GNU Radio block for interfacing with various radio hardware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gr-osmosdr/lib/rfspace/rfspace_source_c.cc

1748 lines
46 KiB

/* -*- c++ -*- */
/*
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for feature_t, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef USE_ASIO
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <netdb.h>
#endif
#include <fcntl.h>
#include <unistd.h>
#include <termios.h>
#include <sys/stat.h>
#include <dirent.h>
#include <libgen.h> /* basename */
#include <algorithm>
#include <iostream>
#include <fstream>
#include <string>
#include <cerrno>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#ifdef USE_ASIO
#include <boost/asio/deadline_timer.hpp>
#endif
#include <gnuradio/io_signature.h>
#include "arg_helpers.h"
#include "rfspace_source_c.h"
using namespace boost::assign;
#ifdef USE_ASIO
using boost::asio::deadline_timer;
#endif
#define DEFAULT_HOST "127.0.0.1" /* We assume a running "siqs" from CuteSDR project */
#define DEFAULT_PORT 50000
/*
* Create a new instance of rfspace_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
rfspace_source_c_sptr make_rfspace_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new rfspace_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
rfspace_source_c::rfspace_source_c (const std::string &args)
: gr::sync_block ("rfspace_source_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))),
_radio(RADIO_UNKNOWN),
#ifdef USE_ASIO
_io_service(),
_resolver(_io_service),
_t(_io_service),
_u(_io_service),
#else
_tcp(-1),
_udp(-1),
#endif
_usb(-1),
_running(false),
_keep_running(false),
_sequence(0),
_nchan(1),
_sample_rate(NAN),
_bandwidth(0.0f),
_fifo(NULL)
{
std::string host = "";
unsigned short port = 0;
dict_t dict = params_to_dict(args);
if ( dict.count("sdr-iq") )
dict["rfspace"] = dict["sdr-iq"];
if ( dict.count("sdr-ip") )
dict["rfspace"] = dict["sdr-ip"];
if ( dict.count("netsdr") )
dict["rfspace"] = dict["netsdr"];
if ( dict.count("cloudiq") )
dict["rfspace"] = dict["cloudiq"];
if ( dict.count("rfspace") )
{
std::string value = dict["rfspace"];
if ( ! value.length() )
{
std::vector< std::string > devices = get_devices();
if ( devices.size() )
{
dict_t first = params_to_dict( devices[0] );
if ( first.count("sdr-iq") )
value = first["sdr-iq"];
if ( first.count("sdr-ip") )
value = first["sdr-ip"];
if ( first.count("netsdr") )
value = first["netsdr"];
if ( first.count("cloudiq") )
value = first["cloudiq"];
dict["rfspace"] = value;
dict["label"] = first["label"];
}
}
std::vector< std::string > tokens;
boost::algorithm::split( tokens, value, boost::is_any_of(":") );
if ( tokens[0].length() && (tokens.size() == 1 || tokens.size() == 2 ) )
host = tokens[0];
if ( tokens.size() == 2 ) /* port given */
port = boost::lexical_cast< unsigned short >( tokens[1] );
}
if (dict.count("nchan"))
_nchan = boost::lexical_cast< size_t >( dict["nchan"] );
if ( _nchan < 1 || _nchan > 2 )
throw std::runtime_error("Number of channels (nchan) must be 1 or 2");
if ( ! host.length() )
host = DEFAULT_HOST;
if (0 == port)
port = DEFAULT_PORT;
std::string port_str = boost::lexical_cast< std::string >( port );
std::string label = dict["label"];
if ( label.length() )
std::cerr << "Using " + label << " ";
struct stat sb;
bzero(&sb, sizeof(sb));
if ( stat(host.c_str(), &sb) == 0 && (sb.st_mode & S_IFMT) == S_IFCHR ) /* is character device */
{
_usb = open( host.c_str(), O_RDWR | O_NOCTTY );
if ( _usb < 0 )
throw std::runtime_error("Could not open " + host + ": " + std::string(strerror(errno)));
struct termios tios;
bzero(&tios, sizeof(tios));
tios.c_cflag = CS8 | CLOCAL | CREAD;
tios.c_iflag = IGNPAR;
tios.c_oflag = 0;
tios.c_lflag = 0;
tios.c_cc[VTIME] = 2; /* in units of 0.1 seconds */
tios.c_cc[VMIN] = 0;
cfsetispeed(&tios, B230400);
cfsetospeed(&tios, B230400);
tcflush(_usb, TCIFLUSH);
tcsetattr(_usb, TCSANOW, &tios);
unsigned char byte;
while ( read(_usb, &byte, sizeof(byte)) > 0 ); /* flush serial */
_radio = RFSPACE_SDR_IQ; /* legitimate assumption */
_fifo = new boost::circular_buffer<gr_complex>( 200000 );
if ( ! _fifo )
throw std::runtime_error( "Failed to allocate sample FIFO" );
_run_usb_read_task = true;
_thread = gr::thread::thread( boost::bind(&rfspace_source_c::usb_read_task, this) );
}
else /* assuming host & port */
{
// TODO: make listener host & port dynamic: bind=[host][:port]
/* SDR-IP 4.4.4 Data Output UDP IP and Port Address */
/* NETSDR 4.4.3 Data Output UDP IP and Port Address */
#ifdef USE_ASIO
tcp::resolver::query query(tcp::v4(), host.c_str(), port_str.c_str());
tcp::resolver::iterator iterator = _resolver.resolve(query);
boost::system::error_code ec;
boost::asio::connect(_t, iterator, ec);
if ( ec )
throw std::runtime_error(ec.message() + " (" + host + ":" + port_str + ")");
_u.open(udp::v4(), ec);
if ( ec )
throw std::runtime_error(ec.message());
_u.bind(udp::endpoint(udp::v4(), DEFAULT_PORT), ec);
if ( ec )
throw std::runtime_error(ec.message());
_u.set_option(udp::socket::reuse_address(true));
_t.set_option(udp::socket::reuse_address(true));
