osmo-bsc/src/libbsc/gsm_04_08_utils.c

688 lines
20 KiB
C

/* GSM Mobile Radio Interface Layer 3 messages on the A-bis interface
* 3GPP TS 04.08 version 7.21.0 Release 1998 / ETSI TS 100 940 V7.21.0
* utility functions
*/
/* (C) 2008-2009 by Harald Welte <laforge@gnumonks.org>
* (C) 2008, 2009 by Holger Hans Peter Freyther <zecke@selfish.org>
*
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <netinet/in.h>
#include <osmocom/core/msgb.h>
#include <osmocom/gsm/gsm48.h>
#include <openbsc/abis_rsl.h>
#include <openbsc/debug.h>
#include <openbsc/gsm_04_08.h>
#include <openbsc/transaction.h>
#include <openbsc/paging.h>
#include <openbsc/signal.h>
#include <openbsc/bsc_api.h>
/* should ip.access BTS use direct RTP streams between each other (1),
* or should OpenBSC always act as RTP relay/proxy in between (0) ? */
int ipacc_rtp_direct = 1;
static int gsm48_sendmsg(struct msgb *msg)
{
if (msg->lchan)
msg->dst = msg->lchan->ts->trx->rsl_link;
msg->l3h = msg->data;
return rsl_data_request(msg, 0);
}
/* Section 9.1.8 / Table 9.9 */
struct chreq {
uint8_t val;
uint8_t mask;
enum chreq_type type;
};
/* If SYSTEM INFORMATION TYPE 4 NECI bit == 1 */
static const struct chreq chreq_type_neci1[] = {
{ 0xa0, 0xe0, CHREQ_T_EMERG_CALL },
{ 0xc0, 0xe0, CHREQ_T_CALL_REEST_TCH_F },
{ 0x68, 0xfc, CHREQ_T_CALL_REEST_TCH_H },
{ 0x6c, 0xfc, CHREQ_T_CALL_REEST_TCH_H_DBL },
{ 0xe0, 0xe0, CHREQ_T_TCH_F },
{ 0x40, 0xf0, CHREQ_T_VOICE_CALL_TCH_H },
{ 0x50, 0xf0, CHREQ_T_DATA_CALL_TCH_H },
{ 0x00, 0xf0, CHREQ_T_LOCATION_UPD },
{ 0x10, 0xf0, CHREQ_T_SDCCH },
{ 0x80, 0xe0, CHREQ_T_PAG_R_ANY_NECI1 },
{ 0x20, 0xf0, CHREQ_T_PAG_R_TCH_F },
{ 0x30, 0xf0, CHREQ_T_PAG_R_TCH_FH },
{ 0x67, 0xff, CHREQ_T_LMU },
{ 0x60, 0xf9, CHREQ_T_RESERVED_SDCCH },
{ 0x61, 0xfb, CHREQ_T_RESERVED_SDCCH },
{ 0x63, 0xff, CHREQ_T_RESERVED_SDCCH },
{ 0x70, 0xf8, CHREQ_T_PDCH_TWO_PHASE },
{ 0x78, 0xfc, CHREQ_T_PDCH_ONE_PHASE },
{ 0x78, 0xfa, CHREQ_T_PDCH_ONE_PHASE },
{ 0x78, 0xf9, CHREQ_T_PDCH_ONE_PHASE },
{ 0x7f, 0xff, CHREQ_T_RESERVED_IGNORE },
};
/* If SYSTEM INFORMATION TYPE 4 NECI bit == 0 */
static const struct chreq chreq_type_neci0[] = {
{ 0xa0, 0xe0, CHREQ_T_EMERG_CALL },
{ 0xc0, 0xe0, CHREQ_T_CALL_REEST_TCH_H },
{ 0xe0, 0xe0, CHREQ_T_TCH_F },
{ 0x50, 0xf0, CHREQ_T_DATA_CALL_TCH_H },
{ 0x00, 0xe0, CHREQ_T_LOCATION_UPD },
{ 0x80, 0xe0, CHREQ_T_PAG_R_ANY_NECI0 },
{ 0x20, 0xf0, CHREQ_T_PAG_R_TCH_F },
{ 0x30, 0xf0, CHREQ_T_PAG_R_TCH_FH },
{ 0x67, 0xff, CHREQ_T_LMU },
{ 0x60, 0xf9, CHREQ_T_RESERVED_SDCCH },
{ 0x61, 0xfb, CHREQ_T_RESERVED_SDCCH },
