gr-osmosdr/lib/bladerf/bladerf_sink_c.cc

610 lines
18 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013-2017 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include "arg_helpers.h"
#include "bladerf_sink_c.h"
#include "osmosdr/sink.h"
using namespace boost::assign;
/******************************************************************************
* Functions
******************************************************************************/
/*
* Create a new instance of bladerf_sink_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_sink_c_sptr make_bladerf_sink_c(const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_sink_c(args));
}
/******************************************************************************
* Private methods
******************************************************************************/
/*
* The private constructor
*/
bladerf_sink_c::bladerf_sink_c(const std::string &args) :
gr::sync_block( "bladerf_sink_c",
args_to_io_signature(args),
gr::io_signature::make(0, 0, 0)),
_16icbuf(NULL),
_32fcbuf(NULL),
_in_burst(false),
_running(false)
{
dict_t dict = params_to_dict(args);
/* Perform src/sink agnostic initializations */
init(dict, BLADERF_TX);
/* Check for RX-only params */
if (dict.count("loopback")) {
BLADERF_WARNING("Warning: 'loopback' has been specified on a bladeRF "
"sink, and will have no effect. This parameter should be "
"specified on the associated bladeRF source.");
}
if (dict.count("rxmux")) {
BLADERF_WARNING("Warning: 'rxmux' has been specified on a bladeRF sink, "
"and will have no effect.");
}
/* Bias tee */
if (dict.count("biastee")) {
set_biastee_mode(dict["biastee"]);
}
/* Initialize channel <-> antenna map */
for (std::string ant : get_antennas()) {
_chanmap[str2channel(ant)] = -1;
}
/* Bounds-checking output signature depending on our underlying hardware */
if (get_num_channels() > get_max_channels()) {
BLADERF_WARNING("Warning: number of channels specified on command line ("
<< get_num_channels() << ") is greater than the maximum "
"number supported by this device (" << get_max_channels()
<< "). Resetting to " << get_max_channels() << ".");
set_input_signature(gr::io_signature::make(get_max_channels(),
get_max_channels(),
sizeof(gr_complex)));
}
/* Set up constraints */
int const alignment_multiple = volk_get_alignment() / sizeof(gr_complex);
set_alignment(std::max(1,alignment_multiple));
set_max_noutput_items(_samples_per_buffer);
set_output_multiple(get_num_channels());
/* Set channel layout */
_layout = (get_num_channels() > 1) ? BLADERF_TX_X2 : BLADERF_TX_X1;
/* Initial wiring of antennas to channels */
for (size_t ch = 0; ch < get_num_channels(); ++ch) {
set_channel_enable(BLADERF_CHANNEL_TX(ch), true);
_chanmap[BLADERF_CHANNEL_TX(ch)] = ch;
}
BLADERF_DEBUG("initialization complete");
}
/******************************************************************************
* Public methods
******************************************************************************/
std::string bladerf_sink_c::name()
{
return "bladeRF transmitter";
}
std::vector<std::string> bladerf_sink_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_sink_c::get_max_channels()
{
return bladerf_common::get_max_channels(BLADERF_TX);
}
size_t bladerf_sink_c::get_num_channels()
{
return input_signature()->max_streams();
}
bool bladerf_sink_c::start()
{
int status;
BLADERF_DEBUG("starting sink");
gr::thread::scoped_lock guard(d_mutex);
_in_burst = false;
status = bladerf_sync_config(_dev.get(), _layout, _format, _num_buffers,
_samples_per_buffer, _num_transfers,
_stream_timeout);
if (status != 0) {
