field(dest, &wp, is_ack, 1);
}
}
static void write_packet_uplink_ack_egprs(
bitvec * dest, unsigned& wp,
struct gprs_rlcmac_ul_tbf *tbf, bool is_final)
{
gprs_rlc_ul_window *window = static_cast<gprs_rlc_ul_window *>(tbf->window());
bitvec_write_field(dest, &wp, 0, 2); // fixed 00
/* CHANNEL_CODING_COMMAND */
bitvec_write_field(dest, &wp,
mcs_chan_code(tbf->current_cs()), 4);
/* 0: no RESEGMENT, 1: Segmentation*/
bitvec_write_field(dest, &wp, 1, 1);
bitvec_write_field(dest, &wp, 1, 1); // PRE_EMPTIVE_TRANSMISSION, TODO: This resembles GPRS, change it?
bitvec_write_field(dest, &wp, 0, 1); // 0: no PRR_RETRANSMISSION_REQUEST, TODO: clarify
bitvec_write_field(dest, &wp, 0, 1); // 0: no ARAC_RETRANSMISSION_REQUEST, TODO: clarify
if (tbf->is_tlli_valid()) {
bitvec_write_field(dest, &wp, 1, 1); // 1: have CONTENTION_RESOLUTION_TLLI
bitvec_write_field(dest, &wp, tbf->tlli(), 32); // CONTENTION_RESOLUTION_TLLI
} else {
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have CONTENTION_RESOLUTION_TLLI
}
bitvec_write_field(dest, &wp, 1, 1); // TBF_EST (enabled)
if (gsm48_ta_is_valid(tbf->ta())) {
bitvec_write_field(dest, &wp, 1, 1); // 1: have Packet Timing Advance IE (TS 44.060 12.12)
bitvec_write_field(dest, &wp, 1, 1); // 1: have TIMING_ADVANCE_VALUE
bitvec_write_field(dest, &wp, tbf->ta(), 6); // TIMING_ADVANCE_VALUE
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have TIMING_ADVANCE_INDEX
} else {
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Packet Timing Advance
}
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Packet Extended Timing Advance
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Power Control Parameters
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have Extension Bits
/* -2 for last bit 0 mandatory and REL5 not supported */
unsigned bits_ack_nack = dest->data_len * 8 - wp - 2;
write_packet_ack_nack_desc_egprs(dest, wp, window, is_final, bits_ack_nack);
bitvec_write_field(dest, &wp, 0, 1); // fixed 0
bitvec_write_field(dest, &wp, 0, 1); // 0: don't have REL 5
};
void write_packet_uplink_ack(struct bitvec *dest, struct gprs_rlcmac_ul_tbf *tbf,
bool is_final, uint8_t rrbp)
{
unsigned wp = 0;
LOGP(DRLCMACUL, LOGL_DEBUG, "Encoding Ack/Nack for %s "
"(final=%d)\n", tbf_name(tbf), is_final);
bitvec_write_field(dest, &wp, 0x1, 2); // Payload Type
bitvec_write_field(dest, &wp, rrbp, 2); // Uplink block with TDMA framenumber
bitvec_write_field(dest, &wp, is_final, 1); // Suppl/Polling Bit
bitvec_write_field(dest, &wp, 0x0, 3); // Uplink state flag
bitvec_write_field(dest, &wp, 0x9, 6); // MESSAGE TYPE Uplink Ack/Nack