{ 0x63, 0xff, CHREQ_T_RESERVED_SDCCH },
{ 0x70, 0xf8, CHREQ_T_PDCH_TWO_PHASE },
{ 0x78, 0xfc, CHREQ_T_PDCH_ONE_PHASE },
{ 0x78, 0xfa, CHREQ_T_PDCH_ONE_PHASE },
{ 0x78, 0xf9, CHREQ_T_PDCH_ONE_PHASE },
{ 0x7f, 0xff, CHREQ_T_RESERVED_IGNORE },
};
static const enum gsm_chan_t ctype_by_chreq[] = {
[CHREQ_T_EMERG_CALL] = GSM_LCHAN_TCH_F,
[CHREQ_T_CALL_REEST_TCH_F] = GSM_LCHAN_TCH_F,
[CHREQ_T_CALL_REEST_TCH_H] = GSM_LCHAN_TCH_H,
[CHREQ_T_CALL_REEST_TCH_H_DBL] = GSM_LCHAN_TCH_H,
[CHREQ_T_SDCCH] = GSM_LCHAN_SDCCH,
[CHREQ_T_TCH_F] = GSM_LCHAN_TCH_F,
[CHREQ_T_VOICE_CALL_TCH_H] = GSM_LCHAN_TCH_H,
[CHREQ_T_DATA_CALL_TCH_H] = GSM_LCHAN_TCH_H,
[CHREQ_T_LOCATION_UPD] = GSM_LCHAN_SDCCH,
[CHREQ_T_PAG_R_ANY_NECI1] = GSM_LCHAN_SDCCH,
[CHREQ_T_PAG_R_ANY_NECI0] = GSM_LCHAN_SDCCH,
[CHREQ_T_PAG_R_TCH_F] = GSM_LCHAN_TCH_F,
[CHREQ_T_PAG_R_TCH_FH] = GSM_LCHAN_TCH_F,
[CHREQ_T_LMU] = GSM_LCHAN_SDCCH,
[CHREQ_T_RESERVED_SDCCH] = GSM_LCHAN_SDCCH,
[CHREQ_T_PDCH_ONE_PHASE] = GSM_LCHAN_PDTCH,
[CHREQ_T_PDCH_TWO_PHASE] = GSM_LCHAN_PDTCH,
[CHREQ_T_RESERVED_IGNORE] = GSM_LCHAN_UNKNOWN,
};
static const enum gsm_chreq_reason_t reason_by_chreq[] = {
[CHREQ_T_EMERG_CALL] = GSM_CHREQ_REASON_EMERG,
[CHREQ_T_CALL_REEST_TCH_F] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_CALL_REEST_TCH_H] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_CALL_REEST_TCH_H_DBL] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_SDCCH] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_TCH_F] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_VOICE_CALL_TCH_H] = GSM_CHREQ_REASON_CALL,
[CHREQ_T_DATA_CALL_TCH_H] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_LOCATION_UPD] = GSM_CHREQ_REASON_LOCATION_UPD,
[CHREQ_T_PAG_R_ANY_NECI1] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_PAG_R_ANY_NECI0] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_PAG_R_TCH_F] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_PAG_R_TCH_FH] = GSM_CHREQ_REASON_PAG,
[CHREQ_T_LMU] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_PDCH_ONE_PHASE] = GSM_CHREQ_REASON_PDCH,
[CHREQ_T_PDCH_TWO_PHASE] = GSM_CHREQ_REASON_PDCH,
[CHREQ_T_RESERVED_SDCCH] = GSM_CHREQ_REASON_OTHER,
[CHREQ_T_RESERVED_IGNORE] = GSM_CHREQ_REASON_OTHER,
};
/* verify that the two tables match */
osmo_static_assert(sizeof(ctype_by_chreq) ==
sizeof(((struct gsm_network *) NULL)->ctype_by_chreq), assert_size);
/*
* Update channel types for request based on policy. E.g. in the
* case of a TCH/H network/bsc use TCH/H for the emergency calls,
* for early assignment assign a SDCCH and some other options.
