gr-osmosdr/lib/bladerf/bladerf_sink_c.cc

567 lines
16 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include "arg_helpers.h"
#include "bladerf_sink_c.h"
using namespace boost::assign;
/*
* Create a new instance of bladerf_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_sink_c_sptr make_bladerf_sink_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_sink_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 0; // maximum number of output streams
/*
* The private constructor
*/
bladerf_sink_c::bladerf_sink_c (const std::string &args)
: gr::sync_block ("bladerf_sink_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
unsigned int device_number = 0;
std::string device_name;
dict_t dict = params_to_dict(args);
if (dict.count("bladerf"))
{
std::string value = dict["bladerf"];
if ( value.length() )
{
try {
device_number = boost::lexical_cast< unsigned int >( value );
} catch ( std::exception &ex ) {
throw std::runtime_error(
"Failed to use '" + value + "' as device number: " + ex.what());
}
}
}
device_name = boost::str(boost::format( "/dev/bladerf%d" ) % device_number);
/* Open a handle to the device */
this->dev = bladerf_open( device_name.c_str() );
if( NULL == this->dev ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to open bladeRF device " + device_name );
}
if (dict.count("fpga"))
{
std::string fpga = dict["fpga"];
std::cerr << "Loading FPGA bitstream " << fpga << "..." << std::endl;
int ret = bladerf_load_fpga( this->dev, fpga.c_str() );
if ( ret != 0 )
std::cerr << "bladerf_load_fpga has returned with " << ret << std::endl;
else
std::cerr << "The FPGA bitstream has been successfully loaded." << std::endl;
}
if (dict.count("fw"))
{
std::string fw = dict["fw"];
std::cerr << "Flashing firmware image " << fw << "..., "
<< "DO NOT INTERRUPT!"
<< std::endl;
int ret = bladerf_flash_firmware( this->dev, fw.c_str() );
if ( ret != 0 )
std::cerr << "bladerf_flash_firmware has failed with " << ret << std::endl;
else
std::cerr << "The firmare has been successfully flashed, "
<< "please power cycle the bladeRF before using it."
<< std::endl;
}
std::cerr << "Using nuand LLC bladeRF #" << device_number;
u_int64_t serial;
if ( bladerf_get_serial( this->dev, &serial ) == 0 )
std::cerr << " SN " << std::setfill('0') << std::setw(16) << serial;
unsigned int major, minor;
if ( bladerf_get_fw_version( this->dev, &major, &minor) == 0 )
std::cerr << " FW v" << major << "." << minor;
if ( bladerf_get_fpga_version( this->dev, &major, &minor) == 0 )
std::cerr << " FPGA v" << major << "." << minor;
std::cerr << std::endl;
if ( bladerf_is_fpga_configured( this->dev ) != 1 )
{
std::cerr << "ERROR: The FPGA is not configured! "
<< "Use the device argument fpga=/path/to/the/bitstream.rbf to load it."
<< std::endl;
}
/* Set the range of VGA1, VGA1GAINT[7:0] */
this->vga1_range = osmosdr::gain_range_t( -35, -4, 1 );
/* Set the range of VGA2, VGA2GAIN[4:0] */
this->vga2_range = osmosdr::gain_range_t( 0, 25, 1 );
this->setup_device();
this->thread = gr::thread::thread(write_task_dispatch, this);
}
/*
* Our virtual destructor.