bitvec_write_field(dest, &wp, 0x0, 2); // Page Mode
bitvec_write_field(dest, &wp, 0x0, 2); // fixed 00
bitvec_write_field(dest, &wp, tbf->tfi(), 5); // Uplink TFI
if (tbf->is_egprs_enabled()) {
/* PU_AckNack_EGPRS = on */
bitvec_write_field(dest, &wp, 1, 1); // 1: EGPRS
write_packet_uplink_ack_egprs(dest, wp, tbf, is_final);
} else {
/* PU_AckNack_GPRS = on */
bitvec_write_field(dest, &wp, 0, 1); // 0: GPRS
write_packet_uplink_ack_gprs(dest, wp, tbf, is_final);
}
LOGP(DRLCMACUL, LOGL_DEBUG,
"Uplink Ack/Nack bit count %d, max %d, message = %s\n",
wp, dest->data_len * 8,
osmo_hexdump(dest->data, dest->data_len));
}
unsigned Encoding::write_packet_paging_request(bitvec * dest)
{
unsigned wp = 0;
bitvec_write_field(dest, &wp, 0x1, 2); // Payload Type
bitvec_write_field(dest, &wp, 0x0, 3); // No polling
bitvec_write_field(dest, &wp, 0x0, 3); // Uplink state flag
bitvec_write_field(dest, &wp, 0x22, 6); // MESSAGE TYPE
bitvec_write_field(dest, &wp, 0x0, 2); // Page Mode
bitvec_write_field(dest, &wp, 0x0, 1); // No PERSISTENCE_LEVEL
bitvec_write_field(dest, &wp, 0x0, 1); // No NLN
return wp;
}
/* 3GPP TS 44.060 § 11.2.10:
< Repeated Page info struct > ::=
{ 0 -- Page request for TBF establishment
{ 0 < PTMSI : bit (32) >
| 1 < Length of Mobile Identity contents : bit (4) >
< Mobile Identity : octet (val (Length of Mobile Identity contents)) > }
| 1 -- Page request for RR conn. establishment
{ 0 < TMSI : bit (32) >
| 1 < Length of Mobile Identity contents : bit (4) >
< Mobile Identity : octet (val (Length of Mobile Identity contents)) > }
< CHANNEL_NEEDED : bit (2) >
{ 0 | 1 < eMLPP_PRIORITY : bit (3) > }
}
*/
unsigned Encoding::write_repeated_page_info(bitvec * dest, unsigned& wp, uint8_t len,
uint8_t *identity, uint8_t chan_needed)
{
bitvec_write_field(dest, &wp,0x1,1); // Repeated Page info exists
bitvec_write_field(dest, &wp,0x1,1); // RR connection paging
if ((identity[0] & 0x07) == 4) {
bitvec_write_field(dest, &wp,0x0,1); // TMSI
identity++;
len--;
} else {
bitvec_write_field(dest, &wp,0x1,1); // MI
bitvec_write_field(dest, &wp,len,4); // MI len
}
while (len) {
bitvec_write_field(dest, &wp,*identity++,8); // MI data
len--;
}
bitvec_write_field(dest, &wp,chan_needed,2); // CHANNEL_NEEDED
bitvec_write_field(dest, &wp,0x0,1); // No eMLPP_PRIORITY
return wp;
}
int Encoding::rlc_write_dl_data_header(const struct gprs_rlc_data_info *rlc,
uint8_t *data)
{
struct gprs_rlc_dl_header_egprs_1 *egprs1;
struct gprs_rlc_dl_header_egprs_2 *egprs2;
struct gprs_rlc_dl_header_egprs_3 *egprs3;
