gr-osmosdr/lib/xtrx/xtrx_sink_c.cc

506 lines
12 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2016,2017 Sergey Kostanbaev <sergey.kostanbaev@fairwaves.co>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <fstream>
#include <string>
#include <sstream>
#include <map>
#include <boost/assign.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread.hpp>
#include <boost/thread/thread.hpp>
#include <boost/thread/mutex.hpp>
#include <gnuradio/io_signature.h>
#include <gnuradio/blocks/deinterleave.h>
#include <gnuradio/blocks/float_to_complex.h>
#include "xtrx_sink_c.h"
#include "arg_helpers.h"
static const int max_burstsz = 4096;
using namespace boost::assign;
xtrx_sink_c_sptr make_xtrx_sink_c(const std::string &args)
{
return gnuradio::get_initial_sptr(new xtrx_sink_c(args));
}
static size_t parse_nchan(const std::string &args)
{
size_t nchan = 1;
dict_t dict = params_to_dict(args);
if (dict.count("nchan"))
nchan = boost::lexical_cast< size_t >( dict["nchan"] );
if (nchan < 1)
nchan = 1;
return nchan;
}
xtrx_sink_c::xtrx_sink_c(const std::string &args) :
gr::sync_block("xtrx_sink_c",
gr::io_signature::make(parse_nchan(args),
parse_nchan(args),
sizeof(gr_complex)),
gr::io_signature::make(0, 0, 0)),
_sample_flags(0),
_rate(0),
_master(0),
_freq(0),
_corr(0),
_bandwidth(0),
_dsp(0),
_auto_gain(false),
_otw(XTRX_WF_16),
_mimo_mode(false),
_gain_tx(0),
_channels(parse_nchan(args)),
_ts(8192),
_swap_ab(false),
_swap_iq(false),
_tdd(false),
_allow_dis(false),
_dev("")
{
dict_t dict = params_to_dict(args);
if (dict.count("master")) {
_master = boost::lexical_cast< double >( dict["master"]);
}
std::cerr << args.c_str() << std::endl;
int loglevel = 4;
if (dict.count("loglevel")) {
loglevel = boost::lexical_cast< int >( dict["loglevel"] );
}
bool lmsreset = 0;
if (dict.count("lmsreset")) {
lmsreset = boost::lexical_cast< bool >( dict["lmsreset"] );
}
if (dict.count("txdelay")) {
_ts += 8192 * boost::lexical_cast< int >( dict["txdelay"] );
}
if (dict.count("allowdis")) {
_allow_dis = boost::lexical_cast< bool >( dict["allowdis"] );
}
if (dict.count("swap_ab")) {
_swap_ab = true;
std::cerr << "xtrx_sink_c: swap AB channels";
}
if (dict.count("swap_iq")) {
_swap_iq = true;
std::cerr << "xtrx_sink_c: swap IQ";
}
if (dict.count("sfl")) {
_sample_flags = boost::lexical_cast< unsigned >( dict["sfl"] );
}
if (dict.count("tdd")) {
_tdd = true;
std::cerr << "xtrx_sink_c: TDD mode";
}
if (dict.count("dsp")) {
_dsp = boost::lexical_cast< double >( dict["dsp"] );
std::cerr << "xtrx_sink_c: DSP:" << _dsp;
}
if (dict.count("dev")) {
_dev = dict["dev"];
std::cerr << "xtrx_sink_c: XTRX device: %s" << _dev.c_str();
}
_xtrx = xtrx_obj::get(_dev.c_str(), loglevel, lmsreset);
if (_xtrx->dev_count() * 2 == _channels) {
_mimo_mode = true;
} else if (_xtrx->dev_count() != _channels) {
throw std::runtime_error("Number of requested channels != number of devices");
}
if (dict.count("refclk")) {
xtrx_set_ref_clk(_xtrx->dev(), boost::lexical_cast< unsigned >( dict["refclk"] ), XTRX_CLKSRC_INT);
}
if (dict.count("extclk")) {
xtrx_set_ref_clk(_xtrx->dev(), boost::lexical_cast< unsigned >( dict["extclk"] ), XTRX_CLKSRC_EXT);
}
std::cerr << "xtrx_sink_c::xtrx_sink_c()" << std::endl;
set_alignment(32);
set_output_multiple(max_burstsz);
}
xtrx_sink_c::~xtrx_sink_c()
{
std::cerr << "xtrx_sink_c::~xtrx_sink_c()" << std::endl;
}
std::string xtrx_sink_c::name()
{
return "GrLibXTRX";
}
size_t xtrx_sink_c::get_num_channels( void )
{
return input_signature()->max_streams();
}
osmosdr::meta_range_t xtrx_sink_c::get_sample_rates( void )
{
osmosdr::meta_range_t range;
range += osmosdr::range_t( 1000000, 160000000, 1 );
return range;
}
