gr-osmosdr/lib/bladerf/bladerf_source_c.cc

681 lines
20 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013-2017 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include "arg_helpers.h"
#include "bladerf_source_c.h"
#include "osmosdr/source.h"
using namespace boost::assign;
/******************************************************************************
* Functions
******************************************************************************/
/*
* Create a new instance of bladerf_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_source_c_sptr make_bladerf_source_c(const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_source_c(args));
}
/******************************************************************************
* Private methods
******************************************************************************/
/*
* The private constructor
*/
bladerf_source_c::bladerf_source_c(const std::string &args) :
gr::sync_block( "bladerf_source_c",
gr::io_signature::make(0, 0, 0),
args_to_io_signature(args)),
_16icbuf(NULL),
_32fcbuf(NULL),
_running(false),
_agcmode(BLADERF_GAIN_DEFAULT)
{
int status;
dict_t dict = params_to_dict(args);
/* Perform src/sink agnostic initializations */
init(dict, BLADERF_RX);
/* Handle setting of sampling mode */
if (dict.count("sampling")) {
bladerf_sampling sampling = BLADERF_SAMPLING_UNKNOWN;
if (dict["sampling"] == "internal") {
sampling = BLADERF_SAMPLING_INTERNAL;
} else if (dict["sampling"] == "external") {
sampling = BLADERF_SAMPLING_EXTERNAL;
} else {
BLADERF_WARNING("Invalid sampling mode: " + dict["sampling"]);
}
if (sampling != BLADERF_SAMPLING_UNKNOWN) {
status = bladerf_set_sampling(_dev.get(), sampling);
if (status != 0) {
BLADERF_WARNING("Problem while setting sampling mode: " <<
bladerf_strerror(status));
}
}
}
/* Bias tee */
if (dict.count("biastee")) {
set_biastee_mode(dict["biastee"]);
}
/* Loopback */
set_loopback_mode(dict.count("loopback") ? dict["loopback"] : "none");
/* RX Mux */
set_rx_mux_mode(dict.count("rxmux") ? dict["rxmux"] : "baseband");
/* AGC mode */
if (dict.count("agc_mode")) {
set_agc_mode(dict["agc_mode"]);
}
/* Specify initial gain mode */
if (dict.count("agc")) {
for (size_t i = 0; i < get_max_channels(); ++i) {
set_gain_mode(boost::lexical_cast<bool>(dict["agc"]), BLADERF_CHANNEL_RX(i));
BLADERF_INFO(boost::str(boost::format("%s gain mode set to '%s'")
% channel2str(BLADERF_CHANNEL_RX(i))
% get_gain_mode(BLADERF_CHANNEL_RX(i))));
}
}
/* Warn user about using an old FPGA version, as we no longer strip off the
* markers that were pressent in the pre-v0.0.1 FPGA */
{
struct bladerf_version fpga_version;
if (bladerf_fpga_version(_dev.get(), &fpga_version) != 0) {
BLADERF_WARNING("Failed to get FPGA version");
} else if (fpga_version.major <= 0 &&
fpga_version.minor <= 0 &&
fpga_version.patch < 1) {
BLADERF_WARNING("Warning: FPGA version v0.0.1 or later is required. "
"Using an earlier FPGA version will result in "
"misinterpeted samples.");
}
}
/* Initialize channel <-> antenna map */
BOOST_FOREACH(std::string ant, get_antennas()) {
_chanmap[str2channel(ant)] = -1;
}
/* Bounds-checking output signature depending on our underlying hardware */
if (get_num_channels() > get_max_channels()) {
BLADERF_WARNING("Warning: number of channels specified on command line ("
<< get_num_channels() << ") is greater than the maximum "
"number supported by this device (" << get_max_channels()
<< "). Resetting to " << get_max_channels() << ".");
set_output_signature(gr::io_signature::make(get_max_channels(),
get_max_channels(),
sizeof(gr_complex)));
}
/* Set up constraints */
int const alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1,alignment_multiple));
set_max_noutput_items(_samples_per_buffer);
set_output_multiple(get_num_channels());
/* Set channel layout */
_layout = (get_num_channels() > 1) ? BLADERF_RX_X2 : BLADERF_RX_X1;
/* Initial wiring of antennas to channels */
for (size_t ch = 0; ch < get_num_channels(); ++ch) {
set_channel_enable(BLADERF_CHANNEL_RX(ch), true);
_chanmap[BLADERF_CHANNEL_RX(ch)] = ch;
}
BLADERF_DEBUG("initialization complete");
}
bool bladerf_source_c::is_antenna_valid(const std::string &antenna)
