GNU Radio block for interfacing with various radio hardware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gr-osmosdr/lib/hackrf/hackrf_sink_c.cc

788 lines
20 KiB

/* -*- c++ -*- */
/*
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdexcept>
#include <iostream>
#include <algorithm>
#ifdef USE_AVX
#include <immintrin.h>
#elif USE_SSE2
#include <emmintrin.h>
#endif
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/detail/endian.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread/thread.hpp>
#include <gnuradio/io_signature.h>
#include "hackrf_sink_c.h"
#include "arg_helpers.h"
using namespace boost::assign;
#define BUF_LEN (16 * 32 * 512) /* must be multiple of 512 */
#define BUF_NUM 32
#define BYTES_PER_SAMPLE 2 /* HackRF device consumes 8 bit unsigned IQ data */
static inline bool cb_init(circular_buffer_t *cb, size_t capacity, size_t sz)
{
cb->buffer = malloc(capacity * sz);
if(cb->buffer == NULL)
return false; // handle error
cb->buffer_end = (char *)cb->buffer + capacity * sz;
cb->capacity = capacity;
cb->count = 0;
cb->sz = sz;
cb->head = cb->buffer;
cb->tail = cb->buffer;
return true;
}
static inline void cb_free(circular_buffer_t *cb)
{
if (cb->buffer) {
free(cb->buffer);
cb->buffer = NULL;
}
// clear out other fields too, just to be safe
cb->buffer_end = 0;
cb->capacity = 0;
cb->count = 0;
cb->sz = 0;
cb->head = 0;
cb->tail = 0;
}
static inline bool cb_has_room(circular_buffer_t *cb)
{
if(cb->count == cb->capacity)
return false;
return true;
}
static inline bool cb_push_back(circular_buffer_t *cb, const void *item)
{
if(cb->count == cb->capacity)
return false; // handle error
memcpy(cb->head, item, cb->sz);
cb->head = (char *)cb->head + cb->sz;
if(cb->head == cb->buffer_end)
cb->head = cb->buffer;
cb->count++;
return true;
}
static inline bool cb_pop_front(circular_buffer_t *cb, void *item)
{
if(cb->count == 0)
return false; // handle error
memcpy(item, cb->tail, cb->sz);
cb->tail = (char *)cb->tail + cb->sz;
if(cb->tail == cb->buffer_end)
cb->tail = cb->buffer;
cb->count--;
return true;
}
int hackrf_sink_c::_usage = 0;
boost::mutex hackrf_sink_c::_usage_mutex;
hackrf_sink_c_sptr make_hackrf_sink_c (const std::string & args)
{
return gnuradio::get_initial_sptr(new hackrf_sink_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr::block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 0; // maximum number of output streams
/*
* The private constructor
*/
hackrf_sink_c::hackrf_sink_c (const std::string &args)
: gr::sync_block ("hackrf_sink_c",
gr::io_signature::make(MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make(MIN_OUT, MAX_OUT, sizeof (gr_complex))),
_dev(NULL),
_buf(NULL),
_sample_rate(0),
_center_freq(0),
_freq_corr(0),
_auto_gain(false),
_amp_gain(0),
_vga_gain(0)
{
int ret;
uint16_t val;
dict_t dict = params_to_dict(args);
_buf_num = 0;
if (dict.count("buffers"))
_buf_num = boost::lexical_cast< unsigned int >( dict["buffers"] );
if (0 == _buf_num)
_buf_num = BUF_NUM;
{
boost::mutex::scoped_lock lock( _usage_mutex );
if ( _usage == 0 )
hackrf_init(); /* call only once before the first open */
_usage++;
}
_dev = NULL;
ret = hackrf_open( &_dev );
if (ret != HACKRF_SUCCESS)
throw std::runtime_error("Failed to open HackRF device.");
uint8_t board_id;
ret = hackrf_board_id_read( _dev, &board_id );
if (ret != HACKRF_SUCCESS)
throw std::runtime_error("Failed to get board id.");
char version[40];
memset(version, 0, sizeof(version));
ret = hackrf_version_string_read( _dev, version, sizeof(version));
if (ret != HACKRF_SUCCESS)
throw std::runtime_error("Failed to read version string.");
#if 0
read_partid_serialno_t serial_number;
ret = hackrf_board_partid_serialno_read( _dev, &serial_number );
if (ret != HACKRF_SUCCESS)
throw std::runtime_error("Failed to read serial number.");
#endif
std::cerr << "Using " << hackrf_board_id_name(hackrf_board_id(board_id)) << " "
<< "with firmware " << version << " "
<< std::endl;
if ( BUF_NUM != _buf_num ) {
std::cerr << "Using " << _buf_num << " buffers of size " << BUF_LEN << "."