double xtrx_sink_c::set_sample_rate( double rate )
{
std::cerr << "Set sample rate " << rate << std::endl;
_rate = _xtrx->set_smaplerate(rate, _master, true, _sample_flags);
return get_sample_rate();
}
double xtrx_sink_c::get_sample_rate( void )
{
return _rate;
}
osmosdr::freq_range_t xtrx_sink_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( double(0.03e9), double(3.8e9), 1); // as far as we know
return range;
}
double xtrx_sink_c::set_center_freq( double freq, size_t chan )
{
boost::mutex::scoped_lock lock(_xtrx->mtx);
_freq = freq;
double corr_freq = (freq)*(1.0 + (_corr) * 0.000001);
std::cerr << "TX Set freq " << freq << std::endl;
xtrx_channel_t xchan = (xtrx_channel_t)(XTRX_CH_A << chan);
int res = xtrx_tune_ex(_xtrx->dev(), (_tdd) ? XTRX_TUNE_TX_AND_RX_TDD : XTRX_TUNE_TX_FDD, xchan, corr_freq - _dsp, &_freq);
if (res) {
std::cerr << "Unable to deliver frequency " << corr_freq << std::endl;
}
res = xtrx_tune_ex(_xtrx->dev(), XTRX_TUNE_BB_TX, xchan, _dsp, NULL);
return get_center_freq(chan);
}
double xtrx_sink_c::get_center_freq( size_t chan )
{
return _freq + _dsp;
}
double xtrx_sink_c::set_freq_corr( double ppm, size_t chan )
{
_corr = ppm;
set_center_freq(_freq, chan);
return get_freq_corr( chan );
}
double xtrx_sink_c::get_freq_corr( size_t chan )
{
return _corr;
}
static const std::vector<std::string> s_lna_list = boost::assign::list_of("TX");
std::vector<std::string> xtrx_sink_c::get_gain_names( size_t chan )
{
return s_lna_list;
}
osmosdr::gain_range_t xtrx_sink_c::get_gain_range( size_t chan )
{
return get_gain_range("TX", chan);
}
osmosdr::gain_range_t xtrx_sink_c::get_gain_range( const std::string & name, size_t chan )
{
osmosdr::gain_range_t range;
range += osmosdr::range_t( -31, 0, 1 );
return range;
}
bool xtrx_sink_c::set_gain_mode( bool automatic, size_t chan )
{
_auto_gain = automatic;
return get_gain_mode(chan);
}
bool xtrx_sink_c::get_gain_mode( size_t chan )
{
return _auto_gain;
}
double xtrx_sink_c::set_gain( double gain, size_t chan )
{
return set_gain(gain, "TX", chan);
}
double xtrx_sink_c::set_gain( double igain, const std::string & name, size_t chan )
{
boost::mutex::scoped_lock lock(_xtrx->mtx);
osmosdr::gain_range_t gains = xtrx_sink_c::get_gain_range( name, chan );
double gain = gains.clip(igain);
double actual_gain;
std::cerr << "Set TX gain: " << igain << std::endl;
int res = xtrx_set_gain(_xtrx->dev(), (xtrx_channel_t)(XTRX_CH_A << chan),
XTRX_TX_PAD_GAIN, gain, &actual_gain);
if (res) {
std::cerr << "Unable to set gain `" << name.c_str() << "`; err=" << res << std::endl;
}
_gain_tx = actual_gain;
return actual_gain;
}
double xtrx_sink_c::get_gain( size_t chan )
{
return get_gain("TX");
}
double xtrx_sink_c::get_gain( const std::string & name, size_t chan )
{
return _gain_tx;
}
double xtrx_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
boost::mutex::scoped_lock lock(_xtrx->mtx);
std::cerr << "Set bandwidth " << bandwidth << " chan " << chan << std::endl;
if (bandwidth <= 0.0) {
bandwidth = get_sample_rate() * 0.75;
if (bandwidth < 0.5e6) {
bandwidth = 0.5e6;
}
}
int res = xtrx_tune_tx_bandwidth(_xtrx->dev(),
(xtrx_channel_t)(XTRX_CH_A << chan),
bandwidth, &_bandwidth);
if (res) {
std::cerr << "Can't set bandwidth: " << res << std::endl;
}
return get_bandwidth(chan);
}
double xtrx_sink_c::get_bandwidth( size_t chan )
{
return _bandwidth;
}
static const std::map<std::string, xtrx_antenna_t> s_ant_map = boost::assign::map_list_of
("AUTO", XTRX_TX_AUTO)
("B1", XTRX_TX_H)
("B2", XTRX_TX_W)
("TXH", XTRX_TX_H)
("TXW", XTRX_TX_W)
;
static const std::map<xtrx_antenna_t, std::string> s_ant_map_r = boost::assign::map_list_of
(XTRX_TX_H, "TXH")