BLADERF_THROW_STATUS(status, "bladerf_sync_config failed");
}
for (size_t ch = 0; ch < get_max_channels(); ++ch) {
bladerf_channel brfch = BLADERF_CHANNEL_TX(ch);
if (get_channel_enable(brfch)) {
status = bladerf_enable_module(_dev.get(), brfch, true);
if (status != 0) {
BLADERF_THROW_STATUS(status, "bladerf_enable_module failed");
}
}
}
/* Allocate memory for conversions in work() */
size_t alignment = volk_get_alignment();
_16icbuf = reinterpret_cast<int16_t *>(volk_malloc(2*_samples_per_buffer*sizeof(int16_t), alignment));
_32fcbuf = reinterpret_cast<gr_complex *>(volk_malloc(_samples_per_buffer*sizeof(gr_complex), alignment));
_running = true;
return true;
}
bool bladerf_sink_c::stop()
{
int status;
BLADERF_DEBUG("stopping sink");
gr::thread::scoped_lock guard(d_mutex);
if (!_running) {
BLADERF_WARNING("sink already stopped, nothing to do here");
return true;
}
_running = false;
for (size_t ch = 0; ch < get_max_channels(); ++ch) {
bladerf_channel brfch = BLADERF_CHANNEL_TX(ch);
if (get_channel_enable(brfch)) {
status = bladerf_enable_module(_dev.get(), brfch, false);
if (status != 0) {
BLADERF_THROW_STATUS(status, "bladerf_enable_module failed");
}
}
}
/* Deallocate conversion memory */
volk_free(_16icbuf);
volk_free(_32fcbuf);
_16icbuf = NULL;
_32fcbuf = NULL;
return true;
}
int bladerf_sink_c::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
int status;
size_t nstreams = num_streams(_layout);
gr::thread::scoped_lock guard(d_mutex);
// if we aren't running, nothing to do here
if (!_running) {
return 0;
}
// copy the samples from input_items
gr_complex const **in = reinterpret_cast<gr_complex const **>(&input_items[0]);
if (nstreams > 1) {
// we need to interleave the streams as we copy
gr_complex *intl_out = _32fcbuf;
for (size_t i = 0; i < (noutput_items/nstreams); ++i) {
for (size_t n = 0; n < nstreams; ++n) {
memcpy(intl_out++, in[n]++, sizeof(gr_complex));
}
}
} else {
// no interleaving to do: simply copy everything
memcpy(_32fcbuf, in[0], noutput_items * sizeof(gr_complex));
}
// convert floating point to fixed point and scale
// input_items is gr_complex (2x float), so num_points is 2*noutput_items
volk_32f_s32f_convert_16i(_16icbuf, reinterpret_cast<float const *>(_32fcbuf),
SCALING_FACTOR, 2*noutput_items);
// transmit the samples from the temp buffer
if (BLADERF_FORMAT_SC16_Q11_META == _format) {
status = transmit_with_tags(_16icbuf, noutput_items);
} else {
status = bladerf_sync_tx(_dev.get(), static_cast<void const *>(_16icbuf),
noutput_items, NULL, _stream_timeout);
}
// handle failure
if (status != 0) {
BLADERF_WARNING("bladerf_sync_tx error: " << bladerf_strerror(status));
++_failures;
if (_failures >= MAX_CONSECUTIVE_FAILURES) {
BLADERF_WARNING("Consecutive error limit hit. Shutting down.");
return WORK_DONE;
}
} else {
_failures = 0;
}
return noutput_items;
}
int bladerf_sink_c::transmit_with_tags(int16_t const *samples,
int noutput_items)
{
int status;
int count = 0;
// For a long burst, we may be transmitting the burst contents over
// multiple work calls, so we'll just be sending the entire buffer
// Therefore, we initialize our indicies for this case.
int start_idx = 0;
int end_idx = (noutput_items - 1);
struct bladerf_metadata meta;
std::vector<gr::tag_t> tags;
int const INVALID_IDX = -1;
int16_t const zeros[8] = { 0 };
memset(&meta, 0, sizeof(meta));
BLADERF_DEBUG("transmit_with_tags(" << noutput_items << ")");
// Important Note: We assume that these tags are ordered by their offsets.
// This is true for GNU Radio 3.7.7.x, since the GR runtime libs store
// these in a multimap.