<< std::endl;
}
set_sample_rate( 5000000 );
set_gain( 0 ); /* disable AMP gain stage */
hackrf_max2837_read( _dev, 29, &val );
val |= 0x3; /* enable TX VGA control over SPI */
hackrf_max2837_write( _dev, 29, val );
set_if_gain( 16 ); /* preset to a reasonable default (non-GRC use case) */
_buf = (unsigned char *) malloc( BUF_LEN );
cb_init( &_cbuf, _buf_num, BUF_LEN );
// _thread = gr::thread::thread(_hackrf_wait, this);
}
/*
* Our virtual destructor.
*/
hackrf_sink_c::~hackrf_sink_c ()
{
if (_dev) {
// _thread.join();
hackrf_close( _dev );
_dev = NULL;
{
boost::mutex::scoped_lock lock( _usage_mutex );
_usage--;
if ( _usage == 0 )
hackrf_exit(); /* call only once after last close */
}
}
if (_buf) {
free(_buf);
_buf = NULL;
}
cb_free( &_cbuf );
}
int hackrf_sink_c::_hackrf_tx_callback(hackrf_transfer *transfer)
{
hackrf_sink_c *obj = (hackrf_sink_c *)transfer->tx_ctx;
return obj->hackrf_tx_callback(transfer->buffer, transfer->valid_length);
}
int hackrf_sink_c::hackrf_tx_callback(unsigned char *buffer, uint32_t length)
{
#if 0
for (unsigned int i = 0; i < length; ++i) /* simulate noise */
*buffer++ = rand() % 255;
#else
{
boost::mutex::scoped_lock lock( _buf_mutex );
if ( ! cb_pop_front( &_cbuf, buffer ) ) {
memset(buffer, 0, length);
std::cerr << "U" << std::flush;
} else {
// std::cerr << "-" << std::flush;
_buf_cond.notify_one();
}
}
#endif
return 0; // TODO: return -1 on error/stop
}
void hackrf_sink_c::_hackrf_wait(hackrf_sink_c *obj)
{
obj->hackrf_wait();
}
void hackrf_sink_c::hackrf_wait()
{
}
bool hackrf_sink_c::start()
{
if ( ! _dev )
return false;
_buf_used = 0;
int ret = hackrf_start_tx( _dev, _hackrf_tx_callback, (void *)this );
if (ret != HACKRF_SUCCESS) {
std::cerr << "Failed to start TX streaming (" << ret << ")" << std::endl;
return false;
}
return true;
}
bool hackrf_sink_c::stop()
{
if ( ! _dev )
return false;
int ret = hackrf_stop_tx( _dev );
if (ret != HACKRF_SUCCESS) {
std::cerr << "Failed to stop TX streaming (" << ret << ")" << std::endl;
return false;
}
return true;
}
#ifdef USE_AVX
void convert_avx(const float* inbuf, unsigned char* outbuf,const unsigned int count)
{
__m256 mulme = _mm256_set_ps(127.0f, 127.0f, 127.0f, 127.0f, 127.0f, 127.0f, 127.0f, 127.0f);
__m128i addme = _mm_set_epi16(127, 127, 127, 127, 127, 127, 127, 127);
for(unsigned int i=0; i<count;i++){
__m256i itmp3 = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_loadu_ps(&inbuf[i*16+0]), mulme));
__m256i itmp4 = _mm256_cvtps_epi32(_mm256_mul_ps(_mm256_loadu_ps(&inbuf[i*16+8]), mulme));
__m128i a1 = _mm256_extractf128_si256(itmp3, 1);
__m128i a0 = _mm256_castsi256_si128(itmp3);
__m128i a3 = _mm256_extractf128_si256(itmp4, 1);
__m128i a2 = _mm256_castsi256_si128(itmp4);
__m128i outshorts1 = _mm_add_epi16(_mm_packs_epi32(a0, a1), addme);
__m128i outshorts2 = _mm_add_epi16(_mm_packs_epi32(a2, a3), addme);
__m128i outbytes = _mm_packus_epi16(outshorts1, outshorts2);
_mm_storeu_si128 ((__m128i*)&outbuf[i*16], outbytes);