*/
void gsm_net_update_ctype(struct gsm_network *network)
{
/* copy over the data */
memcpy(network->ctype_by_chreq, ctype_by_chreq, sizeof(ctype_by_chreq));
/*
* Use TCH/H for emergency calls when this cell allows TCH/H. Maybe it
* is better to iterate over the BTS/TRX and check if no TCH/F is available
* and then set it to TCH/H.
*/
if (network->neci)
network->ctype_by_chreq[CHREQ_T_EMERG_CALL] = GSM_LCHAN_TCH_H;
if (network->pag_any_tch) {
if (network->neci) {
network->ctype_by_chreq[CHREQ_T_PAG_R_ANY_NECI0] = GSM_LCHAN_TCH_H;
network->ctype_by_chreq[CHREQ_T_PAG_R_ANY_NECI1] = GSM_LCHAN_TCH_H;
} else {
network->ctype_by_chreq[CHREQ_T_PAG_R_ANY_NECI0] = GSM_LCHAN_TCH_F;
network->ctype_by_chreq[CHREQ_T_PAG_R_ANY_NECI1] = GSM_LCHAN_TCH_F;
}
}
}
enum gsm_chan_t get_ctype_by_chreq(struct gsm_network *network, uint8_t ra)
{
int i;
int length;
const struct chreq *chreq;
if (network->neci) {
chreq = chreq_type_neci1;
length = ARRAY_SIZE(chreq_type_neci1);
} else {
chreq = chreq_type_neci0;
length = ARRAY_SIZE(chreq_type_neci0);
}
for (i = 0; i < length; i++) {
const struct chreq *chr = &chreq[i];
if ((ra & chr->mask) == chr->val)
return network->ctype_by_chreq[chr->type];
}
LOGP(DRR, LOGL_ERROR, "Unknown CHANNEL REQUEST RQD 0x%02x\n", ra);
return GSM_LCHAN_SDCCH;
}
int get_reason_by_chreq(uint8_t ra, int neci)
{
int i;
int length;
const struct chreq *chreq;
if (neci) {
chreq = chreq_type_neci1;
length = ARRAY_SIZE(chreq_type_neci1);
} else {
chreq = chreq_type_neci0;
length = ARRAY_SIZE(chreq_type_neci0);
}
for (i = 0; i < length; i++) {
const struct chreq *chr = &chreq[i];
if ((ra & chr->mask) == chr->val)
return reason_by_chreq[chr->type];
}
LOGP(DRR, LOGL_ERROR, "Unknown CHANNEL REQUEST REASON 0x%02x\n", ra);
return GSM_CHREQ_REASON_OTHER;
}
static void mr_config_for_ms(struct gsm_lchan *lchan, struct msgb *msg)
{
if (lchan->tch_mode == GSM48_CMODE_SPEECH_AMR)
msgb_tlv_put(msg, GSM48_IE_MUL_RATE_CFG, lchan->mr_ms_lv[0],
lchan->mr_ms_lv + 1);
}
/* 7.1.7 and 9.1.7: RR CHANnel RELease */
int gsm48_send_rr_release(struct gsm_lchan *lchan)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 RR REL");
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
uint8_t *cause;
msg->lchan = lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_CHAN_REL;
cause = msgb_put(msg, 1);
cause[0] = GSM48_RR_CAUSE_NORMAL;
DEBUGP(DRR, "Sending Channel Release: Chan: Number: %d Type: %d\n",
lchan->nr, lchan->type);
/* Send actual release request to MS */
return gsm48_sendmsg(msg);
}
int send_siemens_mrpci(struct gsm_lchan *lchan,
uint8_t *classmark2_lv)
{
struct rsl_mrpci mrpci;
if (classmark2_lv[0] < 2)
return -EINVAL;
mrpci.power_class = classmark2_lv[1] & 0x7;
mrpci.vgcs_capable = classmark2_lv[2] & (1 << 1);
mrpci.vbs_capable = classmark2_lv[2] & (1 <<2);
mrpci.gsm_phase = (classmark2_lv[1]) >> 5 & 0x3;
return rsl_siemens_mrpci(lchan, &mrpci);
}
int gsm48_extract_mi(uint8_t *classmark2_lv, int length, char *mi_string, uint8_t *mi_type)
{
/* Check the size for the classmark */
