osmo-cc-pstn-endpoint/src/libfm/fm.c

414 lines
9.9 KiB
C

/* FM modulation processing
*
* (C) 2017 by Andreas Eversberg <jolly@eversberg.eu>
* All Rights Reserved
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <math.h>
#include "../libsample/sample.h"
#include "fm.h"
static int has_init = 0;
static int fast_math = 0;
static float *sin_tab = NULL, *cos_tab = NULL;
/* global init */
int fm_init(int _fast_math)
{
fast_math = _fast_math;
if (fast_math) {
int i;
sin_tab = calloc(65536+16384, sizeof(*sin_tab));
if (!sin_tab) {
fprintf(stderr, "No mem!\n");
return -ENOMEM;
}
cos_tab = sin_tab + 16384;
/* generate sine and cosine */
for (i = 0; i < 65536+16384; i++)
sin_tab[i] = sin(2.0 * M_PI * (double)i / 65536.0);
}
has_init = 1;
return 0;
}
/* global exit */
void fm_exit(void)
{
if (sin_tab) {
free(sin_tab);
sin_tab = cos_tab = NULL;
}
has_init = 0;
}
/* init FM modulator */
int fm_mod_init(fm_mod_t *mod, double samplerate, double offset, double amplitude)
{
int i;
if (!has_init) {
fprintf(stderr, "libfm was not initialized, please fix!\n");
abort();
}
memset(mod, 0, sizeof(*mod));
mod->samplerate = samplerate;
mod->offset = offset;
mod->amplitude = amplitude;
mod->ramp_length = samplerate * 0.001;
mod->ramp_tab = calloc(mod->ramp_length, sizeof(*mod->ramp_tab));
if (!mod->ramp_tab) {
fprintf(stderr, "No mem!\n");
return -ENOMEM;
}
mod->state = MOD_STATE_OFF;
/* generate ramp up with ramp_length */
for (i = 0; i < mod->ramp_length; i++)
mod->ramp_tab[i] = 0.5 - cos(M_PI * i / mod->ramp_length) / 2.0;
return 0;
}
void fm_mod_exit(fm_mod_t *mod)
{
if (mod->ramp_tab) {
free(mod->ramp_tab);
mod->ramp_tab = NULL;
}
}
/* do frequency modulation of samples and add them to existing baseband */
void fm_modulate_complex(fm_mod_t *mod, sample_t *frequency, uint8_t *power, int length, float *baseband)
{
double dev, rate, phase, offset;
int ramp, ramp_length;
double *ramp_tab;
double amplitude;
rate = mod->samplerate;
phase = mod->phase;
offset = mod->offset;
ramp = mod->ramp;
ramp_length = mod->ramp_length;
ramp_tab = mod->ramp_tab;
amplitude = mod->amplitude;
again:
switch (mod->state) {
case MOD_STATE_ON:
/* modulate */
while (length) {
/* is power is not set, ramp down */
if (!(*power)) {
mod->state = MOD_STATE_RAMP_DOWN;
break;
}
/* deviation is defined by the frequency value and the offset */
dev = offset + *frequency++;
power++;
length--;
if (fast_math) {
phase += 65536.0 * dev / rate;
if (phase < 0.0)
phase += 65536.0;
else if (phase >= 65536.0)
phase -= 65536.0;
*baseband++ += cos_tab[(uint16_t)phase] * amplitude;
*baseband++ += sin_tab[(uint16_t)phase] * amplitude;
} else {
phase += 2.0 * M_PI * dev / rate;
if (phase < 0.0)
phase += 2.0 * M_PI;
else if (phase >= 2.0 * M_PI)
phase -= 2.0 * M_PI;
*baseband++ += cos(phase) * amplitude;
*baseband++ += sin(phase) * amplitude;
}
}
break;
case MOD_STATE_RAMP_DOWN:
while (length) {
/* if power is set, ramp up */
