osmo-msc/openbsc/src/libbsc/bts_ipaccess_nanobts.c

448 lines
14 KiB
C

/* ip.access nanoBTS specific code */
/* (C) 2009-2010 by Harald Welte <laforge@gnumonks.org>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <sys/types.h>
#include <arpa/inet.h>
#include <osmocore/tlv.h>
#include <openbsc/gsm_data.h>
#include <openbsc/signal.h>
#include <openbsc/abis_nm.h>
static struct gsm_bts_model model_nanobts = {
.type = GSM_BTS_TYPE_NANOBTS,
.name = "nanobts",
.oml_rcvmsg = &abis_nm_rcvmsg,
.nm_att_tlvdef = {
.def = {
/* ip.access specifics */
[NM_ATT_IPACC_DST_IP] = { TLV_TYPE_FIXED, 4 },
[NM_ATT_IPACC_DST_IP_PORT] = { TLV_TYPE_FIXED, 2 },
[NM_ATT_IPACC_STREAM_ID] = { TLV_TYPE_TV, },
[NM_ATT_IPACC_SEC_OML_CFG] = { TLV_TYPE_FIXED, 6 },
[NM_ATT_IPACC_IP_IF_CFG] = { TLV_TYPE_FIXED, 8 },
[NM_ATT_IPACC_IP_GW_CFG] = { TLV_TYPE_FIXED, 12 },
[NM_ATT_IPACC_IN_SERV_TIME] = { TLV_TYPE_FIXED, 4 },
[NM_ATT_IPACC_LOCATION] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_PAGING_CFG] = { TLV_TYPE_FIXED, 2 },
[NM_ATT_IPACC_UNIT_ID] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_UNIT_NAME] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_SNMP_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_PRIM_OML_CFG_LIST] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_NV_FLAGS] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_FREQ_CTRL] = { TLV_TYPE_FIXED, 2 },
[NM_ATT_IPACC_PRIM_OML_FB_TOUT] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_CUR_SW_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_TIMING_BUS] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_CGI] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_RAC] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_OBJ_VERSION] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_GPRS_PAGING_CFG]= { TLV_TYPE_TL16V },
[NM_ATT_IPACC_NSEI] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_BVCI] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_NSVCI] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_NS_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_BSSGP_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_NS_LINK_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_RLC_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_ALM_THRESH_LIST]= { TLV_TYPE_TL16V },
[NM_ATT_IPACC_MONIT_VAL_LIST] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_TIB_CONTROL] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_SUPP_FEATURES] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_CODING_SCHEMES] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_RLC_CFG_2] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_HEARTB_TOUT] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_UPTIME] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_RLC_CFG_3] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_SSL_CFG] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_SEC_POSSIBLE] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_IML_SSL_STATE] = { TLV_TYPE_TL16V },
[NM_ATT_IPACC_REVOC_DATE] = { TLV_TYPE_TL16V },
},
},
};
static unsigned char nanobts_attr_bts[] = {
NM_ATT_INTERF_BOUND, 0x55, 0x5b, 0x61, 0x67, 0x6d, 0x73,
/* interference avg. period in numbers of SACCH multifr */
NM_ATT_INTAVE_PARAM, 0x06,
/* conn fail based on SACCH error rate */
NM_ATT_CONN_FAIL_CRIT, 0x00, 0x02, 0x01, 0x10,
NM_ATT_T200, 0x1e, 0x24, 0x24, 0xa8, 0x34, 0x21, 0xa8,