#else
if ( (_tcp = socket(AF_INET, SOCK_STREAM, 0) ) < 0)
{
throw std::runtime_error("Could not create TCP socket");
}
int sockoptval = 1;
setsockopt(_tcp, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int));
sockoptval = 1;
setsockopt(_tcp, IPPROTO_TCP, TCP_NODELAY, &sockoptval, sizeof(int));
/* don't wait when shutting down */
linger lngr;
lngr.l_onoff = 1;
lngr.l_linger = 0;
setsockopt(_tcp, SOL_SOCKET, SO_LINGER, &lngr, sizeof(linger));
struct hostent *hp; /* host information */
struct sockaddr_in host_sa; /* local address */
struct sockaddr_in peer_sa; /* remote address */
/* look up the address of the server given its name */
hp = gethostbyname( host.c_str() );
if (!hp) {
close(_tcp);
throw std::runtime_error(std::string(hstrerror(h_errno)) + " (" + host + ")");
}
/* fill in the hosts's address and data */
memset(&host_sa, 0, sizeof(host_sa));
host_sa.sin_family = AF_INET;
host_sa.sin_addr.s_addr = htonl(INADDR_ANY);
host_sa.sin_port = htons(0);
if ( bind(_tcp, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 )
{
close(_tcp);
throw std::runtime_error("Bind of TCP socket failed: " + std::string(strerror(errno)));
}
/* fill in the server's address and data */
memset(&peer_sa, 0, sizeof(peer_sa));
peer_sa.sin_family = AF_INET;
peer_sa.sin_port = htons(port);
/* put the host's address into the server address structure */
memcpy((void *)&peer_sa.sin_addr, hp->h_addr_list[0], hp->h_length);
/* connect to server */
if ( connect(_tcp, (struct sockaddr *)&peer_sa, sizeof(peer_sa)) < 0 )
{
close(_tcp);
throw std::runtime_error(std::string(strerror(errno)) + " (" + host + ":" + port_str + ")");
}
if ( (_udp = socket(AF_INET, SOCK_DGRAM, 0)) < 0 )
{
close(_tcp);
throw std::runtime_error("Could not create UDP socket");
}
sockoptval = 1;
setsockopt(_udp, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int));
/* fill in the hosts's address and data */
memset(&host_sa, 0, sizeof(host_sa));
host_sa.sin_family = AF_INET;
host_sa.sin_addr.s_addr = htonl(INADDR_ANY);
host_sa.sin_port = htons(DEFAULT_PORT);
if ( bind(_udp, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 )
{
close(_tcp);
close(_udp);
throw std::runtime_error("Bind of UDP socket failed: " + std::string(strerror(errno)));
}
#endif
}
/* Wait 10 ms before sending queries to device (required for networked radios). */
boost::this_thread::sleep_for(boost::chrono::milliseconds(10));
/* request & print device information */
std::vector< unsigned char > response;
if ( ! label.length() ) /* label is empty, request name & serial from device */
{
std::cerr << "Using ";
unsigned char name[] = { 0x04, 0x20, 0x01, 0x00 }; /* NETSDR 4.1.1 Target Name */
if ( transaction( name, sizeof(name), response ) )
std::cerr << "RFSPACE " << &response[sizeof(name)] << " ";
unsigned char sern[] = { 0x04, 0x20, 0x02, 0x00 }; /* NETSDR 4.1.2 Target Serial Number */
if ( transaction( sern, sizeof(sern), response ) )
std::cerr << "SN " << &response[sizeof(sern)] << " ";
}
unsigned char prod[] = { 0x04, 0x20, 0x09, 0x00 }; /* NETSDR 4.1.6 Product ID */
if ( transaction( prod, sizeof(prod), response ) )
{
uint32_t product_id = htonl(*((uint32_t *)&response[sizeof(prod)]));
// std::cerr << std::hex << product_id << std::dec << " ";
if ( 0x5affa500 == product_id ) /* SDR-IQ 5.1.6 Product ID */
_radio = RFSPACE_SDR_IQ;
else if ( 0x53445203 == product_id ) /* SDR-IP 4.1.6 Product ID */
_radio = RFSPACE_SDR_IP;
else if ( 0x53445204 == product_id ) /* NETSDR 4.1.6 Product ID */
_radio = RFSPACE_NETSDR;
else if ( 0x434C4951 == product_id ) /* CloudIQ Product ID */
_radio = RFSPACE_CLOUDIQ;
else
std::cerr << "UNKNOWN ";
}
bool has_X2_option = false;
if ( RFSPACE_NETSDR == _radio )
{
unsigned char opts[] = { 0x04, 0x20, 0x0A, 0x00 }; /* NETSDR 4.1.7 Options */
if ( transaction( opts, sizeof(opts), response ) )
{
if ( response[sizeof(opts)] )
{
has_X2_option = (response[sizeof(opts)] & 16 ? true : false);
std::cerr << "option ";
std::cerr << (response[sizeof(opts)] & 16 ? "2" : "-"); /* X2 board */
std::cerr << (response[sizeof(opts)] & 8 ? "U" : "-"); /* Up Converter */
std::cerr << (response[sizeof(opts)] & 4 ? "D" : "-"); /* Down Converter */
std::cerr << (response[sizeof(opts)] & 2 ? "R" : "-"); /* Reflock board */
std::cerr << (response[sizeof(opts)] & 1 ? "S" : "-"); /* Sound Enabled */
std::cerr << " ";
}
}
}
/* NETSDR 4.1.4 Hardware/Firmware Versions */
unsigned char bootver[] = { 0x05, 0x20, 0x04, 0x00, 0x00 };
if ( transaction( bootver, sizeof(bootver), response ) )
std::cerr << "BOOT " << *((uint16_t *)&response[sizeof(bootver)]) << " ";
unsigned char firmver[] = { 0x05, 0x20, 0x04, 0x00, 0x01 };
if ( transaction( firmver, sizeof(firmver), response ) )
std::cerr << "FW " << *((uint16_t *)&response[sizeof(firmver)]) << " ";
if ( RFSPACE_NETSDR == _radio ||
RFSPACE_SDR_IP == _radio ||
RFSPACE_CLOUDIQ == _radio)
{
unsigned char hardver[] = { 0x05, 0x20, 0x04, 0x00, 0x02 };
if ( transaction( hardver, sizeof(hardver), response ) )
std::cerr << "HW " << *((uint16_t *)&response[sizeof(hardver)]) << " ";
}
