/*- * Copyright (c) 2003, 2004, 2005 Lev Walkin . * All rights reserved. * Redistribution and modifications are permitted subject to BSD license. */ #include #include #include /* * Number of bytes left for this structure. * (ctx->left) indicates the number of bytes _transferred_ for the structure. * (size) contains the number of bytes in the buffer passed. */ #define LEFT ((size<(size_t)ctx->left)?size:(size_t)ctx->left) /* * If the subprocessor function returns with an indication that it wants * more data, it may well be a fatal decoding problem, because the * size is constrained by the 's L, even if the buffer size allows * reading more data. * For example, consider the buffer containing the following TLVs: * ... * The TLV length clearly indicates that one byte is expected in V, but * if the V processor returns with "want more data" even if the buffer * contains way more data than the V processor have seen. */ #define SIZE_VIOLATION (ctx->left >= 0 && (size_t)ctx->left <= size) /* * This macro "eats" the part of the buffer which is definitely "consumed", * i.e. was correctly converted into local representation or rightfully skipped. */ #undef ADVANCE #define ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ ptr = ((const char *)ptr) + num;\ size -= num; \ if(ctx->left >= 0) \ ctx->left -= num; \ consumed_myself += num; \ } while(0) /* * Switch to the next phase of parsing. */ #undef NEXT_PHASE #undef PHASE_OUT #define NEXT_PHASE(ctx) do { \ ctx->phase++; \ ctx->step = 0; \ } while(0) #define PHASE_OUT(ctx) do { ctx->phase = 10; } while(0) /* * Return a standardized complex structure. */ #undef RETURN #define RETURN(_code) do { \ rval.code = _code; \ rval.consumed = consumed_myself;\ return rval; \ } while(0) /* * The decoder of the SET OF type. */ asn_dec_rval_t SET_OF_decode_ber(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **struct_ptr, const void *ptr, size_t size, int tag_mode) { /* * Bring closer parts of structure description. */ asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *elm = td->elements; /* Single one */ /* * Parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ ber_tlv_tag_t tlv_tag; /* T from TLV */ asn_dec_rval_t rval; /* Return code from subparsers */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ ASN_DEBUG("Decoding %s as SET OF", td->name); /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) { RETURN(RC_FAIL); } } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Start to parse where left previously */ switch(ctx->phase) { case 0: /* * PHASE 0. * Check that the set of tags associated with given structure * perfectly fits our expectations. */ rval = ber_check_tags(opt_codec_ctx, td, ctx, ptr, size, tag_mode, 1, &ctx->left, 0); if(rval.code != RC_OK) { ASN_DEBUG("%s tagging check failed: %d", td->name, rval.code); return rval; } if(ctx->left >= 0) ctx->left += rval.consumed; /* ?Substracted below! */ ADVANCE(rval.consumed); ASN_DEBUG("Structure consumes %ld bytes, " "buffer %ld", (long)ctx->left, (long)size); NEXT_PHASE(ctx); /* Fall through */ case 1: /* * PHASE 1. * From the place where we've left it previously, * try to decode the next item. */ for(;; ctx->step = 0) { ssize_t tag_len; /* Length of TLV's T */ if(ctx->step & 1) goto microphase2; /* * MICROPHASE 1: Synchronize decoding. */ if(ctx->left == 0) { ASN_DEBUG("End of SET OF %s", td->name); /* * No more things to decode. * Exit out of here. */ PHASE_OUT(ctx); RETURN(RC_OK); } /* * Fetch the T from TLV. */ tag_len = ber_fetch_tag(ptr, LEFT, &tlv_tag); switch(tag_len) { case 0: if(!SIZE_VIOLATION) RETURN(RC_WMORE); /* Fall through */ case -1: RETURN(RC_FAIL); } if(ctx->left < 0 && ((const uint8_t *)ptr)[0] == 0) { if(LEFT < 2) { if(SIZE_VIOLATION) RETURN(RC_FAIL); else RETURN(RC_WMORE); } else if(((const uint8_t *)ptr)[1] == 0) { /* * Found the terminator of the * indefinite length structure. */ break; } } /* Outmost tag may be unknown and cannot be fetched/compared */ if(elm->tag != (ber_tlv_tag_t)-1) { if(BER_TAGS_EQUAL(tlv_tag, elm->tag)) { /* * The new list member of expected type has arrived. */ } else { ASN_DEBUG("Unexpected tag %s fixed SET OF %s", ber_tlv_tag_string(tlv_tag), td->name); ASN_DEBUG("%s SET OF has tag %s", td->name, ber_tlv_tag_string(elm->tag)); RETURN(RC_FAIL); } } /* * MICROPHASE 2: Invoke the member-specific decoder. */ ctx->step |= 1; /* Confirm entering next microphase */ microphase2: /* * Invoke the member fetch routine according to member's type */ rval = elm->type->ber_decoder(opt_codec_ctx, elm->type, &ctx->ptr, ptr, LEFT, 0); ASN_DEBUG("In %s SET OF %s code %d consumed %d", td->name, elm->type->name, rval.code, (int)rval.consumed); switch(rval.code) { case RC_OK: { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); else ctx->ptr = 0; } break; case RC_WMORE: /* More data expected */ if(!SIZE_VIOLATION) { ADVANCE(rval.consumed); RETURN(RC_WMORE); } /* Fall through */ case RC_FAIL: /* Fatal error */ ASN_STRUCT_FREE(*elm->type, ctx->ptr); ctx->ptr = 0; RETURN(RC_FAIL); } /* switch(rval) */ ADVANCE(rval.consumed); } /* for(all list members) */ NEXT_PHASE(ctx); case 2: /* * Read in all "end of content" TLVs. */ while(ctx->left < 0) { if(LEFT < 2) { if(LEFT > 0 && ((const char *)ptr)[0] != 0) { /* Unexpected tag */ RETURN(RC_FAIL); } else { RETURN(RC_WMORE); } } if(((const char *)ptr)[0] == 0 && ((const char *)ptr)[1] == 0) { ADVANCE(2); ctx->left++; } else { RETURN(RC_FAIL); } } PHASE_OUT(ctx); } RETURN(RC_OK); } /* * Internally visible buffer holding a single encoded element. */ struct _el_buffer { uint8_t *buf; size_t length; size_t size; }; /* Append bytes to the above structure */ static int _el_addbytes(const void *buffer, size_t size, void *el_buf_ptr) { struct _el_buffer *el_buf = (struct _el_buffer *)el_buf_ptr; if(el_buf->length + size > el_buf->size) return -1; memcpy(el_buf->buf + el_buf->length, buffer, size); el_buf->length += size; return 0; } static int _el_buf_cmp(const void *ap, const void *bp) { const struct _el_buffer *a = (const struct _el_buffer *)ap; const struct _el_buffer *b = (const struct _el_buffer *)bp; int ret; size_t common_len; if(a->length < b->length) common_len = a->length; else common_len = b->length; ret = memcmp(a->buf, b->buf, common_len); if(ret == 0) { if(a->length < b->length) ret = -1; else if(a->length > b->length) ret = 1; } return ret; } /* * The DER encoder of the SET OF type. */ asn_enc_rval_t SET_OF_encode_der(asn_TYPE_descriptor_t *td, void *ptr, int tag_mode, ber_tlv_tag_t tag, asn_app_consume_bytes_f *cb, void *app_key) { asn_TYPE_member_t *elm = td->elements; asn_TYPE_descriptor_t *elm_type = elm->type; der_type_encoder_f *der_encoder = elm_type->der_encoder; asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr); size_t computed_size = 0; ssize_t encoding_size = 0; struct _el_buffer *encoded_els; ssize_t eels_count = 0; size_t max_encoded_len = 1; asn_enc_rval_t erval; int ret; int edx; ASN_DEBUG("Estimating size for SET OF %s", td->name); /* * Gather the length of the underlying members sequence. */ for(edx = 0; edx < list->count; edx++) { void *memb_ptr = list->array[edx]; if(!memb_ptr) continue; erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, 0, 0); if(erval.encoded == -1) return erval; computed_size += erval.encoded; /* Compute maximum encoding's size */ if(max_encoded_len < (size_t)erval.encoded) max_encoded_len = erval.encoded; } /* * Encode the TLV for the sequence itself. */ encoding_size = der_write_tags(td, computed_size, tag_mode, 1, tag, cb, app_key); if(encoding_size == -1) { erval.encoded = -1; erval.failed_type = td; erval.structure_ptr = ptr; return erval; } computed_size += encoding_size; if(!cb || list->count == 0) { erval.encoded = computed_size; _ASN_ENCODED_OK(erval); } /* * DER mandates dynamic sorting of the SET OF elements * according to their encodings. Build an array of the * encoded elements. */ encoded_els = (struct _el_buffer *)MALLOC( list->count * sizeof(encoded_els[0])); if(encoded_els == NULL) { erval.encoded = -1; erval.failed_type = td; erval.structure_ptr = ptr; return erval; } ASN_DEBUG("Encoding members of %s SET OF", td->name); /* * Encode all members. */ for(edx = 0; edx < list->count; edx++) { void *memb_ptr = list->array[edx]; struct _el_buffer *encoded_el = &encoded_els[eels_count]; if(!memb_ptr) continue; /* * Prepare space for encoding. */ encoded_el->buf = (uint8_t *)MALLOC(max_encoded_len); if(encoded_el->buf) { encoded_el->length = 0; encoded_el->size = max_encoded_len; } else { for(edx--; edx >= 0; edx--) FREEMEM(encoded_els[edx].buf); FREEMEM(encoded_els); erval.encoded = -1; erval.failed_type = td; erval.structure_ptr = ptr; return erval; } /* * Encode the member into the prepared space. */ erval = der_encoder(elm_type, memb_ptr, 0, elm->tag, _el_addbytes, encoded_el); if(erval.encoded == -1) { for(; edx >= 0; edx--) FREEMEM(encoded_els[edx].buf); FREEMEM(encoded_els); return erval; } encoding_size += erval.encoded; eels_count++; } /* * Sort the encoded elements according to their encoding. */ qsort(encoded_els, eels_count, sizeof(encoded_els[0]), _el_buf_cmp); /* * Report encoded elements to the application. * Dispose of temporary sorted members table. */ ret = 0; for(edx = 0; edx < eels_count; edx++) { struct _el_buffer *encoded_el = &encoded_els[edx]; /* Report encoded chunks to the application */ if(ret == 0 && cb(encoded_el->buf, encoded_el->length, app_key) < 0) ret = -1; FREEMEM(encoded_el->buf); } FREEMEM(encoded_els); if(ret || computed_size != (size_t)encoding_size) { /* * Standard callback failed, or * encoded size is not equal to the computed size. */ erval.encoded = -1; erval.failed_type = td; erval.structure_ptr = ptr; } else { erval.encoded = computed_size; } _ASN_ENCODED_OK(erval); } #undef XER_ADVANCE #define XER_ADVANCE(num_bytes) do { \ size_t num = num_bytes; \ buf_ptr = ((const char *)buf_ptr) + num;\ size -= num; \ consumed_myself += num; \ } while(0) /* * Decode the XER (XML) data. */ asn_dec_rval_t SET_OF_decode_xer(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, void **struct_ptr, const char *opt_mname, const void *buf_ptr, size_t size) { /* * Bring closer parts of structure description. */ asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *element = td->elements; const char *elm_tag; const char *xml_tag = opt_mname ? opt_mname : td->xml_tag; /* * ... and parts of the structure being constructed. */ void *st = *struct_ptr; /* Target structure. */ asn_struct_ctx_t *ctx; /* Decoder context */ asn_dec_rval_t rval; /* Return value from a decoder */ ssize_t consumed_myself = 0; /* Consumed bytes from ptr */ /* * Create the target structure if it is not present already. */ if(st == 0) { st = *struct_ptr = CALLOC(1, specs->struct_size); if(st == 0) RETURN(RC_FAIL); } /* Which tag is expected for the downstream */ if(specs->as_XMLValueList) { elm_tag = (specs->as_XMLValueList == 1) ? 0 : ""; } else { elm_tag = (*element->name) ? element->name : element->type->xml_tag; } /* * Restore parsing context. */ ctx = (asn_struct_ctx_t *)((char *)st + specs->ctx_offset); /* * Phases of XER/XML processing: * Phase 0: Check that the opening tag matches our expectations. * Phase 1: Processing body and reacting on closing tag. * Phase 2: Processing inner type. */ for(; ctx->phase <= 2;) { pxer_chunk_type_e ch_type; /* XER chunk type */ ssize_t ch_size; /* Chunk size */ xer_check_tag_e tcv; /* Tag check value */ /* * Go inside the inner member of a set. */ if(ctx->phase == 2) { asn_dec_rval_t tmprval; /* Invoke the inner type decoder, m.b. multiple times */ ASN_DEBUG("XER/SET OF element [%s]", elm_tag); tmprval = element->type->xer_decoder(opt_codec_ctx, element->type, &ctx->ptr, elm_tag, buf_ptr, size); if(tmprval.code == RC_OK) { asn_anonymous_set_ *list = _A_SET_FROM_VOID(st); if(ASN_SET_ADD(list, ctx->ptr) != 0) RETURN(RC_FAIL); ctx->ptr = 0; XER_ADVANCE(tmprval.consumed); } else { XER_ADVANCE(tmprval.consumed); RETURN(tmprval.code); } ctx->phase = 1; /* Back to body processing */ ASN_DEBUG("XER/SET OF phase => %d", ctx->phase); /* Fall through */ } /* * Get the next part of the XML stream. */ ch_size = xer_next_token(&ctx->context, buf_ptr, size, &ch_type); switch(ch_size) { case -1: RETURN(RC_FAIL); case 0: RETURN(RC_WMORE); default: switch(ch_type) { case PXER_COMMENT: /* Got XML comment */ case PXER_TEXT: /* Ignore free-standing text */ XER_ADVANCE(ch_size); /* Skip silently */ continue; case PXER_TAG: break; /* Check the rest down there */ } } tcv = xer_check_tag(buf_ptr, ch_size, xml_tag); ASN_DEBUG("XER/SET OF: tcv = %d, ph=%d t=%s", tcv, ctx->phase, xml_tag); switch(tcv) { case XCT_CLOSING: if(ctx->phase == 0) break; ctx->phase = 0; /* Fall through */ case XCT_BOTH: if(ctx->phase == 0) { /* No more things to decode */ XER_ADVANCE(ch_size); ctx->phase = 3; /* Phase out */ RETURN(RC_OK); } /* Fall through */ case XCT_OPENING: if(ctx->phase == 0) { XER_ADVANCE(ch_size); ctx->phase = 1; /* Processing body phase */ continue; } /* Fall through */ case XCT_UNKNOWN_OP: case XCT_UNKNOWN_BO: ASN_DEBUG("XER/SET OF: tcv=%d, ph=%d", tcv, ctx->phase); if(ctx->phase == 1) { /* * Process a single possible member. */ ctx->phase = 2; continue; } /* Fall through */ default: break; } ASN_DEBUG("Unexpected XML tag in SET OF"); break; } ctx->phase = 3; /* "Phase out" on hard failure */ RETURN(RC_FAIL); } typedef struct xer_tmp_enc_s { void *buffer; size_t offset; size_t