if (*power) {
mod->state = MOD_STATE_RAMP_UP;
break;
}
if (ramp == 0) {
mod->state = MOD_STATE_OFF;
break;
}
dev = offset + *frequency++;
power++;
length--;
if (fast_math) {
phase += 65536.0 * dev / rate;
if (phase < 0.0)
phase += 65536.0;
else if (phase >= 65536.0)
phase -= 65536.0;
*baseband++ += cos_tab[(uint16_t)phase] * amplitude * ramp_tab[ramp];
*baseband++ += sin_tab[(uint16_t)phase] * amplitude * ramp_tab[ramp];
} else {
phase += 2.0 * M_PI * dev / rate;
if (phase < 0.0)
phase += 2.0 * M_PI;
else if (phase >= 2.0 * M_PI)
phase -= 2.0 * M_PI;
*baseband++ += cos(phase) * amplitude * ramp_tab[ramp];
*baseband++ += sin(phase) * amplitude * ramp_tab[ramp];
}
ramp--;
}
break;
case MOD_STATE_OFF:
while (length) {
/* if power is set, ramp up */
if (*power) {
mod->state = MOD_STATE_RAMP_UP;
break;
}
/* just count, and add nothing */
frequency++;
power++;
length--;
baseband += 2;
}
break;
case MOD_STATE_RAMP_UP:
while (length) {
/* is power is not set, ramp down */
if (!(*power)) {
mod->state = MOD_STATE_RAMP_DOWN;
break;
}
if (ramp == ramp_length - 1) {
mod->state = MOD_STATE_ON;
break;
}
/* deviation is defined by the frequency value and the offset */
dev = offset + *frequency++;
power++;
length--;
if (fast_math) {
phase += 65536.0 * dev / rate;
if (phase < 0.0)
phase += 65536.0;
else if (phase >= 65536.0)
phase -= 65536.0;
*baseband++ += cos_tab[(uint16_t)phase] * amplitude * ramp_tab[ramp];
*baseband++ += sin_tab[(uint16_t)phase] * amplitude * ramp_tab[ramp];
} else {
phase += 2.0 * M_PI * dev / rate;
if (phase < 0.0)
phase += 2.0 * M_PI;
else if (phase >= 2.0 * M_PI)
phase -= 2.0 * M_PI;
*baseband++ += cos(phase) * amplitude * ramp_tab[ramp];
*baseband++ += sin(phase) * amplitude * ramp_tab[ramp];
}
ramp++;
}
break;
}
if (length)
goto again;
mod->phase = phase;
mod->ramp = ramp;
}
/* init FM demodulator */
int fm_demod_init(fm_demod_t *demod, double samplerate, double offset, double bandwidth)
{
if (!has_init) {
fprintf(stderr, "libfm was not initialized, please fix!\n");
abort();
}
memset(demod, 0, sizeof(*demod));
demod->samplerate = samplerate;
if (fast_math)
demod->rot = 65536.0 * -offset / samplerate;
else
demod->rot = 2 * M_PI * -offset / samplerate;
/* use fourth order (2 iter) filter, since it is as fast as second order (1 iter) filter */
iir_lowpass_init(&demod->lp[0], bandwidth / 2.0, samplerate, 2);
iir_lowpass_init(&demod->lp[1], bandwidth / 2.0, samplerate, 2);
return 0;
}
void fm_demod_exit(fm_demod_t __attribute__ ((unused)) *demod)
{
}
static inline float fast_tan(float z)
{
const float n1 = 0.97239411f;
const float n2 = -0.19194795f;
return (n1 + n2 * z * z) * z;
}
static inline float fast_atan2(float y, float x)
{
if (x != 0.0) {
if (fabsf(x) > fabsf(y)) {
const float z = y / x;
if (x > 0.0) /* atan2(y,x) = atan(y/x) if x > 0 */
return fast_tan(z);
else if (y >= 0.0) /* atan2(y,x) = atan(y/x) + PI if x < 0, y >= 0 */
return fast_tan(z) + M_PI;