struct rlc_dl_header *gprs;
unsigned int e_fbi_header;
enum CodingScheme cs = rlc->cs;
unsigned int offs;
unsigned int bsn_delta;
switch(mcs_header_type(cs)) {
case HEADER_GPRS_DATA:
gprs = static_cast<struct rlc_dl_header *>
((void *)data);
gprs->usf = rlc->usf;
gprs->s_p = rlc->es_p != 0 ? 1 : 0;
gprs->rrbp = rlc->rrbp;
gprs->pt = 0;
gprs->tfi = rlc->tfi;
gprs->pr = rlc->pr;
gprs->fbi = rlc->block_info[0].cv == 0;
gprs->e = rlc->block_info[0].e;
gprs->bsn = rlc->block_info[0].bsn;
break;
case HEADER_EGPRS_DATA_TYPE_1:
egprs1 = static_cast<struct gprs_rlc_dl_header_egprs_1 *>
((void *)data);
egprs1->usf = rlc->usf;
egprs1->es_p = rlc->es_p;
egprs1->rrbp = rlc->rrbp;
egprs1->tfi_hi = rlc->tfi >> 0; /* 1 bit LSB */
egprs1->tfi_lo = rlc->tfi >> 1; /* 4 bits */
egprs1->pr = rlc->pr;
egprs1->cps = rlc->cps;
egprs1->bsn1_hi = rlc->block_info[0].bsn >> 0; /* 2 bits LSB */
egprs1->bsn1_mid = rlc->block_info[0].bsn >> 2; /* 8 bits */
egprs1->bsn1_lo = rlc->block_info[0].bsn >> 10; /* 1 bit */
bsn_delta = (rlc->block_info[1].bsn - rlc->block_info[0].bsn) &
(RLC_EGPRS_SNS - 1);
egprs1->bsn2_hi = bsn_delta >> 0; /* 7 bits LSB */
egprs1->bsn2_lo = bsn_delta >> 7; /* 3 bits */
/* first FBI/E header */
e_fbi_header = rlc->block_info[0].e ? 0x01 : 0;
e_fbi_header |= rlc->block_info[0].cv == 0 ? 0x02 : 0; /* FBI */
offs = rlc->data_offs_bits[0] / 8;
OSMO_ASSERT(rlc->data_offs_bits[0] % 8 == 2);
e_fbi_header <<= 0;
data[offs] = (data[offs] & 0b11111100) | e_fbi_header;
/* second FBI/E header */
e_fbi_header = rlc->block_info[1].e ? 0x01 : 0;
e_fbi_header |= rlc->block_info[1].cv == 0 ? 0x02 : 0; /* FBI */
offs = rlc->data_offs_bits[1] / 8;
OSMO_ASSERT(rlc->data_offs_bits[1] % 8 == 4);
e_fbi_header <<= 2;
data[offs] = (data[offs] & 0b11110011) | e_fbi_header;
break;
case HEADER_EGPRS_DATA_TYPE_2:
egprs2 = static_cast<struct gprs_rlc_dl_header_egprs_2 *>
((void *)data);
egprs2->usf = rlc->usf;
egprs2->es_p = rlc->es_p;
egprs2->rrbp = rlc->rrbp;
egprs2->tfi_hi = rlc->tfi >> 0; /* 1 bit LSB */
egprs2->tfi_lo = rlc->tfi >> 1; /* 4 bits */
egprs2->pr = rlc->pr;
egprs2->cps = rlc->cps;
egprs2->bsn1_hi = rlc->block_info[0].bsn >> 0; /* 2 bits LSB */
egprs2->bsn1_mid = rlc->block_info[0].bsn >> 2; /* 8 bits */
egprs2->bsn1_lo = rlc->block_info[0].bsn >> 10; /* 1 bit */
e_fbi_header = rlc->block_info[0].e ? 0x01 : 0;
e_fbi_header |= rlc->block_info[0].cv == 0 ? 0x02 : 0; /* FBI */
offs = rlc->data_offs_bits[0] / 8;
OSMO_ASSERT(rlc->data_offs_bits[0] % 8 == 6);
e_fbi_header <<= 4;
data[offs] = (data[offs] & 0b11001111) | e_fbi_header;
break;