if ( RFSPACE_NETSDR == _radio ||
RFSPACE_CLOUDIQ == _radio)
{
unsigned char fpgaver[] = { 0x05, 0x20, 0x04, 0x00, 0x03 };
if ( transaction( fpgaver, sizeof(fpgaver), response ) )
std::cerr << "FPGA " << int(response[sizeof(fpgaver)])
<< "/" << int(response[sizeof(fpgaver)+1]) << " ";
}
std::cerr << std::endl;
if ( RFSPACE_NETSDR == _radio )
{
/* NETSDR 4.2.2 Receiver Channel Setup */
unsigned char rxchan[] = { 0x05, 0x00, 0x19, 0x00, 0x00 };
unsigned char mode = 0; /* 0 = Single Channel Mode */
if ( 2 == _nchan )
{
if ( has_X2_option )
mode = 6; /* Dual Channel with dual A/D RF Path (requires X2 option) */
else
mode = 4; /* Dual Channel with single A/D RF Path using main A/D. */
set_output_signature( gr::io_signature::make (2, 2, sizeof (gr_complex)) );
}
rxchan[sizeof(rxchan)-1] = mode;
transaction( rxchan, sizeof(rxchan) );
}
else
{
if ( 2 == _nchan )
std::cerr << "NetSDR receiver required for dual channel support." << std::endl;
}
/* preset reasonable defaults */
if ( RFSPACE_SDR_IQ == _radio )
{
set_sample_rate( 196078 );
}
else if ( RFSPACE_NETSDR == _radio ||
RFSPACE_SDR_IP == _radio )
{
set_sample_rate( 200000 );
set_bandwidth( 0 ); /* switch to automatic filter selection by default */
}
else if ( RFSPACE_CLOUDIQ == _radio)
{
set_sample_rate( 240000 );
set_bandwidth( 0 );
}
/* start TCP keepalive thread */
if ( RFSPACE_NETSDR == _radio ||
RFSPACE_SDR_IP == _radio ||
RFSPACE_CLOUDIQ == _radio )
{
_run_tcp_keepalive_task = true;
_thread = gr::thread::thread( boost::bind(&rfspace_source_c::tcp_keepalive_task, this) );
}
#if 0
std::cerr << "sample_rates: " << get_sample_rates().to_pp_string() << std::endl;
std::cerr << "sample rate: " << (uint32_t)get_sample_rate() << std::endl;
std::cerr << "freq range: " << get_freq_range().to_pp_string() << std::endl;
std::cerr << "center freq: " << (uint32_t)get_center_freq() << std::endl;
std::cerr << "gain range: " << get_gain_range().to_pp_string() << std::endl;
std::cerr << "gain: " << (uint32_t)get_gain() << std::endl;
std::cerr << "bw range: " << get_bandwidth_range().to_pp_string() << std::endl;
#endif
}
/*
* Our virtual destructor.
*/
rfspace_source_c::~rfspace_source_c ()
{
#ifndef USE_ASIO
close(_tcp);
close(_udp);
#endif
if ( RFSPACE_SDR_IQ == _radio )
{
_run_usb_read_task = false;
_thread.join();
}
else
{
_run_tcp_keepalive_task = false;
_thread.interrupt();
_thread.join();
}
close(_usb);
if ( _fifo )
{
delete _fifo;
_fifo = NULL;
}
}
void rfspace_source_c::apply_channel( unsigned char *cmd, size_t chan )
{
unsigned char value = 0;
if ( 0 == chan )
{
value = 0;
}
else if ( 1 == chan )
{
if ( _nchan < 2 )
throw std::runtime_error("Channel must be 0 only");
value = 2;
}
else
throw std::runtime_error("Channel must be 0 or 1");
cmd[4] = value;
}
bool rfspace_source_c::transaction( const unsigned char *cmd, size_t size )
{
std::vector< unsigned char > response;
if ( ! transaction( cmd, size, response ) )
return false;
/* comparing the contents is not really feasible due to protocol */
if ( response.size() == size ) /* check response size against request */
return true;
return false;
}
//#define VERBOSE
bool rfspace_source_c::transaction( const unsigned char *cmd, size_t size,
std::vector< unsigned char > &response )
{
size_t rx_bytes = 0;
unsigned char data[1024*2];
response.clear();
#ifdef VERBOSE
printf("< ");
for (size_t i = 0; i < size; i++)
printf("%02x ", (unsigned char) cmd[i]);
printf("\n");
#endif
if ( RFSPACE_SDR_IQ == _radio )
{
if ( write(_usb, cmd, size) != (int)size )
return false;
std::unique_lock<std::mutex> lock(_resp_lock);
_resp_avail.wait(lock);
rx_bytes = _resp.size();
memcpy( data, _resp.data(), rx_bytes );
}
else
{
std::lock_guard<std::mutex> lock(_tcp_lock);
#ifdef USE_ASIO
_t.write_some( boost::asio::buffer(cmd, size) );
rx_bytes = _t.read_some( boost::asio::buffer(data, sizeof(data)) );
#else
if ( write(_tcp, cmd, size) != (int)size )
return false;
int nbytes = read(_tcp, data, 2); /* read header */
if ( nbytes != 2 )
return false;
int length = (data[1] & 0x1f) | data[0];
if ( (length < 2) || (length > (int)sizeof(data)) )
return false;
length -= 2; /* subtract header size */
nbytes = read(_tcp, &data[2], length); /* read payload */
if ( nbytes != length )
return false;
rx_bytes = 2 + length; /* header + payload */
#endif
}
response.resize( rx_bytes );
memcpy( response.data(), data, rx_bytes );
#ifdef VERBOSE
printf("> ");
for (size_t i = 0; i < rx_bytes; i++)
printf("%02x ", (unsigned char) data[i]);
printf("\n");
#endif
return true;
}
static size_t read_bytes( int fd, char *data, size_t size, bool &run )
{
size_t nbytes = 0;
while ( nbytes < size && run )
{
int nread = read( fd, &data[nbytes], 1 );
if ( nread == 0 )
continue;
if ( nread < 0 )
break;
nbytes++;
}
return nbytes;
}
void rfspace_source_c::usb_read_task()
{
char data[1024*10];
size_t n_avail, to_copy;
if ( -1 == _usb )
return;
while ( _run_usb_read_task )
{
size_t nbytes = read_bytes( _usb, data, 2, _run_usb_read_task );
if ( nbytes != 2 )
continue;
size_t length = ((data[1] << 8) | data[0]) & 0x1fff;
if ( 0 == length ) /* SDR-IQ 5.4.1 Output Data Item 0 */