if (length < 1 + *classmark2_lv)
return -1;
uint8_t *mi_lv = classmark2_lv + *classmark2_lv + 1;
if (length < 2 + *classmark2_lv + mi_lv[0])
return -2;
*mi_type = mi_lv[1] & GSM_MI_TYPE_MASK;
return gsm48_mi_to_string(mi_string, GSM48_MI_SIZE, mi_lv+1, *mi_lv);
}
int gsm48_paging_extract_mi(struct gsm48_pag_resp *resp, int length,
char *mi_string, uint8_t *mi_type)
{
static const uint32_t classmark_offset =
offsetof(struct gsm48_pag_resp, classmark2);
uint8_t *classmark2_lv = (uint8_t *) &resp->classmark2;
return gsm48_extract_mi(classmark2_lv, length - classmark_offset,
mi_string, mi_type);
}
int gsm48_handle_paging_resp(struct gsm_subscriber_connection *conn,
struct msgb *msg, struct bsc_subscr *bsub)
{
struct gsm_bts *bts = msg->lchan->ts->trx->bts;
struct gsm48_hdr *gh = msgb_l3(msg);
uint8_t *classmark2_lv = gh->data + 1;
if (is_siemens_bts(bts))
send_siemens_mrpci(msg->lchan, classmark2_lv);
if (!conn->bsub) {
conn->bsub = bsub;
} else if (conn->bsub != bsub) {
LOGP(DRR, LOGL_ERROR,
"<- Channel already owned by someone else?\n");
bsc_subscr_put(bsub);
return -EINVAL;
} else {
DEBUGP(DRR, "<- Channel already owned by us\n");
bsc_subscr_put(bsub);
bsub = conn->bsub;
}
rate_ctr_inc(&bts->network->bsc_ctrs->ctr[BSC_CTR_PAGING_COMPLETED]);
/* Stop paging on the bts we received the paging response */
paging_request_stop(&bts->network->bts_list, conn->bts, bsub, conn,
msg);
return 0;
}
/* Chapter 9.1.9: Ciphering Mode Command */
int gsm48_send_rr_ciph_mode(struct gsm_lchan *lchan, int want_imeisv)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 CIPH");
struct gsm48_hdr *gh;
uint8_t ciph_mod_set;
msg->lchan = lchan;
DEBUGP(DRR, "TX CIPHERING MODE CMD\n");
if (lchan->encr.alg_id <= RSL_ENC_ALG_A5(0))
ciph_mod_set = 0;
else
ciph_mod_set = (lchan->encr.alg_id-2)<<1 | 1;
gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh) + 1);
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_CIPH_M_CMD;
gh->data[0] = (want_imeisv & 0x1) << 4 | (ciph_mod_set & 0xf);
return rsl_encryption_cmd(msg);
}
static void gsm48_cell_desc(struct gsm48_cell_desc *cd,
const struct gsm_bts *bts)
{
cd->ncc = (bts->bsic >> 3 & 0x7);
cd->bcc = (bts->bsic & 0x7);
cd->arfcn_hi = bts->c0->arfcn >> 8;
cd->arfcn_lo = bts->c0->arfcn & 0xff;
}
void gsm48_lchan2chan_desc(struct gsm48_chan_desc *cd,
const struct gsm_lchan *lchan)
{
uint16_t arfcn = lchan->ts->trx->arfcn & 0x3ff;
cd->chan_nr = gsm_lchan2chan_nr(lchan);
if (!lchan->ts->hopping.enabled) {
cd->h0.tsc = gsm_ts_tsc(lchan->ts);
cd->h0.h = 0;
cd->h0.arfcn_high = arfcn >> 8;
cd->h0.arfcn_low = arfcn & 0xff;
} else {
cd->h1.tsc = gsm_ts_tsc(lchan->ts);
cd->h1.h = 1;
cd->h1.maio_high = lchan->ts->hopping.maio >> 2;
cd->h1.maio_low = lchan->ts->hopping.maio & 0x03;
cd->h1.hsn = lchan->ts->hopping.hsn;
}
}
/*! \brief Encode a TS 04.08 multirate config LV according to 10.5.2.21aa
* \param[out] lv caller-allocated buffer of 7 bytes. First octet is IS length
* \param[in] mr multi-rate configuration to encode