(XTRX_TX_W, "TXW")
(XTRX_TX_AUTO, "AUTO")
;
static xtrx_antenna_t get_ant_type(const std::string& name)
{
std::map<std::string, xtrx_antenna_t>::const_iterator it;
it = s_ant_map.find(name);
if (it != s_ant_map.end()) {
return it->second;
}
return XTRX_TX_AUTO;
}
static const std::vector<std::string> s_ant_list = boost::assign::list_of
("AUTO")("TXH")("TXW")
;
std::vector< std::string > xtrx_sink_c::get_antennas( size_t chan )
{
return s_ant_list;
}
std::string xtrx_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
boost::mutex::scoped_lock lock(_xtrx->mtx);
_ant = get_ant_type(antenna);
std::cerr << "Set antenna " << antenna << std::endl;
int res = xtrx_set_antenna_ex(_xtrx->dev(),
(xtrx_channel_t)(XTRX_CH_A << chan),
_ant);
if (res) {
std::cerr << "Can't set antenna: " << antenna << std::endl;
}
return get_antenna( chan );
}
std::string xtrx_sink_c::get_antenna( size_t chan )
{
return s_ant_map_r.find(_ant)->second;
}
void xtrx_sink_c::tag_process(int ninput_items)
{
std::sort(_tags.begin(), _tags.end(), gr::tag_t::offset_compare);
const uint64_t samp0_count = this->nitems_read(0);
uint64_t max_count = samp0_count + ninput_items;
bool found_time_tag = false;
BOOST_FOREACH(const gr::tag_t &my_tag, _tags) {
const uint64_t my_tag_count = my_tag.offset;
const pmt::pmt_t &key = my_tag.key;
const pmt::pmt_t &value = my_tag.value;
if (my_tag_count >= max_count) {
break;
} else if(pmt::equal(key, TIME_KEY)) {
//if (my_tag_count != samp0_count) {
// max_count = my_tag_count;
// break;
//}
found_time_tag = true;
//_metadata.has_time_spec = true;
//_metadata.time_spec = ::uhd::time_spec_t
// (pmt::to_uint64(pmt::tuple_ref(value, 0)),
// pmt::to_double(pmt::tuple_ref(value, 1)));
uint64_t seconds = pmt::to_uint64(pmt::tuple_ref(value, 0));
double fractional = pmt::to_double(pmt::tuple_ref(value, 1));
std::cerr << "TX_TIME: " << seconds << ":" << fractional << std::endl;
}
} // end foreach
if (found_time_tag) {
//_metadata.has_time_spec = true;
}
}
int xtrx_sink_c::work (int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
int ninput_items = noutput_items;
const uint64_t samp0_count = nitems_read(0);
get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items);
if (!_tags.empty())
tag_process(ninput_items);
xtrx_send_ex_info_t nfo;
nfo.samples = noutput_items;
nfo.buffer_count = input_items.size();
nfo.buffers = &input_items[0];
nfo.flags = XTRX_TX_DONT_BUFFER;
if (!_allow_dis)
nfo.flags |= XTRX_TX_NO_DISCARD;
nfo.ts = _ts;
nfo.timeout = 0;
int res = xtrx_send_sync_ex(_xtrx->dev(), &nfo);
if (res) {
std::cerr << "Err: " << res << std::endl;
std::stringstream message;
message << "xtrx_send_burst_sync error: " << -res;
throw std::runtime_error( message.str() );
}
_ts += noutput_items;
for (unsigned i = 0; i < input_items.size(); i++) {
consume(i, noutput_items);
}
return 0;
}
bool xtrx_sink_c::start()
{
boost::mutex::scoped_lock lock(_xtrx->mtx);
xtrx_run_params_t params;
xtrx_run_params_init(&params);
params.dir = XTRX_TX;
if (!_mimo_mode)
params.tx.flags |= XTRX_RSP_SISO_MODE;
if (_swap_ab)
params.tx.flags |= XTRX_RSP_SWAP_AB;
if (_swap_iq)
params.tx.flags |= XTRX_RSP_SWAP_IQ;
params.tx.hfmt = XTRX_IQ_FLOAT32;
params.tx.wfmt = _otw;
params.tx.chs = XTRX_CH_AB;
params.tx.paketsize = 0;
params.rx_stream_start = 256*1024;
int res = xtrx_run_ex(_xtrx->dev(), &params);
if (res) {
std::cerr << "Got error: " << res << std::endl;
}
return res == 0;
}
bool xtrx_sink_c::stop()
{
boost::mutex::scoped_lock lock(_xtrx->mtx);
//TODO:
std::cerr << "xtrx_sink_c::stop()" << std::endl;
int res = xtrx_stop(_xtrx->dev(), XTRX_TX);
if (res) {
std::cerr << "Got error: " << res << std::endl;
}
return res == 0;
}