//
// If you're using an earlier GNU Radio version, you may have to sort
// the tags vector.
get_tags_in_window(tags, 0, 0, noutput_items);
if (tags.size() == 0) {
if (_in_burst) {
BLADERF_DEBUG("TX'ing " << noutput_items << " samples within a burst...");
return bladerf_sync_tx(_dev.get(), samples, noutput_items,
&meta, _stream_timeout);
} else {
BLADERF_WARNING("Dropping " << noutput_items
<< " samples not in a burst.");
}
}
for (gr::tag_t tag : tags) {
// Upon seeing an SOB tag, update our offset. We'll TX the start of the
// burst when we see an EOB or at the end of this function - whichever
// occurs first.
if (pmt::symbol_to_string(tag.key) == "tx_sob") {
if (_in_burst) {
BLADERF_WARNING("Got SOB while already within a burst");
return BLADERF_ERR_INVAL;
} else {
start_idx = static_cast<int>(tag.offset - nitems_read(0));
BLADERF_DEBUG("Got SOB " << start_idx << " samples into work payload");
meta.flags |= (BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START);
_in_burst = true;
}
} else if (pmt::symbol_to_string(tag.key) == "tx_eob") {
if (!_in_burst) {
BLADERF_WARNING("Got EOB while not in burst");
return BLADERF_ERR_INVAL;
}
// Upon seeing an EOB, transmit what we have and reset our state
end_idx = static_cast<int>(tag.offset - nitems_read(0));
BLADERF_DEBUG("Got EOB " << end_idx << " samples into work payload");
if ((start_idx == INVALID_IDX) || (start_idx > end_idx)) {
BLADERF_DEBUG("Buffer indicies are in an invalid state!");
return BLADERF_ERR_INVAL;
}
count = end_idx - start_idx + 1;
BLADERF_DEBUG("TXing @ EOB [" << start_idx << ":" << end_idx << "]");
status = bladerf_sync_tx(_dev.get(),
static_cast<void const *>(&samples[2 * start_idx]),
count, &meta, _stream_timeout);
if (status != 0) {
return status;
}
/* TODO: libbladeRF should now take care of this for us,
* as of the libbladeRF version that includes the
* TX_UPDATE_TIMESTAMP flag. Verify this potentially remove this.
* (The meta.flags changes would then be applied to the previous
* bladerf_sync_tx() call.)
*/
BLADERF_DEBUG("TXing Zeros with burst end flag");
meta.flags &= ~(BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START);
meta.flags |= BLADERF_META_FLAG_TX_BURST_END;
status = bladerf_sync_tx(_dev.get(), static_cast<void const *>(zeros),
4, &meta, _stream_timeout);
/* Reset our state */
start_idx = INVALID_IDX;
end_idx = (noutput_items - 1);
meta.flags = 0;
_in_burst = false;
if (status != 0) {
BLADERF_DEBUG("Failed to send zero samples to flush EOB");
return status;
}
}
}
// We had a start of burst with no end yet - transmit those samples
if (_in_burst) {
count = end_idx - start_idx + 1;
BLADERF_DEBUG("TXing SOB [" << start_idx << ":" << end_idx << "]");
status = bladerf_sync_tx(_dev.get(),
static_cast<void const *>(&samples[2 * start_idx]),
count, &meta, _stream_timeout);
}
return status;
}
osmosdr::meta_range_t bladerf_sink_c::get_sample_rates()
{
return sample_rates(chan2channel(BLADERF_TX, 0));
}
double bladerf_sink_c::set_sample_rate(double rate)
{
return bladerf_common::set_sample_rate(rate, chan2channel(BLADERF_TX, 0));
}
double bladerf_sink_c::get_sample_rate()
{
return bladerf_common::get_sample_rate(chan2channel(BLADERF_TX, 0));
}
osmosdr::freq_range_t bladerf_sink_c::get_freq_range(size_t chan)
{
return bladerf_common::freq_range(chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::set_center_freq(double freq, size_t chan)
{
return bladerf_common::set_center_freq(freq, chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::get_center_freq(size_t chan)
{
return bladerf_common::get_center_freq(chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::set_freq_corr(double ppm, size_t chan)
{
/* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */
BLADERF_WARNING("Frequency correction is not implemented.");
return get_freq_corr(chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::get_freq_corr(size_t chan)
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_sink_c::get_gain_names(size_t chan)
{
return bladerf_common::get_gain_names(chan2channel(BLADERF_TX, chan));
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range(size_t chan)
{
return bladerf_common::get_gain_range(chan2channel(BLADERF_TX, chan));
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range(const std::string &name,
size_t chan)
{
return bladerf_common::get_gain_range(name, chan2channel(BLADERF_TX, chan));
}
bool bladerf_sink_c::set_gain_mode(bool automatic, size_t chan)
{
return bladerf_common::set_gain_mode(automatic,
chan2channel(BLADERF_TX, chan));
}
bool bladerf_sink_c::get_gain_mode(size_t chan)
{
return bladerf_common::get_gain_mode(chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::set_gain(double gain, size_t chan)
{
return bladerf_common::set_gain(gain, chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::set_gain(double gain, const std::string &name,
size_t chan)
{
return bladerf_common::set_gain(gain, name, chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::get_gain(size_t chan)
{
return bladerf_common::get_gain(chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::get_gain(const std::string &name, size_t chan)
{
return bladerf_common::get_gain(name, chan2channel(BLADERF_TX, chan));
}
std::vector<std::string> bladerf_sink_c::get_antennas(size_t chan)
{
return bladerf_common::get_antennas(BLADERF_TX);
}
std::string bladerf_sink_c::set_antenna(const std::string &antenna,
size_t chan)
{
bool _was_running = _running;
if (_was_running) {
stop();
}
bladerf_common::set_antenna(BLADERF_TX, chan, antenna);
if (_was_running) {
start();
}
return get_antenna(chan);
}
std::string bladerf_sink_c::get_antenna(size_t chan)
{
return channel2str(chan2channel(BLADERF_TX, chan));
}
void bladerf_sink_c::set_dc_offset(const std::complex < double > &offset,
size_t chan)
{
int status;
status = bladerf_common::set_dc_offset(offset, chan2channel(BLADERF_TX, chan));
if (status != 0) {
BLADERF_THROW_STATUS(status, "could not set dc offset");
}
}
void bladerf_sink_c::set_iq_balance(const std::complex < double > &balance,
size_t chan)
{
int status;
status = bladerf_common::set_iq_balance(balance, chan2channel(BLADERF_TX, chan));
if (status != 0) {
BLADERF_THROW_STATUS(status, "could not set iq balance");
}
}
osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range(size_t chan)
{
return filter_bandwidths(chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::set_bandwidth(double bandwidth, size_t chan)
{
return bladerf_common::set_bandwidth(bandwidth, chan2channel(BLADERF_TX, chan));
}
double bladerf_sink_c::get_bandwidth(size_t chan)
{
return bladerf_common::get_bandwidth(chan2channel(BLADERF_TX, chan));
}
std::vector < std::string > bladerf_sink_c::get_clock_sources(size_t mboard)
{
return bladerf_common::get_clock_sources(mboard);
}
void bladerf_sink_c::set_clock_source(const std::string &source,
size_t mboard)
{
bladerf_common::set_clock_source(source, mboard);
}
std::string bladerf_sink_c::get_clock_source(size_t mboard)
{
return bladerf_common::get_clock_source(mboard);
}
void bladerf_sink_c::set_biastee_mode(const std::string &mode)
{
int status;
bool enable;
if (mode == "on" || mode == "1" || mode == "rx") {
enable = true;
} else {
enable = false;
}
status = bladerf_set_bias_tee(_dev.get(), BLADERF_CHANNEL_TX(0), enable);
if (BLADERF_ERR_UNSUPPORTED == status) {
// unsupported, but not worth crashing out
BLADERF_WARNING("Bias-tee not supported by device");
} else if (status != 0) {
BLADERF_THROW_STATUS(status, "Failed to set bias-tee");
}
}