}
}
#elif USE_SSE2
void convert_sse2(const float* inbuf, unsigned char* outbuf,const unsigned int count)
{
const register __m128 mulme = _mm_set_ps( 127.0f, 127.0f, 127.0f, 127.0f );
__m128i addme = _mm_set_epi16( 127, 127, 127, 127, 127, 127, 127, 127);
__m128 itmp1,itmp2,itmp3,itmp4;
__m128i otmp1,otmp2,otmp3,otmp4;
__m128i outshorts1,outshorts2;
__m128i outbytes;
for(unsigned int i=0; i<count;i++){
itmp1 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+0]), mulme);
itmp2 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+4]), mulme);
itmp3 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+8]), mulme);
itmp4 = _mm_mul_ps(_mm_loadu_ps(&inbuf[i*16+12]), mulme);
otmp1 = _mm_cvtps_epi32(itmp1);
otmp2 = _mm_cvtps_epi32(itmp2);
otmp3 = _mm_cvtps_epi32(itmp3);
otmp4 = _mm_cvtps_epi32(itmp4);
outshorts1 = _mm_add_epi16(_mm_packs_epi32(otmp1, otmp2), addme);
outshorts2 = _mm_add_epi16(_mm_packs_epi32(otmp3, otmp4), addme);
outbytes = _mm_packus_epi16(outshorts1, outshorts2);
_mm_storeu_si128 ((__m128i*)&outbuf[i*16], outbytes);
}
}
#endif
void convert_default(float* inbuf, unsigned char* outbuf,const unsigned int count)
{
for(unsigned int i=0; i<count;i++){
outbuf[i]= inbuf[i]*127+127;
}
}
int hackrf_sink_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
const gr_complex *in = (const gr_complex *) input_items[0];
{
boost::mutex::scoped_lock lock( _buf_mutex );
while ( ! cb_has_room(&_cbuf) )
_buf_cond.wait( lock );
}
unsigned char *buf = _buf + _buf_used;
unsigned int prev_buf_used = _buf_used;
unsigned int remaining = (BUF_LEN-_buf_used)/2; //complex
unsigned int count = std::min((unsigned int)noutput_items,remaining);
unsigned int sse_rem = count/8; // 8 complex = 16f==512bit for avx
unsigned int nosse_rem = count%8; // remainder
#ifdef USE_AVX
convert_avx((float*)in, buf, sse_rem);
convert_default((float*)(in+sse_rem*8), buf+(sse_rem*8*2), nosse_rem*2);
#elif USE_SSE2
convert_sse2((float*)in, buf, sse_rem);
convert_default((float*)(in+sse_rem*8), buf+(sse_rem*8*2), nosse_rem*2);
#else
convert_default((float*)in, buf, count*2);
#endif
_buf_used += (sse_rem*8+nosse_rem)*2;
int items_consumed = sse_rem*8+nosse_rem;
if((unsigned int)noutput_items >= remaining) {
{
boost::mutex::scoped_lock lock( _buf_mutex );
if ( ! cb_push_back( &_cbuf, _buf ) ) {
_buf_used = prev_buf_used;
items_consumed = 0;
std::cerr << "O" << std::flush;
} else {
// std::cerr << "+" << std::flush;
_buf_used = 0;
}
}
}
// Tell runtime system how many input items we consumed on
// each input stream.
consume_each(items_consumed);
// Tell runtime system how many output items we produced.