size; } xer_tmp_enc_t; static int SET_OF_encode_xer_callback(const void *buffer, size_t size, void *key) { xer_tmp_enc_t *t = (xer_tmp_enc_t *)key; if(t->offset + size >= t->size) { size_t newsize = (t->size << 2) + size; void *p = REALLOC(t->buffer, newsize); if(!p) return -1; t->buffer = p; t->size = newsize; } memcpy((char *)t->buffer + t->offset, buffer, size); t->offset += size; return 0; } static int SET_OF_xer_order(const void *aptr, const void *bptr) { const xer_tmp_enc_t *a = (const xer_tmp_enc_t *)aptr; const xer_tmp_enc_t *b = (const xer_tmp_enc_t *)bptr; size_t minlen = a->offset; int ret; if(b->offset < minlen) minlen = b->offset; /* Well-formed UTF-8 has this nice lexicographical property... */ ret = memcmp(a->buffer, b->buffer, minlen); if(ret != 0) return ret; if(a->offset == b->offset) return 0; if(a->offset == minlen) return -1; return 1; } asn_enc_rval_t SET_OF_encode_xer(asn_TYPE_descriptor_t *td, void *sptr, int ilevel, enum xer_encoder_flags_e flags, asn_app_consume_bytes_f *cb, void *app_key) { asn_enc_rval_t er; asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *elm = td->elements; asn_anonymous_set_ *list = _A_SET_FROM_VOID(sptr); const char *mname = specs->as_XMLValueList ? 0 : ((*elm->name) ? elm->name : elm->type->xml_tag); size_t mlen = mname ? strlen(mname) : 0; int xcan = (flags & XER_F_CANONICAL); xer_tmp_enc_t *encs = 0; size_t encs_count = 0; void *original_app_key = app_key; asn_app_consume_bytes_f *original_cb = cb; int i; if(!sptr) _ASN_ENCODE_FAILED; if(xcan) { encs = (xer_tmp_enc_t *)MALLOC(list->count * sizeof(encs[0])); if(!encs) _ASN_ENCODE_FAILED; cb = SET_OF_encode_xer_callback; } er.encoded = 0; for(i = 0; i < list->count; i++) { asn_enc_rval_t tmper; void *memb_ptr = list->array[i]; if(!memb_ptr) continue; if(encs) { memset(&encs[encs_count], 0, sizeof(encs[0])); app_key = &encs[encs_count]; encs_count++; } if(mname) { if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel); _ASN_CALLBACK3("<", 1, mname, mlen, ">", 1); } if(!xcan && specs->as_XMLValueList == 1) _i_ASN_TEXT_INDENT(1, ilevel + 1); tmper = elm->type->xer_encoder(elm->type, memb_ptr, ilevel + (specs->as_XMLValueList != 2), flags, cb, app_key); if(tmper.encoded == -1) { td = tmper.failed_type; sptr = tmper.structure_ptr; goto cb_failed; } if(tmper.encoded == 0 && specs->as_XMLValueList) { const char *name = elm->type->xml_tag; size_t len = strlen(name); _ASN_CALLBACK3("<", 1, name, len, "/>", 2); } if(mname) { _ASN_CALLBACK3("", 1); er.encoded += 5; } er.encoded += (2 * mlen) + tmper.encoded; } if(!xcan) _i_ASN_TEXT_INDENT(1, ilevel - 1); if(encs) { xer_tmp_enc_t *enc = encs; xer_tmp_enc_t *end = encs + encs_count; ssize_t control_size = 0; cb = original_cb; app_key = original_app_key; qsort(encs, encs_count, sizeof(encs[0]), SET_OF_xer_order); for(; enc < end; enc++) { _ASN_CALLBACK(enc->buffer, enc->offset); FREEMEM(enc->buffer); enc->buffer = 0; control_size += enc->offset; } assert(control_size == er.encoded); } goto cleanup; cb_failed: er.encoded = -1; er.failed_type = td; er.structure_ptr = sptr; cleanup: if(encs) { while(encs_count-- > 0) { if(encs[encs_count].buffer) FREEMEM(encs[encs_count].buffer); } FREEMEM(encs); } _ASN_ENCODED_OK(er); } int SET_OF_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel, asn_app_consume_bytes_f *cb, void *app_key) { asn_TYPE_member_t *elm = td->elements; const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); int ret; int i; if(!sptr) return (cb("", 8, app_key) < 0) ? -1 : 0; /* Dump preamble */ if(cb(td->name, strlen(td->name), app_key) < 0 || cb(" ::= {", 6, app_key) < 0) return -1; for(i = 0; i < list->count; i++) { const void *memb_ptr = list->array[i]; if(!memb_ptr) continue; _i_INDENT(1); ret = elm->type->print_struct(elm->type, memb_ptr, ilevel + 1, cb, app_key); if(ret) return ret; } ilevel--; _i_INDENT(1); return (cb("}", 1, app_key) < 0) ? -1 : 0; } void SET_OF_free(asn_TYPE_descriptor_t *td, void *ptr, int contents_only) { if(td && ptr) { asn_SET_OF_specifics_t *specs; asn_TYPE_member_t *elm = td->elements; asn_anonymous_set_ *list = _A_SET_FROM_VOID(ptr); asn_struct_ctx_t *ctx; /* Decoder context */ int i; /* * Could not use set_of_empty() because of (*free) * incompatibility. */ for(i = 0; i < list->count; i++) { void *memb_ptr = list->array[i]; if(memb_ptr) ASN_STRUCT_FREE(*elm->type, memb_ptr); } list->count = 0; /* No meaningful elements left */ asn_set_empty(list); /* Remove (list->array) */ specs = (asn_SET_OF_specifics_t *)td->specifics; ctx = (asn_struct_ctx_t *)((char *)ptr + specs->ctx_offset); if(ctx->ptr) { ASN_STRUCT_FREE(*elm->type, ctx->ptr); ctx->ptr = 0; } if(!contents_only) { FREEMEM(ptr); } } } int SET_OF_constraint(asn_TYPE_descriptor_t *td, const void *sptr, asn_app_constraint_failed_f *ctfailcb, void *app_key) { asn_TYPE_member_t *elm = td->elements; asn_constr_check_f *constr; const asn_anonymous_set_ *list = _A_CSET_FROM_VOID(sptr); int i; if(!sptr) { _ASN_CTFAIL(app_key, td, sptr, "%s: value not given (%s:%d)", td->name, __FILE__, __LINE__); return -1; } constr = elm->memb_constraints; if(!constr) constr = elm->type->check_constraints; /* * Iterate over the members of an array. * Validate each in turn, until one fails. */ for(i = 0; i < list->count; i++) { const void *memb_ptr = list->array[i]; int ret; if(!memb_ptr) continue; ret = constr(elm->type, memb_ptr, ctfailcb, app_key); if(ret) return ret; } /* * Cannot inherit it eralier: * need to make sure we get the updated version. */ if(!elm->memb_constraints) elm->memb_constraints = elm->type->check_constraints; return 0; } asn_dec_rval_t SET_OF_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_dec_rval_t rv; asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *elm = td->elements; /* Single one */ void *st = *sptr; asn_anonymous_set_ *list; asn_per_constraint_t *ct; int repeat = 0; ssize_t nelems; if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx)) _ASN_DECODE_FAILED; /* * Create the target structure if it is not present already. */ if(!st) { st = *sptr = CALLOC(1, specs->struct_size); if(!st) _ASN_DECODE_FAILED; } list = _A_SET_FROM_VOID(st); /* Figure out which constraints to use */ if(constraints) ct = &constraints->size; else if(td->per_constraints) ct = &td->per_constraints->size; else ct = 0; if(ct && ct->flags & APC_EXTENSIBLE) { int value = per_get_few_bits(pd, 1); if(value < 0) _ASN_DECODE_STARVED; if(value) ct = 0; /* Not restricted! */ } if(ct && ct->effective_bits >= 0) { /* X.691, #19.5: No length determinant */ nelems = per_get_few_bits(pd, ct->effective_bits); ASN_DEBUG("Preparing to fetch %ld+%lld elements from %s", (long)nelems, ct->lower_bound, td->name); if(nelems < 0) _ASN_DECODE_STARVED; nelems += ct->lower_bound; } else { nelems = -1; } do { int i; if(nelems < 0) { nelems = uper_get_length(pd, ct ? ct->effective_bits : -1, &repeat); ASN_DEBUG("Got to decode %d elements (eff %d)", (int)nelems, (int)(ct ? ct->effective_bits : -1)); if(nelems < 0) _ASN_DECODE_STARVED; } for(i = 0; i < nelems; i++) { void *ptr = 0; ASN_DEBUG("SET OF %s decoding", elm->type->name); rv = elm->type->uper_decoder(opt_codec_ctx, elm->type, elm->per_constraints, &ptr, pd); ASN_DEBUG("%s SET OF %s decoded %d, %p", td->name, elm->type->name, rv.code, ptr); if(rv.code == RC_OK) { if(ASN_SET_ADD(list, ptr) == 0) continue; ASN_DEBUG("Failed to add element into %s", td->name); /* Fall through */ rv.code = RC_FAIL; } else { ASN_DEBUG("Failed decoding %s of %s (SET OF)", elm->type->name, td->name); } if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); return rv; } nelems = -1; /* Allow uper_get_length() */ } while(repeat); ASN_DEBUG("Decoded %s as SET OF", td->name); rv.code = RC_OK; rv.consumed = 0; return rv; } asn_dec_rval_t SET_OF_decode_aper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td, asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) { asn_dec_rval_t rv; asn_SET_OF_specifics_t *specs = (asn_SET_OF_specifics_t *)td->specifics; asn_TYPE_member_t *elm = td->elements; /* Single one */ void *st = *sptr; asn_anonymous_set_ *list; asn_per_constraint_t *ct; int repeat = 0; ssize_t nelems; if(_ASN_STACK_OVERFLOW_CHECK(opt_codec_ctx)) _ASN_DECODE_FAILED; /* * Create the target structure if it is not present already. */ if(!st) { st = *sptr = CALLOC(1, specs->struct_size); if(!st) _ASN_DECODE_FAILED; } list = _A_SET_FROM_VOID(st); /* Figure out which constraints to use */ if(constraints) ct = &constraints->size; else if(td->per_constraints) ct = &td->per_constraints->size; else ct = 0; if(ct && ct->flags & APC_EXTENSIBLE) { int value = per_get_few_bits(pd, 1); if(value < 0) _ASN_DECODE_STARVED; if(value) ct = 0; /* Not restricted! */ } if(ct && ct->effective_bits >= 0) { /* X.691, #19.5: No length determinant */ // nelems = per_get_few_bits(pd, ct->effective_bits); nelems = aper_get_nsnnwn(pd, ct->upper_bound - ct->lower_bound); ASN_DEBUG("Preparing to fetch %ld+%lld elements from %s", (long)nelems, ct->lower_bound, td->name); if(nelems < 0) _ASN_DECODE_STARVED; nelems += ct->lower_bound; } else { nelems = -1; } do { int i; if(nelems < 0) { nelems = aper_get_length(pd, ct ? ct->upper_bound - ct->lower_bound + 1 : -1, ct ? ct->effective_bits : -1, &repeat); ASN_DEBUG("Got to decode %d elements (eff %d)", (int)nelems, (int)(ct ? ct->effective_bits : -1)); if(nelems < 0) _ASN_DECODE_STARVED; } for(i = 0; i < nelems; i++) { void *ptr = 0; ASN_DEBUG("SET OF %s decoding", elm->type->name); rv = elm->type->aper_decoder(opt_codec_ctx, elm->type, elm->per_constraints, &ptr, pd); ASN_DEBUG("%s SET OF %s decoded %d, %p", td->name, elm->type->name, rv.code, ptr); if(rv.code == RC_OK) { if(ASN_SET_ADD(list, ptr) == 0) continue; ASN_DEBUG("Failed to add element into %s", td->name); /* Fall through */ rv.code = RC_FAIL; } else { ASN_DEBUG("Failed decoding %s of %s (SET OF)", elm->type->name, td->name); } if(ptr) ASN_STRUCT_FREE(*elm->type, ptr); return rv; } nelems = -1; /* Allow uper_get_length() */ } while(repeat); ASN_DEBUG("Decoded %s as SET OF", td->name); rv.code = RC_OK; rv.consumed = 0; return rv; }