{
BOOST_FOREACH(std::string ant, get_antennas()) {
if (antenna == ant) {
return true;
}
}
return false;
}
/******************************************************************************
* Public methods
******************************************************************************/
std::string bladerf_source_c::name()
{
return "bladeRF receiver";
}
std::vector<std::string> bladerf_source_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_source_c::get_max_channels()
{
return bladerf_common::get_max_channels(BLADERF_RX);
}
size_t bladerf_source_c::get_num_channels()
{
return output_signature()->max_streams();
}
bool bladerf_source_c::start()
{
int status;
BLADERF_DEBUG("starting source");
gr::thread::scoped_lock guard(d_mutex);
status = bladerf_sync_config(_dev.get(), _layout, _format, _num_buffers,
_samples_per_buffer, _num_transfers,
_stream_timeout);
if (status != 0) {
BLADERF_THROW_STATUS(status, "bladerf_sync_config failed");
}
for (size_t ch = 0; ch < get_max_channels(); ++ch) {
bladerf_channel brfch = BLADERF_CHANNEL_RX(ch);
if (get_channel_enable(brfch)) {
status = bladerf_enable_module(_dev.get(), brfch, true);
if (status != 0) {
BLADERF_THROW_STATUS(status, "bladerf_enable_module failed");
}
}
}
/* Allocate memory for conversions in work() */
size_t alignment = volk_get_alignment();
_16icbuf = reinterpret_cast<int16_t *>(volk_malloc(2*_samples_per_buffer*sizeof(int16_t), alignment));
_32fcbuf = reinterpret_cast<gr_complex *>(volk_malloc(_samples_per_buffer*sizeof(gr_complex), alignment));
_running = true;
return true;
}
bool bladerf_source_c::stop()
{
int status;
BLADERF_DEBUG("stopping source");
gr::thread::scoped_lock guard(d_mutex);
if (!_running) {
BLADERF_WARNING("source already stopped, nothing to do here");
return true;
}
_running = false;
for (size_t ch = 0; ch < get_max_channels(); ++ch) {
bladerf_channel brfch = BLADERF_CHANNEL_RX(ch);
if (get_channel_enable(brfch)) {
status = bladerf_enable_module(_dev.get(), brfch, false);
if (status != 0) {
BLADERF_THROW_STATUS(status, "bladerf_enable_module failed");
}
}
}
/* Deallocate conversion memory */
volk_free(_16icbuf);
volk_free(_32fcbuf);
_16icbuf = NULL;
_32fcbuf = NULL;
return true;
}
int bladerf_source_c::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
int status;
struct bladerf_metadata meta;
struct bladerf_metadata *meta_ptr = NULL;
size_t nstreams = num_streams(_layout);
gr::thread::scoped_lock guard(d_mutex);
// if we aren't running, nothing to do here
if (!_running) {
return 0;
}
// set up metadata
if (BLADERF_FORMAT_SC16_Q11_META == _format) {
memset(&meta, 0, sizeof(meta));
meta.flags = BLADERF_META_FLAG_RX_NOW;
meta_ptr = &meta;
}
// grab samples into temp buffer
status = bladerf_sync_rx(_dev.get(), static_cast<void *>(_16icbuf),
noutput_items, meta_ptr, _stream_timeout);
if (status != 0) {
BLADERF_WARNING(boost::str(boost::format("bladerf_sync_rx error: %s")
% bladerf_strerror(status)));
++_failures;
if (_failures >= MAX_CONSECUTIVE_FAILURES) {
BLADERF_WARNING("Consecutive error limit hit. Shutting down.");
return WORK_DONE;
}
} else {
_failures = 0;
}
// convert from int16_t to float
// output_items is gr_complex (2x float), so num_points is 2*noutput_items
volk_16i_s32f_convert_32f(reinterpret_cast<float *>(_32fcbuf), _16icbuf,
SCALING_FACTOR, 2*noutput_items);
// copy the samples into output_items
gr_complex **out = reinterpret_cast<gr_complex **>(&output_items[0]);
if (nstreams > 1) {
// we need to deinterleave the multiplex as we copy
gr_complex const *deint_in = _32fcbuf;
for (size_t i = 0; i < (noutput_items/nstreams); ++i) {
for (size_t n = 0; n < nstreams; ++n) {
memcpy(out[n]++, deint_in++, sizeof(gr_complex));
}
}
} else {
// no deinterleaving to do: simply copy everything
memcpy(out[0], _32fcbuf, sizeof(gr_complex) * noutput_items);
}
return noutput_items;
}
osmosdr::meta_range_t bladerf_source_c::get_sample_rates()
{
return sample_rates(chan2channel(BLADERF_RX, 0));
}
double bladerf_source_c::set_sample_rate(double rate)
{
return bladerf_common::set_sample_rate(rate, chan2channel(BLADERF_RX, 0));
}
double bladerf_source_c::get_sample_rate()
{
return bladerf_common::get_sample_rate(chan2channel(BLADERF_RX, 0));