NM_ATT_MAX_TA, 0x3f,
NM_ATT_OVERL_PERIOD, 0x00, 0x01, 10, /* seconds */
NM_ATT_CCCH_L_T, 10, /* percent */
NM_ATT_CCCH_L_I_P, 1, /* seconds */
NM_ATT_RACH_B_THRESH, 10, /* busy threshold in - dBm */
NM_ATT_LDAVG_SLOTS, 0x03, 0xe8, /* rach load averaging 1000 slots */
NM_ATT_BTS_AIR_TIMER, 128, /* miliseconds */
NM_ATT_NY1, 10, /* 10 retransmissions of physical config */
NM_ATT_BCCH_ARFCN, HARDCODED_ARFCN >> 8, HARDCODED_ARFCN & 0xff,
NM_ATT_BSIC, HARDCODED_BSIC,
NM_ATT_IPACC_CGI, 0, 7, 0x00, 0xf1, 0x10, 0x00, 0x01, 0x00, 0x00,
};
static unsigned char nanobts_attr_radio[] = {
NM_ATT_RF_MAXPOWR_R, 0x0c, /* number of -2dB reduction steps / Pn */
NM_ATT_ARFCN_LIST, 0x00, 0x02, HARDCODED_ARFCN >> 8, HARDCODED_ARFCN & 0xff,
};
static unsigned char nanobts_attr_nse[] = {
NM_ATT_IPACC_NSEI, 0, 2, 0x03, 0x9d, /* NSEI 925 */
NM_ATT_IPACC_NS_CFG, 0, 7, 3, /* (un)blocking timer (Tns-block) */
3, /* (un)blocking retries */
3, /* reset timer (Tns-reset) */
3, /* reset retries */
30, /* test timer (Tns-test) */
3, /* alive timer (Tns-alive) */
10, /* alive retrires */
NM_ATT_IPACC_BSSGP_CFG, 0, 11,
3, /* blockimg timer (T1) */
3, /* blocking retries */
3, /* unblocking retries */
3, /* reset timer */
3, /* reset retries */
10, /* suspend timer (T3) in 100ms */
3, /* suspend retries */
10, /* resume timer (T4) in 100ms */
3, /* resume retries */
10, /* capability update timer (T5) */
3, /* capability update retries */
};
static unsigned char nanobts_attr_cell[] = {
NM_ATT_IPACC_RAC, 0, 1, 1, /* routing area code */
NM_ATT_IPACC_GPRS_PAGING_CFG, 0, 2,
5, /* repeat time (50ms) */
3, /* repeat count */
NM_ATT_IPACC_BVCI, 0, 2, 0x03, 0x9d, /* BVCI 925 */
NM_ATT_IPACC_RLC_CFG, 0, 9,
20, /* T3142 */
5, /* T3169 */
5, /* T3191 */
200, /* T3193 */
5, /* T3195 */
10, /* N3101 */
4, /* N3103 */
8, /* N3105 */
15, /* RLC CV countdown */
NM_ATT_IPACC_CODING_SCHEMES, 0, 2, 0x0f, 0x00, /* CS1..CS4 */
NM_ATT_IPACC_RLC_CFG_2, 0, 5,
0x00, 250, /* T downlink TBF extension (0..500) */
0x00, 250, /* T uplink TBF extension (0..500) */
2, /* CS2 */
#if 0
/* EDGE model only, breaks older models.
* Should inquire the BTS capabilities */
NM_ATT_IPACC_RLC_CFG_3, 0, 1,
2, /* MCS2 */
#endif
};
static unsigned char nanobts_attr_nsvc0[] = {
NM_ATT_IPACC_NSVCI, 0, 2, 0x03, 0x9d, /* 925 */
NM_ATT_IPACC_NS_LINK_CFG, 0, 8,
0x59, 0xd8, /* remote udp port (23000) */
192, 168, 100, 11, /* remote ip address */
0x59, 0xd8, /* local udp port (23000) */
};
static void patch_16(uint8_t *data, const uint16_t val)
{
memcpy(data, &val, sizeof(val));
}
static void patch_32(uint8_t *data, const uint32_t val)
{
memcpy(data, &val, sizeof(val));
}
/*
* Patch the various SYSTEM INFORMATION tables to update
* the LAI
*/
static void patch_nm_tables(struct gsm_bts *bts)
{
u_int8_t arfcn_low = bts->c0->arfcn & 0xff;
u_int8_t arfcn_high = (bts->c0->arfcn >> 8) & 0x0f;
/* patch ARFCN into BTS Attributes */
nanobts_attr_bts[42] &= 0xf0;
nanobts_attr_bts[42] |= arfcn_high;
nanobts_attr_bts[43] = arfcn_low;
/* patch the RACH attributes */
if (bts->rach_b_thresh != -1) {
nanobts_attr_bts[33] = bts->rach_b_thresh & 0xff;
}
if (bts->rach_ldavg_slots != -1) {
u_int8_t avg_high = bts->rach_ldavg_slots & 0xff;
u_int8_t avg_low = (bts->rach_ldavg_slots >> 8) & 0x0f;
nanobts_attr_bts[35] = avg_high;
nanobts_attr_bts[36] = avg_low;
}
/* patch BSIC */
nanobts_attr_bts[sizeof(nanobts_attr_bts)-11] = bts->bsic;