*/
bladerf_sink_c::~bladerf_sink_c ()
{
this->set_running(false);
this->thread.join();
/* Close the device */
bladerf_close( this->dev );
}
void bladerf_sink_c::write_task_dispatch(bladerf_sink_c *obj)
{
obj->write_task();
}
void bladerf_sink_c::write_task()
{
int i, n_samples_avail, n_samples;
int16_t *p;
gr_complex sample;
while ( this->is_running() )
{
{
/* Lock the circular buffer */
boost::unique_lock<boost::mutex> lock(this->sample_fifo_lock);
/* Check to make sure we have samples available */
n_samples_avail = this->sample_fifo->size();
while( n_samples_avail < BLADERF_SAMPLE_BLOCK_SIZE ) {
/* Wait until there is at least a block size of samples ready */
this->samples_available.wait(lock);
n_samples_avail = this->sample_fifo->size();
}
/* Pop samples from circular buffer, write samples to outgoing buffer */
int16_t *p = this->raw_sample_buf;
for( i = 0; i < BLADERF_SAMPLE_BLOCK_SIZE; ++i ) {
sample = this->sample_fifo->at(0);
this->sample_fifo->pop_front();
*p++ = 0xa000 | (int16_t)(real(sample)*2000);
*p++ = 0x5000 | (int16_t)(imag(sample)*2000);
}
} /* Give up the lock by leaving the scope ...*/
/* Notify that we've just popped some samples */
this->samples_available.notify_one();
/* Samples are available to write out */
n_samples = bladerf_send_c16(this->dev, this->raw_sample_buf,
BLADERF_SAMPLE_BLOCK_SIZE);
/* Check n_samples return value */
if( n_samples < 0 ) {
std::cerr << "Failed to write samples: "
<< bladerf_strerror(n_samples) << std::endl;
this->set_running(false);
} else {
if(n_samples != BLADERF_SAMPLE_BLOCK_SIZE) {
if(n_samples > BLADERF_SAMPLE_BLOCK_SIZE) {
std::cerr << "Warning: sent bloated sample block of "
<< n_samples << " samples!" << std::endl;
} else {
std::cerr << "Warning: sent truncated sample block of "
<< n_samples << " samples!" << std::endl;
}
}
}
}
}
int bladerf_sink_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
int n_space_avail, to_copy, limit, i;
const gr_complex *in = (const gr_complex *) input_items[0];
if ( ! this->is_running() )
return WORK_DONE;
if( noutput_items >= 0 ) {
/* Total samples we want to process */
to_copy = noutput_items;
/* While there are still samples to copy out ... */
while( to_copy > 0 ) {
{
/* Acquire the circular buffer lock */
boost::unique_lock<boost::mutex> lock(this->sample_fifo_lock);
/* Check to see how much space is available */
n_space_avail = this->sample_fifo->capacity() - this->sample_fifo->size();
while (n_space_avail == 0) {
this->samples_available.wait(lock);
n_space_avail = this->sample_fifo->capacity() - this->sample_fifo->size();
}
/* Limit ourselves to either the number of output items ...
... or whatever space is available */
limit = (n_space_avail < noutput_items ? n_space_avail : noutput_items);
/* Consume! */
for( i = 0; i < limit; i++ ) {
this->sample_fifo->push_back(*in++);
}
/* Decrement the amount we need to copy */
to_copy -= limit;
} /* Unlock by leaving the scope */
/* Notify that we've just added some samples */
this->samples_available.notify_one();
}
}
return noutput_items;
}
std::vector<std::string> bladerf_sink_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_sink_c::get_num_channels()
{
/* We only support a single channel for each bladeRF */
return 1;
}
osmosdr::meta_range_t bladerf_sink_c::get_sample_rates()
{
return this->sample_rates();
}
double bladerf_sink_c::set_sample_rate(double rate)
{
int ret;
uint32_t actual;
/* Set the Si5338 to be 2x this sample rate */
/* Check to see if the sample rate is an integer */
if( (uint32_t)round(rate) == (uint32_t)rate )
{
ret = bladerf_set_sample_rate( this->dev, TX, (uint32_t)rate, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"has failed to set integer rate, error " +
boost::lexical_cast<std::string>(ret) );
}
} else {
/* TODO: Fractional sample rate */
ret = bladerf_set_sample_rate( this->dev, TX, (uint32_t)rate, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"has failed to set fractional rate, error " +
boost::lexical_cast<std::string>(ret) );
}
}
return get_sample_rate();
}
double bladerf_sink_c::get_sample_rate()
{
int ret;
unsigned int rate = 0;
ret = bladerf_get_sample_rate( this->dev, TX, &rate );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"has failed to get sample rate, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)rate;
}
osmosdr::freq_range_t bladerf_sink_c::get_freq_range( size_t chan )
{
return this->freq_range();