return 0;
}
std::vector<std::string> hackrf_sink_c::get_devices()
{
std::vector<std::string> devices;
std::string label;
for (unsigned int i = 0; i < 1 /* TODO: missing libhackrf api */; i++) {
std::string args = "hackrf=" + boost::lexical_cast< std::string >( i );
label.clear();
label = "HackRF Jawbreaker"; /* TODO: missing libhackrf api */
boost::algorithm::trim(label);
args += ",label='" + label + "'";
devices.push_back( args );
}
return devices;
}
size_t hackrf_sink_c::get_num_channels()
{
return 1;
}
osmosdr::meta_range_t hackrf_sink_c::get_sample_rates()
{
osmosdr::meta_range_t range;
range += osmosdr::range_t( 5e6 ); /* out of spec but appears to work */
range += osmosdr::range_t( 10e6 );
range += osmosdr::range_t( 12.5e6 );
range += osmosdr::range_t( 16e6 );
range += osmosdr::range_t( 20e6 ); /* confirmed to work on fast machines */
return range;
}
double hackrf_sink_c::set_sample_rate(double rate)
{
int ret;
if (_dev) {
ret = hackrf_sample_rate_set( _dev, uint32_t(rate) );
if ( HACKRF_SUCCESS == ret ) {
_sample_rate = rate;
set_bandwidth( rate );
} else {
throw std::runtime_error( std::string( __FUNCTION__ ) + " has failed" );
}
}
return get_sample_rate();
}
double hackrf_sink_c::get_sample_rate()
{
return _sample_rate;
}
osmosdr::freq_range_t hackrf_sink_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( 30e6, 6e9 );
return range;
}
double hackrf_sink_c::set_center_freq( double freq, size_t chan )
{
int ret;
#define APPLY_PPM_CORR(val, ppm) ((val) * (1.0 + (ppm) * 0.000001))
if (_dev) {
double corr_freq = APPLY_PPM_CORR( freq, _freq_corr );
ret = hackrf_set_freq( _dev, uint64_t(corr_freq) );
if ( HACKRF_SUCCESS == ret ) {
_center_freq = freq;
} else {
throw std::runtime_error( std::string( __FUNCTION__ ) + " has failed" );
}
}
return get_center_freq( chan );
}
double hackrf_sink_c::get_center_freq( size_t chan )
{
return _center_freq;
}
double hackrf_sink_c::set_freq_corr( double ppm, size_t chan )
{
_freq_corr = ppm;
set_center_freq( _center_freq );
return get_freq_corr( chan );
}
double hackrf_sink_c::get_freq_corr( size_t chan )
{
return _freq_corr;
}
std::vector<std::string> hackrf_sink_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "RF";
names += "IF";
return names;
}
osmosdr::gain_range_t hackrf_sink_c::get_gain_range( size_t chan )
{
return get_gain_range( "RF", chan );
}
osmosdr::gain_range_t hackrf_sink_c::get_gain_range( const std::string & name, size_t chan )
{
if ( "RF" == name ) {
return osmosdr::gain_range_t( 0, 14, 14 );
}
if ( "IF" == name ) {
return osmosdr::gain_range_t( 0, 47, 1 );
}
return osmosdr::gain_range_t();
}
bool hackrf_sink_c::set_gain_mode( bool automatic, size_t chan )
{
_auto_gain = automatic;
return get_gain_mode(chan);
}
bool hackrf_sink_c::get_gain_mode( size_t chan )
{
return _auto_gain;
}
double hackrf_sink_c::set_gain( double gain, size_t chan )
{
osmosdr::gain_range_t rf_gains = get_gain_range( "RF", chan );
if (_dev) {
double clip_gain = rf_gains.clip( gain, true );
std::map<double, int> reg_vals;
reg_vals[ 0 ] = 0;
reg_vals[ 14 ] = 1;
if ( reg_vals.count( clip_gain ) ) {
int value = reg_vals[ clip_gain ];
#if 0
std::cerr << "amp gain: " << gain
<< " clip_gain: " << clip_gain
<< " value: " << value
<< std::endl;
#endif
if ( hackrf_set_amp_enable( _dev, value ) == HACKRF_SUCCESS )
_amp_gain = clip_gain;
}
}
return _amp_gain;
}
double hackrf_sink_c::set_gain( double gain, const std::string & name, size_t chan)
{
if ( "RF" == name ) {
return set_gain( gain, chan );
}
if ( "IF" == name ) {
return set_if_gain( gain, chan );
}
return set_gain( gain, chan );
}
double hackrf_sink_c::get_gain( size_t chan )
{
return _amp_gain;
}