case HEADER_EGPRS_DATA_TYPE_3:
egprs3 = static_cast<struct gprs_rlc_dl_header_egprs_3 *>
((void *)data);
egprs3->usf = rlc->usf;
egprs3->es_p = rlc->es_p;
egprs3->rrbp = rlc->rrbp;
egprs3->tfi_hi = rlc->tfi >> 0; /* 1 bit LSB */
egprs3->tfi_lo = rlc->tfi >> 1; /* 4 bits */
egprs3->pr = rlc->pr;
egprs3->cps = rlc->cps;
egprs3->bsn1_hi = rlc->block_info[0].bsn >> 0; /* 2 bits LSB */
egprs3->bsn1_mid = rlc->block_info[0].bsn >> 2; /* 8 bits */
egprs3->bsn1_lo = rlc->block_info[0].bsn >> 10; /* 1 bit */
egprs3->spb = rlc->block_info[0].spb;
e_fbi_header = rlc->block_info[0].e ? 0x01 : 0;
e_fbi_header |= rlc->block_info[0].cv == 0 ? 0x02 : 0; /* FBI */
offs = rlc->data_offs_bits[0] / 8;
OSMO_ASSERT(rlc->data_offs_bits[0] % 8 == 1);
e_fbi_header <<= 7;
data[offs-1] = (data[offs-1] & 0b01111111) | (e_fbi_header >> 0);
data[offs] = (data[offs] & 0b11111110) | (e_fbi_header >> 8);
break;
default:
LOGP(DRLCMACDL, LOGL_ERROR,
"Encoding of uplink %s data blocks not yet supported.\n",
mcs_name(cs));
return -ENOTSUP;
};
return 0;
}
/**
* \brief Copy LSB bitstream RLC data block from byte aligned buffer.
*
* Note that the bitstream is encoded in LSB first order, so the two octets
* 654321xx xxxxxx87 contain the octet 87654321 starting at bit position 3
* (LSB has bit position 1). This is a different order than the one used by
* CSN.1.
*
* \param data_block_idx The block index, 0..1 for header type 1, 0 otherwise
* \param src A pointer to the start of the RLC block (incl. the header)
* \param buffer A data area of a least the size of the RLC block
* \returns the number of bytes copied
*/
unsigned int Encoding::rlc_copy_from_aligned_buffer(
const struct gprs_rlc_data_info *rlc,
unsigned int data_block_idx,
uint8_t *dst, const uint8_t *buffer)
{
unsigned int hdr_bytes;
unsigned int extra_bits;
unsigned int i;
uint8_t c, last_c;
const uint8_t *src;
const struct gprs_rlc_data_block_info *rdbi;
OSMO_ASSERT(data_block_idx < rlc->num_data_blocks);
rdbi = &rlc->block_info[data_block_idx];
hdr_bytes = rlc->data_offs_bits[data_block_idx] / 8;
extra_bits = (rlc->data_offs_bits[data_block_idx] % 8);
if (extra_bits == 0) {
/* It is aligned already */
memmove(dst + hdr_bytes, buffer, rdbi->data_len);
return rdbi->data_len;
}
src = buffer;
dst = dst + hdr_bytes;
last_c = *dst << (8 - extra_bits);
for (i = 0; i < rdbi->data_len; i++) {
c = src[i];
*(dst++) = (last_c >> (8 - extra_bits)) | (c << extra_bits);
last_c = c;
}
/* overwrite the lower extra_bits */
*dst = (*dst & (0xff << extra_bits)) | (last_c >> (8 - extra_bits));
return rdbi->data_len;
}
/*!