length = 1024*8 + 2;
if ( length <= 2 )
continue;
length -= 2; /* subtract header */
if ( length > sizeof(data) - 2 )
{
_run_usb_read_task = false;
continue;
}
nbytes = read_bytes( _usb, data + 2, length, _run_usb_read_task );
if ( nbytes != length )
continue;
if ( 1024*8 == length )
{
/* push samples into the fifo */
_fifo_lock.lock();
size_t num_samples = length / 4;
n_avail = _fifo->capacity() - _fifo->size();
to_copy = (n_avail < num_samples ? n_avail : num_samples);
#define SCALE_16 (1.0f/32768.0f)
int16_t *sample = (int16_t *)(data + 2);
for ( size_t i = 0; i < to_copy; i++ )
{
/* Push sample to the fifo */
_fifo->push_back( gr_complex( *(sample+0) * SCALE_16,
*(sample+1) * SCALE_16 ) );
/* offset to the next I+Q sample */
sample += 2;
}
#undef SCALE_16
_fifo_lock.unlock();
/* We have made some new samples available to the consumer in work() */
if (to_copy) {
// std::cerr << "+" << std::flush;
_samp_avail.notify_one();
}
/* Indicate overrun, if neccesary */
if (to_copy < num_samples)
std::cerr << "O" << std::flush;
}
else
{
/* copy response & signal transaction */
_resp_lock.lock();
_resp.clear();
_resp.resize( length + 2 );
memcpy( _resp.data(), data, length + 2 );
_resp_lock.unlock();
_resp_avail.notify_one();
}
}
}
/* send periodic status requests to keep TCP connection alive */
void rfspace_source_c::tcp_keepalive_task()
{
std::vector< unsigned char > response;
unsigned char status_pkt[] = { 0x04, 0x20, 0x05, 0x00 };
if ( -1 == _tcp )
return;
while ( _run_tcp_keepalive_task )
{
boost::this_thread::sleep_for(boost::chrono::seconds(60));
transaction( status_pkt, sizeof(status_pkt), response );
}
}
bool rfspace_source_c::start()
{
_sequence = 0;
_running = true;
_keep_running = false;
/* SDR-IP 4.2.1 Receiver State */
/* NETSDR 4.2.1 Receiver State */
unsigned char start[] = { 0x08, 0x00, 0x18, 0x00, 0x80, 0x02, 0x00, 0x00 };
/* SDR-IQ 5.2.1 Receiver State */
if ( RFSPACE_SDR_IQ == _radio )
start[sizeof(start)-4] = 0x81;
unsigned char mode = 0; /* 0 = 16 bit Contiguous Mode */
if ( 0 ) /* TODO: 24 bit Contiguous mode */
mode |= 0x80;
if ( 0 ) /* TODO: Hardware Triggered Pulse mode */
mode |= 0x03;
start[sizeof(start)-2] = mode;
return transaction( start, sizeof(start) );
}
bool rfspace_source_c::stop()
{
if ( ! _keep_running )
_running = false;
_keep_running = false;
if ( _fifo )
_fifo->clear();
/* SDR-IP 4.2.1 Receiver State */
/* NETSDR 4.2.1 Receiver State */
unsigned char stop[] = { 0x08, 0x00, 0x18, 0x00, 0x00, 0x01, 0x00, 0x00 };
/* SDR-IQ 5.2.1 Receiver State */
if ( RFSPACE_SDR_IQ == _radio )
stop[sizeof(stop)-4] = 0x81;
return transaction( stop, sizeof(stop) );
}
/* Main work function, pull samples from the socket */
int rfspace_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
unsigned char data[1024*2];
if ( ! _running )
return WORK_DONE;
if ( RFSPACE_SDR_IQ == _radio )
{
if ( noutput_items > 0 )
{
gr_complex *out = (gr_complex *)output_items[0];
std::unique_lock<std::mutex> lock(_fifo_lock);
/* Wait until we have the requested number of samples */
int n_samples_avail = _fifo->size();
while ( n_samples_avail < noutput_items )
{
_samp_avail.wait(lock);
n_samples_avail = _fifo->size();
}
for ( int i = 0; i < noutput_items; ++i )
{
out[i] = _fifo->at(0);
_fifo->pop_front();
}
// std::cerr << "-" << std::flush;
}
return noutput_items;
}
#ifdef USE_ASIO
udp::endpoint ep;
size_t rx_bytes = _u.receive_from( boost::asio::buffer(data, sizeof(data)), ep );
#else
struct sockaddr_in sa_in; /* remote address */
socklen_t addrlen = sizeof(sa_in); /* length of addresses */
ssize_t rx_bytes = recvfrom(_udp, data, sizeof(data), 0, (struct sockaddr *)&sa_in, &addrlen);
if ( rx_bytes <= 0 )
{
std::cerr << "recvfrom returned " << rx_bytes << std::endl;
return WORK_DONE;
}
#endif
#define HEADER_SIZE 2
#define SEQNUM_SIZE 2
// bool is_24_bit = false; // TODO: implement 24 bit sample format
/* check header */
if ( (0x04 == data[0] && (0x84 == data[1] || 0x82 == data[1])) )
{
// is_24_bit = false;
}
else if ( (0xA4 == data[0] && 0x85 == data[1]) ||
(0x84 == data[0] && 0x81 == data[1]) )
{
// is_24_bit = true;
return 0;
}
else
return 0;
uint16_t sequence = *((uint16_t *)(data + HEADER_SIZE));
uint16_t diff = sequence - _sequence;
if ( diff > 1 )
{
std::cerr << "Lost " << diff << " packets from "
#ifdef USE_ASIO
<< ep
#else
<< inet_ntoa(sa_in.sin_addr) << ":" << ntohs(sa_in.sin_port)
#endif
<< std::endl;
}
_sequence = (0xffff == sequence) ? 0 : sequence;
/* get pointer to samples */
int16_t *sample = (int16_t *)(data + HEADER_SIZE + SEQNUM_SIZE);
size_t rx_samples = (rx_bytes - HEADER_SIZE - SEQNUM_SIZE) / (sizeof(int16_t) * 2);
#define SCALE_16 (1.0f/32768.0f)
if ( 1 == _nchan )
{
gr_complex *out = (gr_complex *)output_items[0];
for ( size_t i = 0; i < rx_samples; i++ )
{
out[i] = gr_complex( *(sample+0) * SCALE_16,
*(sample+1) * SCALE_16 );
sample += 2;
}
}
else if ( 2 == _nchan )
{
rx_samples /= 2;
gr_complex *out1 = (gr_complex *)output_items[0];
gr_complex *out2 = (gr_complex *)output_items[1];
for ( size_t i = 0; i < rx_samples; i++ )