* \param[in] modes array describing the AMR modes
* \returns 0 on success */
int gsm48_multirate_config(uint8_t *lv, const struct amr_multirate_conf *mr, const struct amr_mode *modes)
{
int num = 0, i;
for (i = 0; i < 8; i++) {
if (((mr->gsm48_ie[1] >> i) & 1))
num++;
}
if (num > 4) {
LOGP(DRR, LOGL_ERROR, "BUG: Using multirate codec with too "
"many modes in config.\n");
num = 4;
}
if (num < 1) {
LOGP(DRR, LOGL_ERROR, "BUG: Using multirate codec with no "
"mode in config.\n");
num = 1;
}
lv[0] = (num == 1) ? 2 : (num + 2);
memcpy(lv + 1, mr->gsm48_ie, 2);
if (num == 1)
return 0;
lv[3] = modes[0].threshold & 0x3f;
lv[4] = modes[0].hysteresis << 4;
if (num == 2)
return 0;
lv[4] |= (modes[1].threshold & 0x3f) >> 2;
lv[5] = modes[1].threshold << 6;
lv[5] |= (modes[1].hysteresis & 0x0f) << 2;
if (num == 3)
return 0;
lv[5] |= (modes[2].threshold & 0x3f) >> 4;
lv[6] = modes[2].threshold << 4;
lv[6] |= modes[2].hysteresis & 0x0f;
return 0;
}
#define GSM48_HOCMD_CCHDESC_LEN 16
/* Chapter 9.1.15: Handover Command */
int gsm48_send_ho_cmd(struct gsm_lchan *old_lchan, struct gsm_lchan *new_lchan,
uint8_t power_command, uint8_t ho_ref)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 HO CMD");
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
struct gsm48_ho_cmd *ho =
(struct gsm48_ho_cmd *) msgb_put(msg, sizeof(*ho));
msg->lchan = old_lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_HANDO_CMD;
/* mandatory bits */
gsm48_cell_desc(&ho->cell_desc, new_lchan->ts->trx->bts);
gsm48_lchan2chan_desc(&ho->chan_desc, new_lchan);
ho->ho_ref = ho_ref;
ho->power_command = power_command;
if (new_lchan->ts->hopping.enabled) {
struct gsm_bts *bts = new_lchan->ts->trx->bts;
struct gsm48_system_information_type_1 *si1;
uint8_t *cur;
si1 = GSM_BTS_SI(bts, SYSINFO_TYPE_1);
/* Copy the Cell Chan Desc (ARFCNS in this cell) */
msgb_put_u8(msg, GSM48_IE_CELL_CH_DESC);
cur = msgb_put(msg, GSM48_HOCMD_CCHDESC_LEN);
memcpy(cur, si1->cell_channel_description,
GSM48_HOCMD_CCHDESC_LEN);
/* Copy the Mobile Allocation */
msgb_tlv_put(msg, GSM48_IE_MA_BEFORE,
new_lchan->ts->hopping.ma_len,
new_lchan->ts->hopping.ma_data);
}
/* FIXME: optional bits for type of synchronization? */
return gsm48_sendmsg(msg);
}
/* Chapter 9.1.2: Assignment Command */
int gsm48_send_rr_ass_cmd(struct gsm_lchan *dest_lchan, struct gsm_lchan *lchan, uint8_t power_command)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 ASS CMD");
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
struct gsm48_ass_cmd *ass =
(struct gsm48_ass_cmd *) msgb_put(msg, sizeof(*ass));
DEBUGP(DRR, "-> ASSIGNMENT COMMAND tch_mode=0x%02x\n", lchan->tch_mode);
msg->lchan = dest_lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_ASS_CMD;
/*
* fill the channel information element, this code
* should probably be shared with rsl_rx_chan_rqd(),
* gsm48_lchan_modify(). But beware that 10.5.2.5
* 10.5.2.5.a have slightly different semantic for
* the chan_desc. But as long as multi-slot configurations
* are not used we seem to be fine.
