gr-osmosdr/lib/bladerf/bladerf_sink_c.cc

486 lines
14 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013-2017 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <gnuradio/tags.h>
#include <gnuradio/sync_block.h>
#include <volk/volk.h>
#include "arg_helpers.h"
#include "bladerf_sink_c.h"
//#define DEBUG_BLADERF_SINK
#ifdef DEBUG_BLADERF_SINK
# define DBG(input) std::cerr << _pfx << input << std::endl
#else
# define DBG(input)
#endif
using namespace boost::assign;
/*
* Create a new instance of bladerf_sink_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_sink_c_sptr make_bladerf_sink_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_sink_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept either
* 1 or 2 inputs.
*/
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 2; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 0; // maximum number of output streams
/*
* The private constructor
*/
bladerf_sink_c::bladerf_sink_c (const std::string &args)
: gr::sync_block ("bladerf_sink_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
dict_t dict = params_to_dict(args);
/* Perform src/sink agnostic initializations */
init(dict, BLADERF_TX);
}
bool bladerf_sink_c::start()
{
_in_burst = false;
return bladerf_common::start(BLADERF_TX);
}
bool bladerf_sink_c::stop()
{
return bladerf_common::stop(BLADERF_TX);
}
#define INVALID_IDX -1
int bladerf_sink_c::transmit_with_tags(int noutput_items)
{
int count = 0;
int status = 0;
// For a long burst, we may be transmitting the burst contents over
// multiple work calls, so we'll just be sending the entire buffer
// Therefore, we initialize our indicies for this case.
int start_idx = 0;
int end_idx = (noutput_items - 1);
struct bladerf_metadata meta;
std::vector<gr::tag_t> tags;
int16_t zeros[8] = { 0 };
memset(&meta, 0, sizeof(meta));
DBG("transmit_with_tags(" << noutput_items << ")");
// Important Note: We assume that these tags are ordered by their offsets.
// This is true for GNU Radio 3.7.7.x, since the GR runtime libs store
// these in a multimap.
//
// If you're using an earlier GNU Radio version, you may have to sort
// the tags vector.
get_tags_in_window(tags, 0, 0, noutput_items);
if (tags.size() == 0) {
if (_in_burst) {
DBG("TX'ing " << noutput_items << " samples in within a burst...");
return bladerf_sync_tx(_dev.get(),
static_cast<void *>(_conv_buf),
noutput_items, &meta, _stream_timeout_ms);
} else {
std::cerr << _pfx << "Dropping " << noutput_items
<< " samples not in a burst." << std::endl;
}
}
BOOST_FOREACH( gr::tag_t tag, tags) {
// Upon seeing an SOB tag, update our offset. We'll TX the start of the
// burst when we see an EOB or at the end of this function - whichever
// occurs first.
if (pmt::symbol_to_string(tag.key) == "tx_sob") {
if (_in_burst) {
std::cerr << ("Got SOB while already within a burst");
return BLADERF_ERR_INVAL;
} else {
start_idx = static_cast<int>(tag.offset - nitems_read(0));
DBG("Got SOB " << start_idx << " samples into work payload");
meta.flags |= (BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START);
_in_burst = true;
}
} else if (pmt::symbol_to_string(tag.key) == "tx_eob") {
if (!_in_burst) {
std::cerr << _pfx << "Got EOB while not in burst" << std::endl;
return BLADERF_ERR_INVAL;
}
// Upon seeing an EOB, transmit what we have and reset our state
end_idx = static_cast<int>(tag.offset - nitems_read(0));
DBG("Got EOB " << end_idx << " samples into work payload");
if ( (start_idx == INVALID_IDX) || (start_idx > end_idx) ) {
DBG("Buffer indicies are in an invalid state!");
return BLADERF_ERR_INVAL;
}
count = end_idx - start_idx + 1;
DBG("TXing @ EOB [" << start_idx << ":" << end_idx << "]");
status = bladerf_sync_tx(_dev.get(),
static_cast<void *>(&_conv_buf[2*start_idx]),
count, &meta, _stream_timeout_ms);
if (status != 0) {
return status;
}
/* TODO: libbladeRF should now take care of this for us,
* as of the libbladeRF version that includes the
* TX_UPDATE_TIMESTAMP flag. Verify this potentially remove this.
* (The meta.flags changes would then be applied to the previous
* bladerf_sync_tx() call.)
*/
DBG("TXing Zeros with burst end flag");
meta.flags &= ~(BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START);
meta.flags |= BLADERF_META_FLAG_TX_BURST_END;
status = bladerf_sync_tx(_dev.get(),
static_cast<void *>(zeros),
4, &meta, _stream_timeout_ms);
/* Reset our state */
start_idx = INVALID_IDX;
end_idx = (noutput_items - 1);
meta.flags = 0;
_in_burst = false;
if (status != 0) {
DBG("Failed to send zero samples to flush EOB");
return status;
}
}
}
// We had a start of burst with no end yet - transmit those samples
if (_in_burst) {
count = end_idx - start_idx + 1;
DBG("TXing SOB [" << start_idx << ":" << end_idx << "]");
status = bladerf_sync_tx(_dev.get(),
static_cast<void *>(&_conv_buf[2*start_idx]),
count, &meta, _stream_timeout_ms);
}
return status;
}
int bladerf_sink_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
const gr_complex *in = (const gr_complex *) input_items[0];
const float scaling = 2000.0f;
int ret;
if (noutput_items > _conv_buf_size) {
void *tmp;
_conv_buf_size = noutput_items;
tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t));
if (tmp == NULL) {
throw std::runtime_error( std::string(__FUNCTION__) +
"Failed to realloc _conv_buf" );
} else {
DBG("Resized _conv_buf to " << _conv_buf_size << " samples");
}
_conv_buf = static_cast<int16_t*>(tmp);
}
/* Convert floating point samples into fixed point */
volk_32f_s32f_convert_16i(_conv_buf, (float*)in, scaling, 2 * noutput_items);
if (_use_metadata) {
ret = transmit_with_tags(noutput_items);
} else {
ret = bladerf_sync_tx(_dev.get(), static_cast<void *>(_conv_buf),
noutput_items, NULL, _stream_timeout_ms);
}
if ( ret != 0 ) {
std::cerr << _pfx << "bladerf_sync_tx error: "
<< bladerf_strerror(ret) << std::endl;
_consecutive_failures++;
if ( _consecutive_failures >= MAX_CONSECUTIVE_FAILURES ) {
noutput_items = WORK_DONE;
std::cerr << _pfx
<< "Consecutive error limit hit. Shutting down."