}
osmosdr::freq_range_t bladerf_source_c::get_freq_range(size_t chan)
{
return bladerf_common::freq_range(chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::set_center_freq(double freq, size_t chan)
{
return bladerf_common::set_center_freq(freq, chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::get_center_freq(size_t chan)
{
return bladerf_common::get_center_freq(chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::set_freq_corr(double ppm, size_t chan)
{
/* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */
BLADERF_WARNING("Frequency correction is not implemented.");
return get_freq_corr(chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::get_freq_corr(size_t chan)
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_source_c::get_gain_names(size_t chan)
{
return bladerf_common::get_gain_names(chan2channel(BLADERF_RX, chan));
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range(size_t chan)
{
return bladerf_common::get_gain_range(chan2channel(BLADERF_RX, chan));
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range(const std::string &name,
size_t chan)
{
return bladerf_common::get_gain_range(name, chan2channel(BLADERF_RX, chan));
}
bool bladerf_source_c::set_gain_mode(bool automatic, size_t chan)
{
return bladerf_common::set_gain_mode(automatic,
chan2channel(BLADERF_RX, chan),
_agcmode);
}
bool bladerf_source_c::get_gain_mode(size_t chan)
{
return bladerf_common::get_gain_mode(chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::set_gain(double gain, size_t chan)
{
return bladerf_common::set_gain(gain, chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::set_gain(double gain, const std::string &name,
size_t chan)
{
return bladerf_common::set_gain(gain, name, chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::get_gain(size_t chan)
{
return bladerf_common::get_gain(chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::get_gain(const std::string &name, size_t chan)
{
return bladerf_common::get_gain(name, chan2channel(BLADERF_RX, chan));
}
std::vector<std::string> bladerf_source_c::get_antennas(size_t chan)
{
return bladerf_common::get_antennas(BLADERF_RX);
}
std::string bladerf_source_c::set_antenna(const std::string &antenna,
size_t chan)
{
bool _was_running = _running;
if (_was_running) {
stop();
}
bladerf_common::set_antenna(BLADERF_RX, chan, antenna);
if (_was_running) {
start();
}
return get_antenna(chan);
}
std::string bladerf_source_c::get_antenna(size_t chan)
{
return channel2str(chan2channel(BLADERF_RX, chan));
}
void bladerf_source_c::set_dc_offset_mode(int mode, size_t chan)
{
if (osmosdr::source::DCOffsetOff == mode) {
//_src->set_auto_dc_offset( false, chan );
/* reset to default for off-state */
set_dc_offset(std::complex<double>(0.0, 0.0), chan);
} else if (osmosdr::source::DCOffsetManual == mode) {
/* disable auto mode, but keep correcting with last known values */
//_src->set_auto_dc_offset( false, chan );
} else if (osmosdr::source::DCOffsetAutomatic == mode) {
//_src->set_auto_dc_offset( true, chan );
BLADERF_WARNING("Automatic DC correction mode is not implemented.");
}
}
void bladerf_source_c::set_dc_offset(const std::complex<double> &offset,
size_t chan)
{
int status;
status = bladerf_common::set_dc_offset(offset, chan2channel(BLADERF_RX, chan));
if (status != 0) {
BLADERF_THROW_STATUS(status, "could not set dc offset");
}
}
void bladerf_source_c::set_iq_balance_mode(int mode, size_t chan)
{
if (osmosdr::source::IQBalanceOff == mode) {
//_src->set_auto_iq_balance( false, chan );
/* reset to default for off-state */
set_iq_balance(std::complex<double>(0.0, 0.0), chan);
} else if (osmosdr::source::IQBalanceManual == mode) {
/* disable auto mode, but keep correcting with last known values */
//_src->set_auto_iq_balance( false, chan );
} else if (osmosdr::source::IQBalanceAutomatic == mode) {
//_src->set_auto_iq_balance( true, chan );
BLADERF_WARNING("Automatic IQ correction mode is not implemented.");
}
}
void bladerf_source_c::set_iq_balance(const std::complex<double> &balance,
size_t chan)
{
int status;
status = bladerf_common::set_iq_balance(balance, chan2channel(BLADERF_RX, chan));