*/
gsm48_lchan2chan_desc(&ass->chan_desc, lchan);
ass->power_command = power_command;
/* optional: cell channel description */
msgb_tv_put(msg, GSM48_IE_CHANMODE_1, lchan->tch_mode);
/* mobile allocation in case of hopping */
if (lchan->ts->hopping.enabled) {
msgb_tlv_put(msg, GSM48_IE_MA_BEFORE, lchan->ts->hopping.ma_len,
lchan->ts->hopping.ma_data);
}
/* in case of multi rate we need to attach a config */
mr_config_for_ms(lchan, msg);
return gsm48_sendmsg(msg);
}
/* 9.1.5 Channel mode modify: Modify the mode on the MS side */
int gsm48_lchan_modify(struct gsm_lchan *lchan, uint8_t mode)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 CHN MOD");
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
struct gsm48_chan_mode_modify *cmm =
(struct gsm48_chan_mode_modify *) msgb_put(msg, sizeof(*cmm));
DEBUGP(DRR, "-> CHANNEL MODE MODIFY mode=0x%02x\n", mode);
lchan->tch_mode = mode;
msg->lchan = lchan;
gh->proto_discr = GSM48_PDISC_RR;
gh->msg_type = GSM48_MT_RR_CHAN_MODE_MODIF;
/* fill the channel information element, this code
* should probably be shared with rsl_rx_chan_rqd() */
gsm48_lchan2chan_desc(&cmm->chan_desc, lchan);
cmm->mode = mode;
/* in case of multi rate we need to attach a config */
mr_config_for_ms(lchan, msg);
return gsm48_sendmsg(msg);
}
int gsm48_rx_rr_modif_ack(struct msgb *msg)
{
int rc;
struct gsm48_hdr *gh = msgb_l3(msg);
struct gsm48_chan_mode_modify *mod =
(struct gsm48_chan_mode_modify *) gh->data;
DEBUGP(DRR, "CHANNEL MODE MODIFY ACK\n");
if (mod->mode != msg->lchan->tch_mode) {
LOGP(DRR, LOGL_ERROR, "CHANNEL MODE change failed. Wanted: %d Got: %d\n",
msg->lchan->tch_mode, mod->mode);
return -1;
}
/* update the channel type */
switch (mod->mode) {
case GSM48_CMODE_SIGN:
msg->lchan->rsl_cmode = RSL_CMOD_SPD_SIGN;
break;
case GSM48_CMODE_SPEECH_V1:
case GSM48_CMODE_SPEECH_EFR:
case GSM48_CMODE_SPEECH_AMR:
msg->lchan->rsl_cmode = RSL_CMOD_SPD_SPEECH;
break;
case GSM48_CMODE_DATA_14k5:
case GSM48_CMODE_DATA_12k0:
case GSM48_CMODE_DATA_6k0:
case GSM48_CMODE_DATA_3k6:
msg->lchan->rsl_cmode = RSL_CMOD_SPD_DATA;
break;
}
/* We've successfully modified the MS side of the channel,
* now go on to modify the BTS side of the channel */
rc = rsl_chan_mode_modify_req(msg->lchan);
/* FIXME: we not only need to do this after mode modify, but
* also after channel activation */
if (is_ipaccess_bts(msg->lchan->ts->trx->bts) && mod->mode != GSM48_CMODE_SIGN)
rsl_ipacc_crcx(msg->lchan);
return rc;
}
int gsm48_parse_meas_rep(struct gsm_meas_rep *rep, struct msgb *msg)
{
struct gsm48_hdr *gh = msgb_l3(msg);
uint8_t *data = gh->data;
struct gsm_bts *bts = msg->lchan->ts->trx->bts;
struct bitvec *nbv = &bts->si_common.neigh_list;
struct gsm_meas_rep_cell *mrc;