{
out1[i] = gr_complex( *(sample+0) * SCALE_16,
*(sample+1) * SCALE_16 );
out2[i] = gr_complex( *(sample+2) * SCALE_16,
*(sample+3) * SCALE_16 );
sample += 4;
}
}
#undef SCALE_16
noutput_items = rx_samples;
return noutput_items;
}
/* discovery protocol internals taken from CuteSDR project */
typedef struct __attribute__ ((__packed__))
{
/* 56 fixed common byte fields */
unsigned char length[2]; /* length of total message in bytes (little endian byte order) */
unsigned char key[2]; /* fixed key key[0]==0x5A key[1]==0xA5 */
unsigned char op; /* 0 == Tx_msg(to device), 1 == Rx_msg(from device), 2 == Set(to device) */
char name[16]; /* Device name string null terminated */
char sn[16]; /* Serial number string null terminated */
unsigned char ipaddr[16]; /* device IP address (little endian byte order) */
unsigned char port[2]; /* device Port number (little endian byte order) */
unsigned char customfield; /* Specifies a custom data field for a particular device */
} discover_common_msg_t;
/* UDP port numbers for discovery protocol */
#define DISCOVER_SERVER_PORT 48321 /* PC client Tx port, SDR Server Rx Port */
#define DISCOVER_CLIENT_PORT 48322 /* PC client Rx port, SDR Server Tx Port */
#define KEY0 0x5A
#define KEY1 0xA5
#define MSG_REQ 0
#define MSG_RESP 1
#define MSG_SET 2
typedef struct
{
std::string name;
std::string sn;
std::string addr;
uint16_t port;
} unit_t;
#ifdef USE_ASIO
static void handle_receive( const boost::system::error_code& ec,
std::size_t length,
boost::system::error_code* out_ec,
std::size_t* out_length )
{
*out_ec = ec;
*out_length = length;
}
static void handle_timer( const boost::system::error_code& ec,
boost::system::error_code* out_ec )
{
*out_ec = boost::asio::error::timed_out;
}
#endif
static std::vector < unit_t > discover_netsdr()
{
std::vector < unit_t > units;
#ifdef USE_ASIO
boost::system::error_code ec;
boost::asio::io_service ios;
udp::socket socket(ios);
deadline_timer timer(ios);
timer.expires_at(boost::posix_time::pos_infin);
socket.open(udp::v4(), ec);
if ( ec )
return units;
socket.bind(udp::endpoint(udp::v4(), DISCOVER_CLIENT_PORT), ec);
if ( ec )
return units;
socket.set_option(udp::socket::reuse_address(true));
socket.set_option(boost::asio::socket_base::broadcast(true));
#else
int sock;
if ( (sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 )
return units;
int sockoptval = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int));
sockoptval = 1;
setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &sockoptval, sizeof(int));
struct sockaddr_in host_sa; /* local address */
struct sockaddr_in peer_sa; /* remote address */
/* fill in the server's address and data */
memset((char*)&peer_sa, 0, sizeof(peer_sa));
peer_sa.sin_family = AF_INET;
peer_sa.sin_addr.s_addr = htonl(INADDR_BROADCAST);
peer_sa.sin_port = htons(DISCOVER_SERVER_PORT);
/* fill in the hosts's address and data */
memset(&host_sa, 0, sizeof(host_sa));
host_sa.sin_family = AF_INET;
host_sa.sin_addr.s_addr = htonl(INADDR_ANY);
host_sa.sin_port = htons(DISCOVER_CLIENT_PORT);
if ( bind(sock, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 )
{
close(sock);
return units;
}
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 100000;
if ( setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0 )
{
close(sock);
return units;
}
#endif
discover_common_msg_t tx_msg;
memset( (void *)&tx_msg, 0, sizeof(discover_common_msg_t) );
tx_msg.length[0] = sizeof(discover_common_msg_t);
tx_msg.length[1] = sizeof(discover_common_msg_t) >> 8;
tx_msg.key[0] = KEY0;
tx_msg.key[1] = KEY1;
tx_msg.op = MSG_REQ;
#ifdef USE_ASIO
udp::endpoint ep(boost::asio::ip::address_v4::broadcast(), DISCOVER_SERVER_PORT);
socket.send_to(boost::asio::buffer(&tx_msg, sizeof(tx_msg)), ep);
#else
sendto(sock, &tx_msg, sizeof(tx_msg), 0, (struct sockaddr *)&peer_sa, sizeof(peer_sa));
#endif
while ( true )
{
std::size_t rx_bytes = 0;
unsigned char data[1024*2];
#ifdef USE_ASIO
// Set up the variables that receive the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
ec = boost::asio::error::would_block;
// Start the asynchronous receive operation. The handle_receive function
// used as a callback will update the ec and rx_bytes variables.
socket.async_receive( boost::asio::buffer(data, sizeof(data)),
boost::bind(handle_receive, _1, _2, &ec, &rx_bytes) );
// Set a deadline for the asynchronous operation.
timer.expires_from_now( boost::posix_time::milliseconds(10) );
// Start an asynchronous wait on the timer. The handle_timer function
// used as a callback will update the ec variable.
timer.async_wait( boost::bind(handle_timer, _1, &ec) );
// Reset the io_service in preparation for a subsequent run_one() invocation.
ios.reset();
// Block until at least one asynchronous operation has completed.
do ios.run_one(); while ( ec == boost::asio::error::would_block );
if ( boost::asio::error::timed_out == ec ) /* timer was first to complete */
{
// Please note that cancel() has portability issues on some versions of
// Microsoft Windows, and it may be necessary to use close() instead.