* \brief (GPRS) put llc pdu into an rlc/mac block. fragment the llc pdu if needed
* \param rdbi rlc/mac block info
* \param llc llc pdu
* \param offset given offset within the rlc/mac block
* \param num_chunks count the chunks (llc pdu data) within rlc/mac
* \param data_block buffer holds rlc/mac data
* \param is_final if this is the last rlc/mac within a TBF
* \param count_payload if not NULL save the written size of payload in bytes into it
* \return the state of the rlc/mac like if there is more space for another chunk
*/
static Encoding::AppendResult rlc_data_to_dl_append_gprs(
struct gprs_rlc_data_block_info *rdbi,
gprs_llc *llc, int *offset, int *num_chunks,
uint8_t *data_block, bool is_final, int *count_payload)
{
int chunk;
int space;
struct rlc_li_field *li;
uint8_t *delimiter, *data, *e_pointer;
data = data_block + *offset;
delimiter = data_block + *num_chunks;
e_pointer = (*num_chunks ? delimiter - 1 : NULL);
chunk = llc_chunk_size(llc);
space = rdbi->data_len - *offset;
/* if chunk will exceed block limit */
if (chunk > space) {
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d "
"larger than space (%d) left in block: copy "
"only remaining space, and we are done\n",
chunk, space);
if (e_pointer) {
/* LLC frame not finished, so there is no extension octet */
*e_pointer |= 0x02; /* set previous M bit = 1 */
}
/* fill only space */
llc_consume_data(llc, data, space);
if (count_payload)
*count_payload = space;
/* return data block as message */
*offset = rdbi->data_len;
(*num_chunks)++;
return Encoding::AR_NEED_MORE_BLOCKS;
}
/* if FINAL chunk would fit precisely in space left */
if (chunk == space && is_final)
{
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d "
"would exactly fit into space (%d): because "
"this is a final block, we don't add length "
"header, and we are done\n", chunk, space);
/* block is filled, so there is no extension */
if (e_pointer)
*e_pointer |= 0x01;
/* fill space */
llc_consume_data(llc, data, space);
if (count_payload)
*count_payload = space;
*offset = rdbi->data_len;
(*num_chunks)++;
rdbi->cv = 0;
return Encoding::AR_COMPLETED_BLOCK_FILLED;
}
/* if chunk would fit exactly in space left */
if (chunk == space) {
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d "
"would exactly fit into space (%d): add length "
"header with LI=0, to make frame extend to "
"next block, and we are done\n", chunk, space);
/* make space for delimiter */
if (delimiter != data)
memmove(delimiter + 1, delimiter,
data - delimiter);
if (e_pointer) {
*e_pointer &= 0xfe; /* set previous E bit = 0 */
*e_pointer |= 0x02; /* set previous M bit = 1 */
}
data++;
(*offset)++;
space--;
/* add LI with 0 length */
li = (struct rlc_li_field *)delimiter;
li->e = 1; /* not more extension */
li->m = 0; /* shall be set to 0, in case of li = 0 */
li->li = 0; /* chunk fills the complete space */
rdbi->e = 0; /* 0: extensions present */
// no need to set e_pointer nor increase delimiter
/* fill only space, which is 1 octet less than chunk */
llc_consume_data(llc, data, space);
if (count_payload)
*count_payload = space;
/* return data block as message */
*offset = rdbi->data_len;
(*num_chunks)++;
return Encoding::AR_NEED_MORE_BLOCKS;
}
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d is less "
"than remaining space (%d): add length header to "
"delimit LLC frame\n", chunk, space);
/* the LLC frame chunk ends in this block */
/* make space for delimiter */
if (delimiter != data)
memmove(delimiter + 1, delimiter, data - delimiter);
if (e_pointer) {
*e_pointer &= 0xfe; /* set previous E bit = 0 */
*e_pointer |= 0x02; /* set previous M bit = 1 */
}
data++;
(*offset)++;
space--;
/* add LI to delimit frame */
li = (struct rlc_li_field *)delimiter;
li->e = 1; /* not more extension, maybe set later */
li->m = 0; /* will be set later, if there is more LLC data */
li->li = chunk; /* length of chunk */
rdbi->e = 0; /* 0: extensions present */
(*num_chunks)++;
/* copy (rest of) LLC frame to space and reset later */
llc_consume_data(llc, data, chunk);
if (count_payload)
*count_payload = chunk;
data += chunk;
space -= chunk;
(*offset) += chunk;
/* if we have more data and we have space left */
if (space > 0 && !is_final)
return Encoding::AR_COMPLETED_SPACE_LEFT;
/* if we don't have more LLC frames */
if (is_final) {
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Final block, so we "
"done.\n");
rdbi->cv = 0;
return Encoding::AR_COMPLETED_BLOCK_FILLED;
}
/* we have no space left */
LOGP(DRLCMACDL, LOGL_DEBUG, "-- No space left, so we are "
"done.\n");
return Encoding::AR_COMPLETED_BLOCK_FILLED;
}
/*!