<< std::endl;
}
} else {
_consecutive_failures = 0;
}
return noutput_items;
}
std::vector<std::string> bladerf_sink_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_sink_c::get_num_channels()
{
return bladerf_common::get_num_channels(BLADERF_TX);
}
osmosdr::meta_range_t bladerf_sink_c::get_sample_rates()
{
return sample_rates();
}
double bladerf_sink_c::set_sample_rate(double rate)
{
return bladerf_common::set_sample_rate(BLADERF_TX, rate);
}
double bladerf_sink_c::get_sample_rate()
{
return bladerf_common::get_sample_rate(BLADERF_TX);
}
osmosdr::freq_range_t bladerf_sink_c::get_freq_range(size_t chan)
{
return bladerf_common::get_freq_range(BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::set_center_freq(double freq, size_t chan)
{
return bladerf_common::set_center_freq(freq, BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::get_center_freq(size_t chan)
{
return bladerf_common::get_center_freq(BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::set_freq_corr( double ppm, size_t chan )
{
/* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */
return get_freq_corr( BLADERF_CHANNEL_TX(chan) );
}
double bladerf_sink_c::get_freq_corr( size_t chan )
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_sink_c::get_gain_names( size_t chan )
{
return bladerf_common::get_gain_names(BLADERF_CHANNEL_TX(chan));
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range( size_t chan )
{
return bladerf_common::get_gain_range(BLADERF_CHANNEL_TX(chan));
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range( const std::string & name, size_t chan )
{
return bladerf_common::get_gain_range(name, BLADERF_CHANNEL_TX(chan));
}
bool bladerf_sink_c::set_gain_mode( bool automatic, size_t chan )
{
return bladerf_common::set_gain_mode(automatic, BLADERF_CHANNEL_TX(chan));
}
bool bladerf_sink_c::get_gain_mode( size_t chan )
{
return bladerf_common::get_gain_mode(BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::set_gain( double gain, size_t chan )
{
return bladerf_common::set_gain(gain, BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::set_gain( double gain, const std::string & name, size_t chan)
{
return bladerf_common::set_gain(gain, name, BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::get_gain( size_t chan )
{
return bladerf_common::get_gain(BLADERF_CHANNEL_TX(chan));
}
double bladerf_sink_c::get_gain( const std::string & name, size_t chan )
{
return bladerf_common::get_gain(name, BLADERF_CHANNEL_TX(chan));
}
std::vector< std::string > bladerf_sink_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += "TX0";
if (BLADERF_REV_2 == get_board_type(_dev.get())) {
antennas += "TX1";
}
return antennas;
}
std::string bladerf_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( BLADERF_CHANNEL_TX(chan) );
}
std::string bladerf_sink_c::get_antenna( size_t chan )
{
/* We only have a single transmit antenna here */
// TODO: the above is a lie
return "TX0";
}
void bladerf_sink_c::set_dc_offset( const std::complex<double> &offset, size_t chan )
{
int ret = 0;
ret = bladerf_common::set_dc_offset(BLADERF_TX, offset, chan);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set dc offset: " +
std::string(bladerf_strerror(ret)) );
}
}
void bladerf_sink_c::set_iq_balance( const std::complex<double> &balance, size_t chan )
{
int ret = 0;
ret = bladerf_common::set_iq_balance(BLADERF_TX, balance, chan);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set iq balance: " +
std::string(bladerf_strerror(ret)) );
}
}
double bladerf_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
uint32_t actual;
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */
ret = bladerf_set_bandwidth( _dev.get(), BLADERF_TX, (uint32_t)bandwidth, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set bandwidth:" +
std::string(bladerf_strerror(ret)) );
}
return get_bandwidth();
}
double bladerf_sink_c::get_bandwidth( size_t chan )
{
uint32_t bandwidth;
int ret;
ret = bladerf_get_bandwidth( _dev.get(), BLADERF_TX, &bandwidth );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get bandwidth: " +
std::string(bladerf_strerror(ret)) );
}
return (double)bandwidth;
}
osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range( size_t chan )
{
return filter_bandwidths();
}
void bladerf_sink_c::set_clock_source(const std::string &source, const size_t mboard)
{
bladerf_common::set_clock_source(source, mboard);
}
std::string bladerf_sink_c::get_clock_source(const size_t mboard)
{
return bladerf_common::get_clock_source(mboard);
}
std::vector<std::string> bladerf_sink_c::get_clock_sources(const size_t mboard)
{
return bladerf_common::get_clock_sources(mboard);
}