// Consult the documentation for cancel() for further information.
socket.cancel();
break;
}
else /* socket was first to complete */
{
timer.cancel();
}
#else
socklen_t addrlen = sizeof(peer_sa); /* length of addresses */
int nbytes = recvfrom(sock, data, sizeof(data), 0, (struct sockaddr *)&peer_sa, &addrlen);
if ( nbytes <= 0 )
break;
rx_bytes = nbytes;
#endif
if ( rx_bytes >= sizeof(discover_common_msg_t) )
{
discover_common_msg_t *rx_msg = (discover_common_msg_t *)data;
if ( KEY0 == rx_msg->key[0] && KEY1 == rx_msg->key[1] &&
MSG_RESP == rx_msg->op )
{
void *temp = rx_msg->port;
uint16_t port = *((uint16_t *)temp);
std::string addr = str(boost::format("%d.%d.%d.%d")
% int(rx_msg->ipaddr[3]) % int(rx_msg->ipaddr[2])
% int(rx_msg->ipaddr[1]) % int(rx_msg->ipaddr[0]));
unit_t unit;
unit.name = rx_msg->name;
unit.sn = rx_msg->sn;
unit.addr = addr;
unit.port = port;
units.push_back( unit );
}
}
}
#ifdef USE_ASIO
socket.close(ec);
#else
close(sock);
#endif
return units;
}
static std::string read_file(const char *filename)
{
std::ifstream in(filename, std::ios::in | std::ios::binary);
if (in)
{
std::string contents;
in.seekg(0, std::ios::end);
contents.resize(in.tellg());
in.seekg(0, std::ios::beg);
in.read(&contents[0], contents.size());
in.close();
return contents;
}
return "";
}
static std::vector < unit_t > discover_sdr_iq()
{
std::vector < unit_t > units;
int n;
struct dirent **namelist;
char buffer[1024];
std::vector< std::string > ftdi_sio_devices;
const char* sys_prefix = "/sys/class/tty/";
n = scandir( sys_prefix, &namelist, NULL, NULL );
if ( n > 0 )
{
while ( n-- )
{
if ( strcmp( namelist[n]->d_name, "." ) &&
strcmp( namelist[n]->d_name, ".." ) )
{
struct stat st;
std::string device = std::string(sys_prefix) + namelist[n]->d_name;
std::string device_driver = device + "/device/driver";
if ( lstat( device_driver.c_str(), &st ) == 0 && S_ISLNK(st.st_mode) )
{
memset(buffer, 0, sizeof(buffer));
if ( readlink( device_driver.c_str(), buffer, sizeof(buffer) ) > 0 )
{
const char *base = basename(buffer);
if ( base && strcmp( base, "ftdi_sio" ) == 0 )
{
ftdi_sio_devices.push_back( device );
}
}
}
}
free( namelist[n] );
}
free( namelist );
}
for ( size_t i = 0; i < ftdi_sio_devices.size(); i++ )
{
memset(buffer, 0, sizeof(buffer));
if ( readlink( ftdi_sio_devices[i].c_str(), buffer, sizeof(buffer) ) > 0 )
{
std::string path(buffer);
size_t sep_pos = path.size();
for ( size_t i = 0; i < 4; i++ )
{
if ( sep_pos != std::string::npos )
sep_pos--;
sep_pos = path.rfind("/", sep_pos);
}
path = path.substr( 0, sep_pos );
size_t dev_pos = path.find("/devices");
if ( dev_pos != std::string::npos )
path = path.substr( dev_pos );
path = "/sys" + path;
std::string product = read_file( (path + "/product").c_str() );
size_t pos = product.find('\n');
if ( pos != std::string::npos )
product.erase( pos );
if ( "SDR-IQ" != product )
continue;
std::string serial = read_file( (path + "/serial").c_str() );
if ( serial.empty() )
serial = "<none>";
pos = serial.find('\n');
if ( pos != std::string::npos )
serial.erase( pos );
std::string port = std::string("/dev/");
const char *base = basename(buffer);
if ( base )
port += base;
#if 0
std::cerr << product << std::endl;
std::cerr << serial << std::endl;
std::cerr << port << std::endl;
#endif
unit_t unit;
unit.name = product;
unit.sn = serial;
unit.addr = port;
unit.port = 0;
units.push_back( unit );
}
}
return units;
}
std::vector<std::string> rfspace_source_c::get_devices( bool fake )
{
std::vector<std::string> devices;
std::vector < unit_t > units = discover_netsdr();
for (unit_t u : units)
{
// std::cerr << u.name << " " << u.sn << " " << u.addr << ":" << u.port
// << std::endl;
std::string type = u.name;
std::transform(type.begin(), type.end(), type.begin(), ::tolower);
devices += str(boost::format("%s=%s:%d,label='RFSPACE %s SN %s'")
% type % u.addr % u.port % u.name % u.sn);
}
units = discover_sdr_iq();
for (unit_t u : units)
{
// std::cerr << u.name << " " << u.sn << " " << u.addr << ":" << u.port
// << std::endl;
std::string type = u.name;
std::transform(type.begin(), type.end(), type.begin(), ::tolower);
devices += str(boost::format("%s=%s,label='RFSPACE %s SN %s'")
% type % u.addr % u.name % u.sn);
}
if ( devices.empty() && fake )
{
devices += str(boost::format("sdr-iq=%s,label='RFSPACE SDR-IQ Receiver'")
% "/dev/ttyUSB0");
devices += str(boost::format("sdr-ip=%s:%d,label='RFSPACE SDR-IP Receiver'")
% DEFAULT_HOST % DEFAULT_PORT);
devices += str(boost::format("netsdr=%s:%d,label='RFSPACE NetSDR Receiver'")
% DEFAULT_HOST % DEFAULT_PORT);
devices += str(boost::format("cloudiq=%s:%d,label='RFSPACE Cloud-IQ Receiver'")
% DEFAULT_HOST % DEFAULT_PORT);
}
return devices;
}
size_t rfspace_source_c::get_num_channels()
{