/* patch CGI */
abis_nm_ipaccess_cgi(nanobts_attr_bts+sizeof(nanobts_attr_bts)-7, bts);
/* patch the power reduction */
nanobts_attr_radio[1] = bts->c0->max_power_red / 2;
/* patch NSEI */
nanobts_attr_nse[3] = bts->gprs.nse.nsei >> 8;
nanobts_attr_nse[4] = bts->gprs.nse.nsei & 0xff;
memcpy(nanobts_attr_nse+8, bts->gprs.nse.timer,
ARRAY_SIZE(bts->gprs.nse.timer));
memcpy(nanobts_attr_nse+18, bts->gprs.cell.timer,
ARRAY_SIZE(bts->gprs.cell.timer));
/* patch NSVCI */
nanobts_attr_nsvc0[3] = bts->gprs.nsvc[0].nsvci >> 8;
nanobts_attr_nsvc0[4] = bts->gprs.nsvc[0].nsvci & 0xff;
/* patch IP address as SGSN IP */
patch_16(nanobts_attr_nsvc0 + 8,
htons(bts->gprs.nsvc[0].remote_port));
patch_32(nanobts_attr_nsvc0 + 10,
htonl(bts->gprs.nsvc[0].remote_ip));
patch_16(nanobts_attr_nsvc0 + 14,
htons(bts->gprs.nsvc[0].local_port));
/* patch BVCI */
nanobts_attr_cell[12] = bts->gprs.cell.bvci >> 8;
nanobts_attr_cell[13] = bts->gprs.cell.bvci & 0xff;
/* patch RAC */
nanobts_attr_cell[3] = bts->gprs.rac;
if (bts->gprs.mode == BTS_GPRS_EGPRS) {
/* patch EGPRS coding schemes MCS 1..9 */
nanobts_attr_cell[29] = 0x8f;
nanobts_attr_cell[30] = 0xff;
}
}
/* Callback function to be called whenever we get a GSM 12.21 state change event */
static int nm_statechg_event(int evt, struct nm_statechg_signal_data *nsd)
{
u_int8_t obj_class = nsd->obj_class;
void *obj = nsd->obj;
struct gsm_nm_state *new_state = nsd->new_state;
struct gsm_bts *bts;
struct gsm_bts_trx *trx;
struct gsm_bts_trx_ts *ts;
struct gsm_bts_gprs_nsvc *nsvc;
/* This event-driven BTS setup is currently only required on nanoBTS */
/* S_NM_STATECHG_ADM is called after we call chg_adm_state() and would create
* endless loop */
if (evt != S_NM_STATECHG_OPER)
return 0;
switch (obj_class) {
case NM_OC_SITE_MANAGER:
bts = container_of(obj, struct gsm_bts, site_mgr);
if ((new_state->operational == NM_OPSTATE_ENABLED &&
new_state->availability == NM_AVSTATE_OK) ||
(new_state->operational == NM_OPSTATE_DISABLED &&
new_state->availability == NM_AVSTATE_OFF_LINE))
abis_nm_opstart(bts, obj_class, 0xff, 0xff, 0xff);
break;
case NM_OC_BTS:
bts = obj;
if (new_state->availability == NM_AVSTATE_DEPENDENCY) {
patch_nm_tables(bts);
abis_nm_set_bts_attr(bts, nanobts_attr_bts,
sizeof(nanobts_attr_bts));
abis_nm_chg_adm_state(bts, obj_class,
bts->bts_nr, 0xff, 0xff,
NM_STATE_UNLOCKED);
abis_nm_opstart(bts, obj_class,
bts->bts_nr, 0xff, 0xff);
}
break;
case NM_OC_CHANNEL:
ts = obj;
trx = ts->trx;
if (new_state->operational == NM_OPSTATE_DISABLED &&
new_state->availability == NM_AVSTATE_DEPENDENCY) {
patch_nm_tables(trx->bts);
enum abis_nm_chan_comb ccomb =
abis_nm_chcomb4pchan(ts->pchan);
abis_nm_set_channel_attr(ts, ccomb);
abis_nm_chg_adm_state(trx->bts, obj_class,
trx->bts->bts_nr, trx->nr, ts->nr,
NM_STATE_UNLOCKED);
abis_nm_opstart(trx->bts, obj_class,
trx->bts->bts_nr, trx->nr, ts->nr);
}
break;
case NM_OC_RADIO_CARRIER:
trx = obj;
if (new_state->operational == NM_OPSTATE_DISABLED &&
new_state->availability == NM_AVSTATE_OK)
abis_nm_opstart(trx->bts, obj_class, trx->bts->bts_nr,
trx->nr, 0xff);
break;
case NM_OC_GPRS_NSE:
bts = container_of(obj, struct gsm_bts, gprs.nse);
if (bts->gprs.mode == BTS_GPRS_NONE)
break;
if (new_state->availability == NM_AVSTATE_DEPENDENCY) {
abis_nm_ipaccess_set_attr(bts, obj_class, bts->bts_nr,
0xff, 0xff, nanobts_attr_nse,