* \brief (EGPRS) put llc pdu into an rlc/mac block. fragment the llc pdu if needed
* \param rdbi rlc/mac block info
* \param llc llc pdu
* \param offset given offset within the rlc/mac block
* \param num_chunks count the chunks (llc pdu data) within rlc/mac
* \param data_block buffer holds rlc/mac data
* \param is_final if this is the last rlc/mac within a TBF
* \param count_payload if not NULL save the written size of payload in bytes into it
* \return the state of the rlc/mac like if there is more space for another chunk
*/
static Encoding::AppendResult rlc_data_to_dl_append_egprs(
struct gprs_rlc_data_block_info *rdbi,
gprs_llc *llc, int *offset, int *num_chunks,
uint8_t *data_block,
bool is_final, int *count_payload)
{
int chunk;
int space;
struct rlc_li_field_egprs *li;
struct rlc_li_field_egprs *prev_li;
uint8_t *delimiter, *data;
data = data_block + *offset;
delimiter = data_block + *num_chunks;
prev_li = (struct rlc_li_field_egprs *)
(*num_chunks ? delimiter - 1 : NULL);
chunk = llc_chunk_size(llc);
space = rdbi->data_len - *offset;
/* if chunk will exceed block limit */
if (chunk > space) {
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d "
"larger than space (%d) left in block: copy "
"only remaining space, and we are done\n",
chunk, space);
/* fill only space */
llc_consume_data(llc, data, space);
if (count_payload)
*count_payload = space;
/* return data block as message */
*offset = rdbi->data_len;
(*num_chunks)++;
return Encoding::AR_NEED_MORE_BLOCKS;
}
/* if FINAL chunk would fit precisely in space left */
if (chunk == space && is_final)
{
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d "
"would exactly fit into space (%d): because "
"this is a final block, we don't add length "
"header, and we are done\n", chunk, space);
/* fill space */
llc_consume_data(llc, data, space);
if (count_payload)
*count_payload = space;
*offset = rdbi->data_len;
(*num_chunks)++;
rdbi->cv = 0;
return Encoding::AR_COMPLETED_BLOCK_FILLED;
}
/* if chunk would fit exactly in space left */
if (chunk == space) {
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d "
"would exactly fit into space (%d): just copy "
"it, and we are done. The next block will have "
"to start with an empty chunk\n",
chunk, space);
/* fill space */
llc_consume_data(llc, data, space);
if (count_payload)
*count_payload = space;
*offset = rdbi->data_len;
(*num_chunks)++;
return Encoding::AR_NEED_MORE_BLOCKS;
}
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Chunk with length %d is less "
"than remaining space (%d): add length header to "
"to delimit LLC frame\n", chunk, space);
/* the LLC frame chunk ends in this block */
/* make space for delimiter */
if (delimiter != data)
memmove(delimiter + 1, delimiter, data - delimiter);
data += 1;
(*offset) += 1;
space -= 1;
/* add LI to delimit frame */
li = (struct rlc_li_field_egprs *)delimiter;
li->e = 1; /* not more extension, maybe set later */
li->li = chunk; /* length of chunk */
/* tell previous extension header about the new one */
if (prev_li)
prev_li->e = 0;
rdbi->e = 0; /* 0: extensions present */
delimiter++;
prev_li = li;
(*num_chunks)++;
/* copy (rest of) LLC frame to space and reset later */
llc_consume_data(llc, data, chunk);
if (count_payload)
*count_payload = chunk;
data += chunk;
space -= chunk;
(*offset) += chunk;
/* if we have more data and we have space left */
if (!is_final) {
if (space > 0) {
return Encoding::AR_COMPLETED_SPACE_LEFT;
} else {
/* we have no space left */
LOGP(DRLCMACDL, LOGL_DEBUG, "-- No space left, so we are "
"done.\n");
return Encoding::AR_COMPLETED_BLOCK_FILLED;
}
} else {
/* we don't have more LLC frames */
LOGP(DRLCMACDL, LOGL_DEBUG, "-- Final block, so we are done.\n");
rdbi->cv = 0;
if (space > 0)
Encoding::rlc_data_to_dl_append_egprs_li_padding(rdbi,
offset,
num_chunks,
data_block);
return Encoding::AR_COMPLETED_BLOCK_FILLED;
}
}
/*!