return _nchan;
}
#define NETSDR_MAX_RATE 2e6 /* same for SDR-IP & NETSDR */
#define NETSDR_ADC_CLOCK 80e6 /* same for SDR-IP & NETSDR */
#define SDR_IQ_ADC_CLOCK 66666667 /* SDR-IQ 5.2.4 I/Q Data Output Sample Rate */
osmosdr::meta_range_t rfspace_source_c::get_sample_rates()
{
osmosdr::meta_range_t range;
if ( RFSPACE_SDR_IQ == _radio )
{
/* Populate fixed sample rates as per SDR-IQ 5.2.4 I/Q Data Output Sample Rate */
range += osmosdr::range_t( 8138 );
range += osmosdr::range_t( 16276 );
range += osmosdr::range_t( 37793 );
range += osmosdr::range_t( 55556 );
range += osmosdr::range_t( 111111 );
range += osmosdr::range_t( 158730 );
range += osmosdr::range_t( 196078 );
}
else if ( RFSPACE_SDR_IP == _radio )
{
/* Calculate SDR-IP sample rates as per SDR-IP 4.2.8 DDC Output Sample Rate */
for ( size_t decimation = 2560; decimation >= 40; decimation -= 10 )
{
double rate = NETSDR_ADC_CLOCK / decimation;
if ( rate > (NETSDR_MAX_RATE / _nchan) )
break;
if ( floor(rate) == rate )
range += osmosdr::range_t( rate );
}
}
else if ( RFSPACE_NETSDR == _radio )
{
/* Calculate NetSDR sample rates as per NETSDR 4.2.9 I/Q Output Data Sample Rate */
for ( size_t decimation = 2500; decimation >= 40; decimation -= 4 )
{
double rate = NETSDR_ADC_CLOCK / decimation;
if ( rate > (NETSDR_MAX_RATE / _nchan) )
break;
if ( floor(rate) == rate )
range += osmosdr::range_t( rate );
}
}
else if ( RFSPACE_CLOUDIQ == _radio )
{
/* CloudIQ supports 122.88 MHz / 4*N for N = 17 ... 3072, but lets limit
* ourselves to the ones available in SpectraVue (plus a few)
*/
range += osmosdr::range_t( 48000 );
range += osmosdr::range_t( 61440 );
range += osmosdr::range_t( 96000 );
range += osmosdr::range_t( 122880 );
range += osmosdr::range_t( 240000 );
range += osmosdr::range_t( 256000 );
range += osmosdr::range_t( 370120 );
range += osmosdr::range_t( 495483 );
range += osmosdr::range_t( 512000 );
range += osmosdr::range_t( 614400 );
range += osmosdr::range_t( 1024000 );
range += osmosdr::range_t( 1228800 );
range += osmosdr::range_t( 1807058 );
}
return range;
}
double rfspace_source_c::set_sample_rate( double rate )
{
if ( RFSPACE_SDR_IQ == _radio )
{
/* does not support arbitrary rates, pick closest from hardcoded values above */
double closest_rate = get_sample_rates().clip( rate, true );
if ( closest_rate != rate )
std::cerr << "Picked closest supported sample rate of " << (uint32_t)closest_rate << " Hz"
<< std::endl;
rate = closest_rate; /* override */
}
/* SDR-IQ 5.2.4 I/Q Data Output Sample Rate */
/* SDR-IP 4.2.8 DDC Output Sample Rate */
/* NETSDR 4.2.9 I/Q Output Data Sample Rate */
unsigned char samprate[] = { 0x09, 0x00, 0xB8, 0x00, 0x00, 0x20, 0xA1, 0x07, 0x00 };
uint32_t u32_rate = rate;
samprate[sizeof(samprate)-4] = u32_rate >> 0;
samprate[sizeof(samprate)-3] = u32_rate >> 8;
samprate[sizeof(samprate)-2] = u32_rate >> 16;
samprate[sizeof(samprate)-1] = u32_rate >> 24;
std::vector< unsigned char > response;
if ( _running )
{
_keep_running = true;
stop();
}
if ( ! transaction( samprate, sizeof(samprate), response ) )
throw std::runtime_error("set_sample_rate failed");
if ( _running )
{
start();
}
u32_rate = 0;
u32_rate |= response[sizeof(samprate)-4] << 0;
u32_rate |= response[sizeof(samprate)-3] << 8;
u32_rate |= response[sizeof(samprate)-2] << 16;
u32_rate |= response[sizeof(samprate)-1] << 24;
_sample_rate = u32_rate;
if ( rate != _sample_rate )
std::cerr << "Radio reported a sample rate of " << (uint32_t)_sample_rate << " Hz"
<< std::endl;
return get_sample_rate();
}
double rfspace_source_c::get_sample_rate()
{
return _sample_rate;
}
osmosdr::freq_range_t rfspace_source_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
if ( RFSPACE_SDR_IQ == _radio )
{
/* does not support range query, use hardcoded values */
range += osmosdr::range_t(0, SDR_IQ_ADC_CLOCK / 2.0f);
return range;
}
/* query freq range(s) of the radio */
/* SDR-IP 4.2.2 Receiver Frequency */
/* NETSDR 4.2.3 Receiver Frequency */
unsigned char frange[] = { 0x05, 0x40, 0x20, 0x00, 0x00 };
apply_channel( frange, chan );
std::vector< unsigned char > response;
transaction( frange, sizeof(frange), response );
if ( response.size() >= sizeof(frange) + 1 )
{
for ( size_t i = 0; i < response[sizeof(frange)]; i++ )
{
uint32_t min = *((uint32_t *)&response[sizeof(frange)+1+i*15]);
uint32_t max = *((uint32_t *)&response[sizeof(frange)+1+5+i*15]);
//uint32_t vco = *((uint32_t *)&response[sizeof(frange)+1+10+i*15]);
//std::cerr << min << " " << max << " " << vco << std::endl;
range += osmosdr::range_t(min, max); /* must be monotonic */
}
}
if ( range.empty() ) /* assume reasonable default */
range += osmosdr::range_t(0, NETSDR_ADC_CLOCK / 2.0f);
return range;
}
double rfspace_source_c::set_center_freq( double freq, size_t chan )
{