double hackrf_sink_c::get_gain( const std::string & name, size_t chan )
{
if ( "RF" == name ) {
return get_gain( chan );
}
if ( "IF" == name ) {
return _vga_gain;
}
return get_gain( chan );
}
double hackrf_sink_c::set_if_gain( double gain, size_t chan )
{
osmosdr::gain_range_t if_gains = get_gain_range( "IF", chan );
double clip_gain = if_gains.clip( gain, true );
double rel_atten = fabs( if_gains.stop() - clip_gain );
std::vector< osmosdr::gain_range_t > if_attens;
if_attens += osmosdr::gain_range_t(0, 1, 1); /* chapter 1.5: TX Gain Control */
if_attens += osmosdr::gain_range_t(0, 2, 2);
if_attens += osmosdr::gain_range_t(0, 4, 4);
if_attens += osmosdr::gain_range_t(0, 8, 8);
if_attens += osmosdr::gain_range_t(0, 16, 16);
if_attens += osmosdr::gain_range_t(0, 16, 16);
std::map< int, double > attens;
/* initialize with min attens */
for (unsigned int i = 0; i < if_attens.size(); i++) {
attens[ i + 1 ] = if_attens[ i ].start();
}
double atten = rel_atten;
for (int i = if_attens.size() - 1; i >= 0; i--) {
osmosdr::gain_range_t range = if_attens[ i ];
if ( atten - range.stop() >= 0 ) {
atten -= range.stop();
attens[ i + 1 ] = range.stop();
}
}
#if 0
std::cerr << rel_atten << " => "; double sum = 0;
for (unsigned int i = 0; i < attens.size(); i++) {
sum += attens[ i + 1 ];
std::cerr << attens[ i + 1 ] << " ";
}
std::cerr << " = " << sum << std::endl;
#endif
if (_dev) {
int value = 0;
for (unsigned int stage = 1; stage <= attens.size(); stage++) {
if ( attens[ stage ] != 0 )
value |= 1 << (stage - 1);
}
#if 0
std::cerr << "vga gain: " << gain
<< " clip_gain: " << clip_gain
<< " rel_atten: " << rel_atten
<< " value: " << value
<< std::endl;
#endif
uint16_t val;
hackrf_max2837_read( _dev, 29, &val );
val = (val & 0xf) | ((value & 0x3f) << 4);
if ( hackrf_max2837_write( _dev, 29, val ) == HACKRF_SUCCESS )
_vga_gain = clip_gain;
}
return _vga_gain;
}
double hackrf_sink_c::set_bb_gain(double gain, size_t chan)
{
return 0;
}
std::vector< std::string > hackrf_sink_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string hackrf_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string hackrf_sink_c::get_antenna( size_t chan )
{
return "TX/RX";
}
double hackrf_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
// osmosdr::freq_range_t bandwidths = get_bandwidth_range( chan );
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = _sample_rate;
if ( _dev ) {
/* compute best default value depending on sample rate (auto filter) */
uint32_t bw = hackrf_compute_baseband_filter_bw( uint32_t(bandwidth) );
ret = hackrf_baseband_filter_bandwidth_set( _dev, bw );
if ( HACKRF_SUCCESS == ret ) {
_bandwidth = bw;
} else {
throw std::runtime_error( std::string( __FUNCTION__ ) + " has failed" );
}
}
return _bandwidth;
}
double hackrf_sink_c::get_bandwidth( size_t chan )
{
return _bandwidth;
}
osmosdr::freq_range_t hackrf_sink_c::get_bandwidth_range( size_t chan )
{
osmosdr::freq_range_t bandwidths;
// TODO: read out from libhackrf when an API is available
bandwidths += osmosdr::range_t( 1750000 );
bandwidths += osmosdr::range_t( 2500000 );
bandwidths += osmosdr::range_t( 3500000 );
bandwidths += osmosdr::range_t( 5000000 );
bandwidths += osmosdr::range_t( 5500000 );
bandwidths += osmosdr::range_t( 6000000 );
bandwidths += osmosdr::range_t( 7000000 );
bandwidths += osmosdr::range_t( 8000000 );
bandwidths += osmosdr::range_t( 9000000 );
bandwidths += osmosdr::range_t( 10000000 );
bandwidths += osmosdr::range_t( 12000000 );
bandwidths += osmosdr::range_t( 14000000 );
bandwidths += osmosdr::range_t( 15000000 );
bandwidths += osmosdr::range_t( 20000000 );
bandwidths += osmosdr::range_t( 24000000 );
bandwidths += osmosdr::range_t( 28000000 );
return bandwidths;
}