* \brief Encoding::rlc_data_to_dl_append
* \param rdbi rlc/mac block info
* \param cs the coding scheme to use
* \param llc llc pdu
* \param offset given offset within the rlc/mac block
* \param num_chunks count the chunks (llc pdu data) within rlc/mac
* \param data_block buffer holds rlc/mac data
* \param is_final if this is the last rlc/mac within a TBF
* \param count_payload if not NULL save the written size of payload in bytes into it
* \return the state of the rlc/mac like if there is more space for another chunk
*/
Encoding::AppendResult Encoding::rlc_data_to_dl_append(
struct gprs_rlc_data_block_info *rdbi, enum CodingScheme cs,
gprs_llc *llc, int *offset, int *num_chunks,
uint8_t *data_block, bool is_final, int *count_payload)
{
if (mcs_is_gprs(cs))
return rlc_data_to_dl_append_gprs(rdbi,
llc, offset, num_chunks, data_block, is_final,
count_payload);
if (mcs_is_edge(cs))
return rlc_data_to_dl_append_egprs(rdbi,
llc, offset, num_chunks, data_block, is_final,
count_payload);
LOGP(DRLCMACDL, LOGL_ERROR, "%s data block encoding not implemented\n",
mcs_name(cs));
OSMO_ASSERT(mcs_is_valid(cs));
return AR_NEED_MORE_BLOCKS;
}
void Encoding::rlc_data_to_dl_append_egprs_li_padding(
const struct gprs_rlc_data_block_info *rdbi,
int *offset, int *num_chunks, uint8_t *data_block)
{
struct rlc_li_field_egprs *li;
struct rlc_li_field_egprs *prev_li;
uint8_t *delimiter, *data;
LOGP(DRLCMACDL, LOGL_DEBUG, "Adding LI=127 to signal padding\n");
data = data_block + *offset;
delimiter = data_block + *num_chunks;
prev_li = (struct rlc_li_field_egprs *)(*num_chunks ? delimiter - 1 : NULL);
/* we don't have more LLC frames */
/* We will have to add another chunk with filling octets */
if (delimiter != data)
memmove(delimiter + 1, delimiter, data - delimiter);
/* set filling bytes extension */
li = (struct rlc_li_field_egprs *)delimiter;
li->e = 1;
li->li = 127;
/* tell previous extension header about the new one */
if (prev_li)
prev_li->e = 0;
(*num_chunks)++;
*offset = rdbi->data_len;
}
/*
* Refer 44.060 version 7.27.0 Release 7
* section 7.1.3.2.1 On receipt of a PACKET RESOURCE REQUEST message
* 8.1.2.5 Establishment of uplink TBF
*/
void write_packet_access_reject(struct bitvec *dest, uint32_t tlli, unsigned long t3172_ms)
{
unsigned wp = 0;
bitvec_write_field(dest, &wp, 0x1, 2); // Payload Type
bitvec_write_field(dest, &wp, 0x0, 2); // Uplink block with TDMA FN
bitvec_write_field(dest, &wp, 0, 1); // No Polling Bit
bitvec_write_field(dest, &wp, 0x0, 3); // Uplink state flag
bitvec_write_field(dest, &wp,
MT_PACKET_ACCESS_REJECT, 6); // MESSAGE TYPE
bitvec_write_field(dest, &wp, 0, 2); // fixed 00
bitvec_write_field(dest, &wp, 0x0, 1); // TLLI / G-RNTI : bit (32)