uint32_t u32_freq = freq;
/* SDR-IQ 5.2.2 Receiver Frequency */
/* SDR-IP 4.2.2 Receiver Frequency */
/* NETSDR 4.2.3 Receiver Frequency */
unsigned char tune[] = { 0x0A, 0x00, 0x20, 0x00, 0x00, 0xb0, 0x19, 0x6d, 0x00, 0x00 };
apply_channel( tune, chan );
tune[sizeof(tune)-5] = u32_freq >> 0;
tune[sizeof(tune)-4] = u32_freq >> 8;
tune[sizeof(tune)-3] = u32_freq >> 16;
tune[sizeof(tune)-2] = u32_freq >> 24;
tune[sizeof(tune)-1] = 0;
transaction( tune, sizeof(tune) );
return get_center_freq( chan );
}
double rfspace_source_c::get_center_freq( size_t chan )
{
/* SDR-IQ 5.2.2 Receiver Frequency */
/* SDR-IP 4.2.2 Receiver Frequency */
/* NETSDR 4.2.3 Receiver Frequency */
unsigned char freq[] = { 0x05, 0x20, 0x20, 0x00, 0x00 };
apply_channel( freq, chan );
std::vector< unsigned char > response;
if ( ! transaction( freq, sizeof(freq), response ) )
throw std::runtime_error("get_center_freq failed");
uint32_t frequency = 0;
frequency |= response[response.size()-5] << 0;
frequency |= response[response.size()-4] << 8;
frequency |= response[response.size()-3] << 16;
frequency |= response[response.size()-2] << 24;
return frequency;
}
double rfspace_source_c::set_freq_corr( double ppm, size_t chan )
{
return get_freq_corr( chan );
}
double rfspace_source_c::get_freq_corr( size_t chan )
{
return 0;
}
std::vector<std::string> rfspace_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "ATT";
return names;
}
osmosdr::gain_range_t rfspace_source_c::get_gain_range( size_t chan )
{
if ( RFSPACE_SDR_IQ == _radio )
return osmosdr::gain_range_t(-20, 10, 10);
else /* SDR-IP, NETSDR and Cloud-IQ */
return osmosdr::gain_range_t(-30, 0, 10);
}
osmosdr::gain_range_t rfspace_source_c::get_gain_range( const std::string & name, size_t chan )
{
return get_gain_range( chan );
}
bool rfspace_source_c::set_gain_mode( bool automatic, size_t chan )
{
return false;
}
bool rfspace_source_c::get_gain_mode( size_t chan )
{
return false;
}
double rfspace_source_c::set_gain( double gain, size_t chan )
{
/* SDR-IQ 5.2.5 RF Gain */
/* SDR-IP 4.2.3 RF Gain */
/* NETSDR 4.2.6 RF Gain */
unsigned char atten[] = { 0x06, 0x00, 0x38, 0x00, 0x00, 0x00 };
apply_channel( atten, chan );
if ( RFSPACE_SDR_IQ == _radio )
{
if ( gain <= -20 )
atten[sizeof(atten)-1] = 0xE2;
else if ( gain <= -10 )
atten[sizeof(atten)-1] = 0xEC;
else if ( gain <= 0 )
atten[sizeof(atten)-1] = 0xF6;
else /* +10 dB */
atten[sizeof(atten)-1] = 0x00;
}
else /* SDR-IP & NETSDR */
{
if ( gain <= -30 )
atten[sizeof(atten)-1] = 0xE2;
else if ( gain <= -20 )
atten[sizeof(atten)-1] = 0xEC;
else if ( gain <= -10 )
atten[sizeof(atten)-1] = 0xF6;
else /* 0 dB */
atten[sizeof(atten)-1] = 0x00;
}
transaction( atten, sizeof(atten) );
return get_gain( chan );
}
double rfspace_source_c::set_gain( double gain, const std::string & name, size_t chan )
{
return set_gain( gain, chan );
}
double rfspace_source_c::get_gain( size_t chan )
{
/* SDR-IQ 5.2.5 RF Gain */
/* SDR-IP 4.2.3 RF Gain */
/* NETSDR 4.2.6 RF Gain */
unsigned char atten[] = { 0x05, 0x20, 0x38, 0x00, 0x00 };
apply_channel( atten, chan );
std::vector< unsigned char > response;
if ( ! transaction( atten, sizeof(atten), response ) )
throw std::runtime_error("get_gain failed");
unsigned char code = response[response.size()-1];
double gain = code;
if( code & 0x80 )
gain = (code & 0x7f) - 0x80;
if ( RFSPACE_SDR_IQ == _radio )
gain += 10;
return gain;
}
double rfspace_source_c::get_gain( const std::string & name, size_t chan )
{
return get_gain( chan );
}
std::vector< std::string > rfspace_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string rfspace_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string rfspace_source_c::get_antenna( size_t chan )
{
/* We only have a single receive antenna here */
return "RX";
}
#define BANDWIDTH 34e6
double rfspace_source_c::set_bandwidth( double bandwidth, size_t chan )
{
if ( RFSPACE_SDR_IQ == _radio ||
RFSPACE_CLOUDIQ == _radio) /* not supported by SDR-IQ or Cloud-IQ */
return 0.0f;
/* SDR-IP 4.2.5 RF Filter Selection */
/* NETSDR 4.2.7 RF Filter Selection */
unsigned char filter[] = { 0x06, 0x00, 0x44, 0x00, 0x00, 0x00 };
apply_channel( filter, chan );
if ( 0.0f == bandwidth )
{
_bandwidth = 0.0f;
filter[sizeof(filter)-1] = 0x00; /* Select bandpass filter based on NCO frequency */
}
else if ( BANDWIDTH == bandwidth )
{
_bandwidth = BANDWIDTH;
filter[sizeof(filter)-1] = 0x0B; /* Bypass bandpass filter, use only antialiasing */
}
transaction( filter, sizeof(filter) );
return get_bandwidth();
}
double rfspace_source_c::get_bandwidth( size_t chan )
{
return _bandwidth;
}
osmosdr::freq_range_t rfspace_source_c::get_bandwidth_range( size_t chan )
{
osmosdr::freq_range_t bandwidths;
bandwidths += osmosdr::range_t( BANDWIDTH );
return bandwidths;
}