if (gh->msg_type != GSM48_MT_RR_MEAS_REP)
return -EINVAL;
if (data[0] & 0x80)
rep->flags |= MEAS_REP_F_BA1;
if (data[0] & 0x40)
rep->flags |= MEAS_REP_F_UL_DTX;
if ((data[1] & 0x40) == 0x00)
rep->flags |= MEAS_REP_F_DL_VALID;
rep->dl.full.rx_lev = data[0] & 0x3f;
rep->dl.sub.rx_lev = data[1] & 0x3f;
rep->dl.full.rx_qual = (data[2] >> 4) & 0x7;
rep->dl.sub.rx_qual = (data[2] >> 1) & 0x7;
rep->num_cell = ((data[3] >> 6) & 0x3) | ((data[2] & 0x01) << 2);
if (rep->num_cell < 1 || rep->num_cell > 6)
return 0;
/* an encoding nightmare in perfection */
mrc = &rep->cell[0];
mrc->rxlev = data[3] & 0x3f;
mrc->neigh_idx = data[4] >> 3;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = ((data[4] & 0x07) << 3) | (data[5] >> 5);
if (rep->num_cell < 2)
return 0;
mrc = &rep->cell[1];
mrc->rxlev = ((data[5] & 0x1f) << 1) | (data[6] >> 7);
mrc->neigh_idx = (data[6] >> 2) & 0x1f;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = ((data[6] & 0x03) << 4) | (data[7] >> 4);
if (rep->num_cell < 3)
return 0;
mrc = &rep->cell[2];
mrc->rxlev = ((data[7] & 0x0f) << 2) | (data[8] >> 6);
mrc->neigh_idx = (data[8] >> 1) & 0x1f;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = ((data[8] & 0x01) << 5) | (data[9] >> 3);
if (rep->num_cell < 4)
return 0;
mrc = &rep->cell[3];
mrc->rxlev = ((data[9] & 0x07) << 3) | (data[10] >> 5);
mrc->neigh_idx = data[10] & 0x1f;
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = data[11] >> 2;
if (rep->num_cell < 5)
return 0;
mrc = &rep->cell[4];
mrc->rxlev = ((data[11] & 0x03) << 4) | (data[12] >> 4);
mrc->neigh_idx = ((data[12] & 0xf) << 1) | (data[13] >> 7);
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = (data[13] >> 1) & 0x3f;
if (rep->num_cell < 6)
return 0;
mrc = &rep->cell[5];
mrc->rxlev = ((data[13] & 0x01) << 5) | (data[14] >> 3);
mrc->neigh_idx = ((data[14] & 0x07) << 2) | (data[15] >> 6);
mrc->arfcn = bitvec_get_nth_set_bit(nbv, mrc->neigh_idx + 1);
mrc->bsic = data[15] & 0x3f;
return 0;
}
/* 9.2.5 CM service accept */
int gsm48_tx_mm_serv_ack(struct gsm_subscriber_connection *conn)
{
struct msgb *msg = gsm48_msgb_alloc_name("GSM 04.08 SERV ACK");
struct gsm48_hdr *gh = (struct gsm48_hdr *) msgb_put(msg, sizeof(*gh));
msg->lchan = conn->lchan;
gh->proto_discr = GSM48_PDISC_MM;
gh->msg_type = GSM48_MT_MM_CM_SERV_ACC;
DEBUGP(DMM, "-> CM SERVICE ACK\n");
return gsm0808_submit_dtap(conn, msg, 0, 0);
}
/* 9.2.6 CM service reject */
int gsm48_tx_mm_serv_rej(struct gsm_subscriber_connection *conn,
enum gsm48_reject_value value)
{
struct msgb *msg;
msg = gsm48_create_mm_serv_rej(value);
if (!msg) {
LOGP(DMM, LOGL_ERROR, "Failed to allocate CM Service Reject.\n");
return -1;
}
DEBUGP(DMM, "-> CM SERVICE Reject cause: %d\n", value);
return gsm0808_submit_dtap(conn, msg, 0, 0);
}