sizeof(nanobts_attr_nse));
abis_nm_opstart(bts, obj_class, bts->bts_nr,
0xff, 0xff);
}
break;
case NM_OC_GPRS_CELL:
bts = container_of(obj, struct gsm_bts, gprs.cell);
if (bts->gprs.mode == BTS_GPRS_NONE)
break;
if (new_state->availability == NM_AVSTATE_DEPENDENCY) {
abis_nm_ipaccess_set_attr(bts, obj_class, bts->bts_nr,
0, 0xff, nanobts_attr_cell,
sizeof(nanobts_attr_cell));
abis_nm_opstart(bts, obj_class, bts->bts_nr,
0, 0xff);
abis_nm_chg_adm_state(bts, obj_class, bts->bts_nr,
0, 0xff, NM_STATE_UNLOCKED);
abis_nm_chg_adm_state(bts, NM_OC_GPRS_NSE, bts->bts_nr,
0xff, 0xff, NM_STATE_UNLOCKED);
}
break;
case NM_OC_GPRS_NSVC:
nsvc = obj;
bts = nsvc->bts;
if (bts->gprs.mode == BTS_GPRS_NONE)
break;
/* We skip NSVC1 since we only use NSVC0 */
if (nsvc->id == 1)
break;
if (new_state->availability == NM_AVSTATE_OFF_LINE) {
abis_nm_ipaccess_set_attr(bts, obj_class, bts->bts_nr,
nsvc->id, 0xff,
nanobts_attr_nsvc0,
sizeof(nanobts_attr_nsvc0));
abis_nm_opstart(bts, obj_class, bts->bts_nr,
nsvc->id, 0xff);
abis_nm_chg_adm_state(bts, obj_class, bts->bts_nr,
nsvc->id, 0xff,
NM_STATE_UNLOCKED);
}
default:
break;
}
return 0;
}
/* Callback function to be called every time we receive a 12.21 SW activated report */
static int sw_activ_rep(struct msgb *mb)
{
struct abis_om_fom_hdr *foh = msgb_l3(mb);
struct gsm_bts *bts = mb->trx->bts;
struct gsm_bts_trx *trx = gsm_bts_trx_num(bts, foh->obj_inst.trx_nr);
if (!trx)
return -EINVAL;
if (trx->bts->type != GSM_BTS_TYPE_NANOBTS)
return 0;
switch (foh->obj_class) {
case NM_OC_BASEB_TRANSC:
abis_nm_chg_adm_state(trx->bts, foh->obj_class,
trx->bts->bts_nr, trx->nr, 0xff,
NM_STATE_UNLOCKED);
abis_nm_opstart(trx->bts, foh->obj_class,
trx->bts->bts_nr, trx->nr, 0xff);
/* TRX software is active, tell it to initiate RSL Link */
abis_nm_ipaccess_rsl_connect(trx, 0, 3003, trx->rsl_tei);
break;
case NM_OC_RADIO_CARRIER: {
/*
* Locking the radio carrier will make it go
* offline again and we would come here. The
* framework should determine that there was
* no change and avoid recursion.
*
* This code is here to make sure that on start
* a TRX remains locked.
*/
int rc_state = trx->nm_state.administrative;
/* Patch ARFCN into radio attribute */
nanobts_attr_radio[5] &= 0xf0;
nanobts_attr_radio[5] |= trx->arfcn >> 8;
nanobts_attr_radio[6] = trx->arfcn & 0xff;
abis_nm_set_radio_attr(trx, nanobts_attr_radio,
sizeof(nanobts_attr_radio));
abis_nm_chg_adm_state(trx->bts, foh->obj_class,
trx->bts->bts_nr, trx->nr, 0xff,
rc_state);
abis_nm_opstart(trx->bts, foh->obj_class, trx->bts->bts_nr,
trx->nr, 0xff);
break;
}
}
return 0;
}
/* Callback function to be called every time we receive a signal from NM */
static int nm_sig_cb(unsigned int subsys, unsigned int signal,
void *handler_data, void *signal_data)
{
if (subsys != SS_NM)
return 0;
switch (signal) {
case S_NM_SW_ACTIV_REP:
return sw_activ_rep(signal_data);
case S_NM_STATECHG_OPER:
case S_NM_STATECHG_ADM:
return nm_statechg_event(signal, signal_data);
default:
break;
}
return 0;
}
int bts_model_nanobts_init(void)
{
model_nanobts.features.data = &model_nanobts._features_data[0];
model_nanobts.features.data_len = sizeof(model_nanobts._features_data);
gsm_btsmodel_set_feature(&model_nanobts, BTS_FEAT_GPRS);
gsm_btsmodel_set_feature(&model_nanobts, BTS_FEAT_EGPRS);
register_signal_handler(SS_NM, nm_sig_cb, NULL);
return gsm_bts_model_register(&model_nanobts);
}