}
double bladerf_sink_c::set_center_freq( double freq, size_t chan )
{
int ret;
/* Check frequency range */
if( freq < get_freq_range( chan ).start() ||
freq > get_freq_range( chan ).stop() ) {
std::cerr << "Failed to set out of bound frequency: " << freq << std::endl;
} else {
ret = bladerf_set_frequency( this->dev, TX, (uint32_t)freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to set center frequency " +
boost::lexical_cast<std::string>(freq) +
", error " +
boost::lexical_cast<std::string>(ret) );
}
}
return get_center_freq( chan );
}
double bladerf_sink_c::get_center_freq( size_t chan )
{
uint32_t freq;
int ret;
ret = bladerf_get_frequency( this->dev, TX, &freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to get center frequency, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)freq;
}
double bladerf_sink_c::set_freq_corr( double ppm, size_t chan )
{
/* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */
return get_freq_corr( chan );
}
double bladerf_sink_c::get_freq_corr( size_t chan )
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_sink_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "VGA1", "VGA2";
return names;
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range( size_t chan )
{
/* TODO: This is an overall system gain range. Given the VGA1 and VGA2
how much total gain can we have in the system */
return get_gain_range( "VGA2", chan ); /* we use only VGA2 here for now */
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range( const std::string & name, size_t chan )
{
osmosdr::gain_range_t range;
if( name == "VGA1" ) {
range = this->vga1_range;
} else if( name == "VGA2" ) {
range = this->vga2_range;
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested an invalid gain element " + name );
}
return range;
}
bool bladerf_sink_c::set_gain_mode( bool automatic, size_t chan )
{
return false;
}
bool bladerf_sink_c::get_gain_mode( size_t chan )
{
return false;
}
double bladerf_sink_c::set_gain( double gain, size_t chan )
{
return set_gain( gain, "VGA2", chan ); /* we use only VGA2 here for now */
}
double bladerf_sink_c::set_gain( double gain, const std::string & name, size_t chan)
{
int ret = 0;
if( name == "VGA1" ) {
ret = bladerf_set_txvga1( this->dev, (int)gain );
} else if( name == "VGA2" ) {
ret = bladerf_set_txvga2( this->dev, (int)gain );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested to set the gain "
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set " + name + " gain, error " +
boost::lexical_cast<std::string>(ret) );
}
return get_gain( name, chan );
}
double bladerf_sink_c::get_gain( size_t chan )
{
return get_gain( "VGA2", chan ); /* we use only VGA2 here for now */
}
double bladerf_sink_c::get_gain( const std::string & name, size_t chan )
{
int g;
int ret = 0;
if( name == "VGA1" ) {
ret = bladerf_get_txvga1( this->dev, &g );
} else if( name == "VGA2" ) {
ret = bladerf_get_txvga2( this->dev, &g );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested to get the gain "
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get " + name + " gain, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)g;
}
double bladerf_sink_c::set_bb_gain( double gain, size_t chan )
{
/* for TX, only VGA1 is in the BB path */
osmosdr::gain_range_t bb_gains = get_gain_range( "VGA1", chan );
double clip_gain = bb_gains.clip( gain, true );
gain = set_gain( clip_gain, "VGA1", chan );
return gain;
}
std::vector< std::string > bladerf_sink_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string bladerf_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string bladerf_sink_c::get_antenna( size_t chan )
{
/* We only have a single transmit antenna here */
return "TX";
}
double bladerf_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
uint32_t actual;
ret = bladerf_set_bandwidth( this->dev, TX, (uint32_t)bandwidth, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set bandwidth, error " +
boost::lexical_cast<std::string>(ret) );
}
return this->get_bandwidth();
}
double bladerf_sink_c::get_bandwidth( size_t chan )
{
uint32_t bandwidth;
int ret;
ret = bladerf_get_bandwidth( this->dev, TX, &bandwidth );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get bandwidth, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)bandwidth;
}
osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range( size_t chan )
{
return this->filter_bandwidths();
}