else /* atan2(y,x) = atan(y/x) - PI if x < 0, y < 0 */
return fast_tan(z) - M_PI;
} else { /* Use property atan(y/x) = PI/2 - atan(x/y) if |y/x| > 1 */
const float z = x / y;
if (y > 0.0) /* atan2(y,x) = PI/2 - atan(x/y) if |y/x| > 1, y > 0 */
return -fast_tan(z) + M_PI_2;
else /* atan2(y,x) = -PI/2 - atan(x/y) if |y/x| > 1, y < 0 */
return -fast_tan(z) - M_PI_2;
}
} else {
if (y > 0.0) /* x = 0, y > 0 */
return M_PI_2;
else if (y < 0.0) /* x = 0, y < 0 */
return -M_PI_2;
}
return 0.0; /* x,y = 0. return 0, because NaN would harm further processing */
}
/* do frequency demodulation of baseband and write them to samples */
void fm_demodulate_complex(fm_demod_t *demod, sample_t *frequency, int length, float *baseband, sample_t *I, sample_t *Q)
{
double phase, rot, last_phase, dev, rate;
double _sin, _cos;
sample_t i, q;
int s, ss;
rate = demod->samplerate;
phase = demod->phase;
rot = demod->rot;
for (s = 0, ss = 0; s < length; s++) {
phase += rot;
i = baseband[ss++];
q = baseband[ss++];
if (fast_math) {
if (phase < 0.0)
phase += 65536.0;
else if (phase >= 65536.0)
phase -= 65536.0;
_sin = sin_tab[(uint16_t)phase];
_cos = cos_tab[(uint16_t)phase];
} else {
if (phase < 0.0)
phase += 2.0 * M_PI;
else if (phase >= 2.0 * M_PI)
phase -= 2.0 * M_PI;
_sin = sin(phase);
_cos = cos(phase);
}
I[s] = i * _cos - q * _sin;
Q[s] = i * _sin + q * _cos;
}
demod->phase = phase;
iir_process(&demod->lp[0], I, length);
iir_process(&demod->lp[1], Q, length);
last_phase = demod->last_phase;
for (s = 0; s < length; s++) {
if (fast_math)
phase = fast_atan2(Q[s], I[s]);
else
phase = atan2(Q[s], I[s]);
dev = (phase - last_phase) / 2 / M_PI;
last_phase = phase;
if (dev < -0.49)
dev += 1.0;
else if (dev > 0.49)
dev -= 1.0;
dev *= rate;
frequency[s] = dev;
}
demod->last_phase = last_phase;
}
void fm_demodulate_real(fm_demod_t *demod, sample_t *frequency, int length, sample_t *baseband, sample_t *I, sample_t *Q)
{
double phase, rot, last_phase, dev, rate;
double _sin, _cos;
sample_t i;
int s, ss;
rate = demod->samplerate;
phase = demod->phase;
rot = demod->rot;
for (s = 0, ss = 0; s < length; s++) {
phase += rot;
i = baseband[ss++];
if (fast_math) {
if (phase < 0.0)
phase += 65536.0;
else if (phase >= 65536.0)
phase -= 65536.0;
_sin = sin_tab[(uint16_t)phase];
_cos = cos_tab[(uint16_t)phase];
} else {
if (phase < 0.0)
phase += 2.0 * M_PI;
else if (phase >= 2.0 * M_PI)
phase -= 2.0 * M_PI;
_sin = sin(phase);
_cos = cos(phase);
}
I[s] = i * _cos;
Q[s] = i * _sin;
}
demod->phase = phase;
iir_process(&demod->lp[0], I, length);
iir_process(&demod->lp[1], Q, length);
last_phase = demod->last_phase;
for (s = 0; s < length; s++) {
if (fast_math)
phase = fast_atan2(Q[s], I[s]);
else
phase = atan2(Q[s], I[s]);
dev = (phase - last_phase) / 2 / M_PI;
last_phase = phase;
if (dev < -0.49)
dev += 1.0;
else if (dev > 0.49)
dev -= 1.0;
dev *= rate;
frequency[s] = dev;
}
demod->last_phase = last_phase;
}