if (status != 0) {
BLADERF_THROW_STATUS(status, "could not set iq balance");
}
}
osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range(size_t chan)
{
return filter_bandwidths(chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::set_bandwidth(double bandwidth, size_t chan)
{
return bladerf_common::set_bandwidth(bandwidth,
chan2channel(BLADERF_RX, chan));
}
double bladerf_source_c::get_bandwidth(size_t chan)
{
return bladerf_common::get_bandwidth(chan2channel(BLADERF_RX, chan));
}
std::vector<std::string> bladerf_source_c::get_clock_sources(size_t mboard)
{
return bladerf_common::get_clock_sources(mboard);
}
void bladerf_source_c::set_clock_source(const std::string &source,
size_t mboard)
{
bladerf_common::set_clock_source(source, mboard);
}
std::string bladerf_source_c::get_clock_source(size_t mboard)
{
return bladerf_common::get_clock_source(mboard);
}
void bladerf_source_c::set_biastee_mode(const std::string &mode)
{
int status;
bool enable;
if (mode == "on" || mode == "1" || mode == "rx") {
enable = true;
} else {
enable = false;
}
status = bladerf_set_bias_tee(_dev.get(), BLADERF_CHANNEL_RX(0), enable);
if (BLADERF_ERR_UNSUPPORTED == status) {
// unsupported, but not worth crashing out
BLADERF_WARNING("Bias-tee not supported by device");
} else if (status != 0) {
BLADERF_THROW_STATUS(status, "Failed to set bias-tee");
}
}
void bladerf_source_c::set_loopback_mode(const std::string &loopback)
{
int status;
bladerf_loopback mode;
if (loopback == "bb_txlpf_rxvga2") {
mode = BLADERF_LB_BB_TXLPF_RXVGA2;
} else if (loopback == "bb_txlpf_rxlpf") {
mode = BLADERF_LB_BB_TXLPF_RXLPF;
} else if (loopback == "bb_txvga1_rxvga2") {
mode = BLADERF_LB_BB_TXVGA1_RXVGA2;
} else if (loopback == "bb_txvga1_rxlpf") {
mode = BLADERF_LB_BB_TXVGA1_RXLPF;
} else if (loopback == "rf_lna1") {
mode = BLADERF_LB_RF_LNA1;
} else if (loopback == "rf_lna2") {
mode = BLADERF_LB_RF_LNA2;
} else if (loopback == "rf_lna3") {
mode = BLADERF_LB_RF_LNA3;
} else if (loopback == "firmware") {
mode = BLADERF_LB_FIRMWARE;
} else if (loopback == "rfic_bist") {
mode = BLADERF_LB_RFIC_BIST;
} else if (loopback == "none") {
mode = BLADERF_LB_NONE;
} else {
BLADERF_THROW("Unknown loopback mode: " + loopback);
}
status = bladerf_set_loopback(_dev.get(), mode);
if (BLADERF_ERR_UNSUPPORTED == status) {
// unsupported, but not worth crashing out
BLADERF_WARNING("Loopback mode not supported by device: " + loopback);
} else if (status != 0) {
BLADERF_THROW_STATUS(status, "Failed to set loopback mode");
}
}
void bladerf_source_c::set_rx_mux_mode(const std::string &rxmux)
{
int status;
bladerf_rx_mux mode;
if (rxmux == "baseband") {
mode = BLADERF_RX_MUX_BASEBAND;
} else if (rxmux == "12bit") {
mode = BLADERF_RX_MUX_12BIT_COUNTER;
} else if (rxmux == "32bit") {
mode = BLADERF_RX_MUX_32BIT_COUNTER;
} else if (rxmux == "digital") {
mode = BLADERF_RX_MUX_DIGITAL_LOOPBACK;
} else {
BLADERF_THROW("Unknown RX mux mode: " + rxmux);
}
status = bladerf_set_rx_mux(_dev.get(), mode);
if (BLADERF_ERR_UNSUPPORTED == status) {
// unsupported, but not worth crashing out
BLADERF_WARNING("RX mux mode not supported by device: " + rxmux);
} else if (status != 0) {
BLADERF_THROW_STATUS(status, "Failed to set RX mux mode");
}
}
void bladerf_source_c::set_agc_mode(const std::string &agcmode)
{
#ifndef BLADERF_COMPATIBILITY
int status;
bladerf_gain_mode mode;
bool ok = false;
struct bladerf_gain_modes const *modes = NULL;
/* Get the list of AGC modes */
status = bladerf_get_gain_modes(_dev.get(), BLADERF_CHANNEL_RX(0), &modes);
if (status < 0) {
BLADERF_THROW_STATUS(status, "failed to get gain modes");
}
size_t count = status;
/* Compare... */
for (size_t i = 0; i < count; ++i) {
if (agcmode == std::string(modes[i].name)) {
mode = modes[i].mode;
ok = true;
BLADERF_DEBUG("Setting gain mode to " << mode << " (" << agcmode << ")");
break;
}
}
if (!ok) {
BLADERF_WARNING("Unknown gain mode \"" << agcmode << "\"");
return;
}
_agcmode = mode;
for (size_t i = 0; i < get_num_channels(); ++i) {
if (bladerf_common::get_gain_mode(BLADERF_CHANNEL_RX(i))) {
/* Refresh this */
bladerf_common::set_gain_mode(true, BLADERF_CHANNEL_RX(i), _agcmode);
}
}
#endif
}