bitvec_write_field(dest, &wp, tlli, 32); // CONTENTION_RESOLUTION_TLLI
bitvec_write_field(dest, &wp, 1, 1); // WAIT_INDICATION size in seconds
/* WAIT_INDICATION, WAIT_INDICATION_SIZE */
if (t3172_ms / 20 <= 255) { /* In units of 20 milliseconds */
bitvec_write_field(dest, &wp, t3172_ms/20, 8);
bitvec_write_field(dest, &wp, 1, 1);
} else { /* value too big to fit in ms, do it in seconds */
bitvec_write_field(dest, &wp, t3172_ms/1000, 8);
bitvec_write_field(dest, &wp, 0, 1);
}
}
void write_packet_neighbour_cell_data(RlcMacDownlink_t *block,
bool tfi_is_dl, uint8_t tfi, uint8_t container_id,
uint8_t container_idx, PNCDContainer_t *container)
{
block->PAYLOAD_TYPE = 0x1; // RLC/MAC control block that does not include the optional octets of the RLC/MAC control header
block->RRBP = 0; // 0: N+13
block->SP = 0; // RRBP field is not valid
block->USF = 0x0; // Uplink state flag
block->u.Packet_Neighbour_Cell_Data.MESSAGE_TYPE = MT_PACKET_NEIGHBOUR_CELL_DATA;
block->u.Packet_Neighbour_Cell_Data.PAGE_MODE = 0x0; // Normal Paging
block->u.Packet_Neighbour_Cell_Data.Global_TFI.UnionType = tfi_is_dl; // 0=UPLINK TFI, 1=DL TFI
if (tfi_is_dl) {
block->u.Packet_Neighbour_Cell_Data.Global_TFI.u.DOWNLINK_TFI = tfi;
} else {
block->u.Packet_Neighbour_Cell_Data.Global_TFI.u.UPLINK_TFI = tfi;
}
block->u.Packet_Neighbour_Cell_Data.CONTAINER_ID = container_id;
block->u.Packet_Neighbour_Cell_Data.spare = 0;
block->u.Packet_Neighbour_Cell_Data.CONTAINER_INDEX = container_idx;
block->u.Packet_Neighbour_Cell_Data.Container = *container;
}
void write_packet_cell_change_continue(RlcMacDownlink_t *block, uint8_t poll, uint8_t rrbp,
bool tfi_is_dl, uint8_t tfi, bool exist_id,
uint16_t arfcn, uint8_t bsic, uint8_t container_id)
{
block->PAYLOAD_TYPE = 0x1; // RLC/MAC control block that does not include the optional octets of the RLC/MAC control header
block->RRBP = rrbp; // RRBP (e.g. N+13)
block->SP = poll; // RRBP field is valid?
block->USF = 0x0; // Uplink state flag
block->u.Packet_Cell_Change_Continue.MESSAGE_TYPE = MT_PACKET_CELL_CHANGE_CONTINUE;
block->u.Packet_Cell_Change_Continue.PAGE_MODE = 0x0; // Normal Paging
block->u.Packet_Cell_Change_Continue.Global_TFI.UnionType = tfi_is_dl; // 0=UPLINK TFI, 1=DL TFI
if (tfi_is_dl) {
block->u.Packet_Cell_Change_Continue.Global_TFI.u.DOWNLINK_TFI = tfi;
} else {
block->u.Packet_Cell_Change_Continue.Global_TFI.u.UPLINK_TFI = tfi;
}
block->u.Packet_Cell_Change_Continue.Exist_ID = exist_id;
if (exist_id) {
block->u.Packet_Cell_Change_Continue.ARFCN = arfcn;
block->u.Packet_Cell_Change_Continue.BSIC = bsic;
}
block->u.Packet_Cell_Change_Continue.CONTAINER_ID = container_id;
}