gr-osmosdr/lib/netsdr/netsdr_source_c.cc

1096 lines
29 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for feature_t, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef USE_ASIO
#include <netinet/in.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <arpa/inet.h>
#include <netdb.h>
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#ifdef USE_ASIO
#include <boost/asio/deadline_timer.hpp>
#endif
#include <gnuradio/io_signature.h>
#include "arg_helpers.h"
#include "netsdr_source_c.h"
using namespace boost::assign;
#ifdef USE_ASIO
using boost::asio::deadline_timer;
#endif
#define DEFAULT_HOST "127.0.0.1" /* We assume a running moetronix server */
#define DEFAULT_PORT 50000
/*
* Create a new instance of netsdr_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
netsdr_source_c_sptr make_netsdr_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new netsdr_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
netsdr_source_c::netsdr_source_c (const std::string &args)
: gr::sync_block ("netsdr_source_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))),
#ifdef USE_ASIO
_io_service(),
_resolver(_io_service),
_t(_io_service),
_u(_io_service),
#else
_tcp(-1),
_udp(-1),
#endif
_running(false),
_keep_running(false),
_sequence(0),
_nchan(1)
{
std::string host = "";
unsigned short port = 0;
dict_t dict = params_to_dict(args);
if (dict.count("netsdr")) {
std::string value = dict["netsdr"];
if ( ! value.length() )
{
std::vector< std::string > devices = get_devices();
if ( devices.size() )
{
dict_t first = params_to_dict( devices[0] );
dict["netsdr"] = value = first["netsdr"];
dict["label"] = first["label"];
}
}
std::vector< std::string > tokens;
boost::algorithm::split( tokens, value, boost::is_any_of(":") );
if ( tokens[0].length() && (tokens.size() == 1 || tokens.size() == 2 ) )
host = tokens[0];
if ( tokens.size() == 2 ) // port given
port = boost::lexical_cast< unsigned short >( tokens[1] );
}
if (dict.count("nchan"))
_nchan = boost::lexical_cast< size_t >( dict["nchan"] );
if ( _nchan < 1 || _nchan > 2 )
throw std::runtime_error("Number of channels (nchan) must be 1 or 2");
if ( ! host.length() )
host = DEFAULT_HOST;
if (0 == port)
port = DEFAULT_PORT;
std::string port_str = boost::lexical_cast< std::string >( port );
std::string label = dict["label"];
if ( label.length() )
std::cerr << "Using " + label << " ";
#ifdef USE_ASIO
tcp::resolver::query query(tcp::v4(), host.c_str(), port_str.c_str());
tcp::resolver::iterator iterator = _resolver.resolve(query);
boost::system::error_code ec;
boost::asio::connect(_t, iterator, ec);
if ( ec )
throw std::runtime_error(ec.message() + " (" + host + ":" + port_str + ")");
_u.open(udp::v4(), ec);
if ( ec )
throw std::runtime_error(ec.message());
// TODO: make listener port dynamic
_u.bind(udp::endpoint(udp::v4(), DEFAULT_PORT), ec);
if ( ec )
throw std::runtime_error(ec.message());
_u.set_option(udp::socket::reuse_address(true));
_t.set_option(udp::socket::reuse_address(true));
#else
if ( (_tcp = socket(AF_INET, SOCK_STREAM, 0) ) < 0)
{
throw std::runtime_error("Could not create TCP socket");
}
int sockoptval = 1;
setsockopt(_tcp, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int));
sockoptval = 1;
setsockopt(_tcp, IPPROTO_TCP, TCP_NODELAY, &sockoptval, sizeof(int));
/* don't wait when shutting down */
linger lngr;
lngr.l_onoff = 1;
lngr.l_linger = 0;
setsockopt(_tcp, SOL_SOCKET, SO_LINGER, &lngr, sizeof(linger));
struct hostent *hp; /* host information */
struct sockaddr_in host_sa; /* local address */
struct sockaddr_in peer_sa; /* remote address */
/* look up the address of the server given its name */
hp = gethostbyname( host.c_str() );
if (!hp) {
close(_tcp);
throw std::runtime_error(std::string(hstrerror(h_errno)) + " (" + host + ")");
}
/* fill in the hosts's address and data */
memset(&host_sa, 0, sizeof(host_sa));
host_sa.sin_family = AF_INET;
host_sa.sin_addr.s_addr = htonl(INADDR_ANY);
host_sa.sin_port = htons(0);
if ( bind(_tcp, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 )
{
close(_tcp);
throw std::runtime_error("Bind of TCP socket failed: " + std::string(strerror(errno)));
}
/* fill in the server's address and data */
memset(&peer_sa, 0, sizeof(peer_sa));
peer_sa.sin_family = AF_INET;
peer_sa.sin_port = htons(port);
/* put the host's address into the server address structure */
memcpy((void *)&peer_sa.sin_addr, hp->h_addr_list[0], hp->h_length);
/* connect to server */
if ( connect(_tcp, (struct sockaddr *)&peer_sa, sizeof(peer_sa)) < 0 )
{
close(_tcp);
throw std::runtime_error(std::string(strerror(errno)) + " (" + host + ":" + port_str + ")");
}
if ( (_udp = socket(AF_INET, SOCK_DGRAM, 0)) < 0 )
{
close(_tcp);
throw std::runtime_error("Could not create UDP socket");
}
sockoptval = 1;
setsockopt(_udp, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int));
/* fill in the hosts's address and data */
memset(&host_sa, 0, sizeof(host_sa));
host_sa.sin_family = AF_INET;
host_sa.sin_addr.s_addr = htonl(INADDR_ANY);
host_sa.sin_port = htons(DEFAULT_PORT);
if ( bind(_udp, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 )
{
close(_tcp);
close(_udp);
throw std::runtime_error("Bind of UDP socket failed: " + std::string(strerror(errno)));
}
#endif
// request & print device information
std::vector< unsigned char > response;
if ( ! label.length() ) /* label is empty, request name & sn from device */
{
std::cerr << "Using ";
unsigned char name[4] = { 0x04, 0x20, 0x01, 0x00 };
if ( transaction( name, sizeof(name), response ) )
std::cerr << &response[sizeof(name)] << " ";
unsigned char sern[4] = { 0x04, 0x20, 0x02, 0x00 };
if ( transaction( sern, sizeof(sern), response ) )
std::cerr << &response[sizeof(sern)] << " ";
}
bool has_X2_option = false;
unsigned char opts[4] = { 0x04, 0x20, 0x0A, 0x00 };
if ( transaction( opts, sizeof(opts), response ) )
{
if ( response[sizeof(opts)] )
{
has_X2_option = (response[sizeof(opts)] & 16 ? true : false);
std::cerr << "option ";
std::cerr << (response[sizeof(opts)] & 16 ? "2" : "-"); /* X2 board */
std::cerr << (response[sizeof(opts)] & 8 ? "U" : "-"); /* Up Converter */
std::cerr << (response[sizeof(opts)] & 4 ? "D" : "-"); /* Down Converter */
std::cerr << (response[sizeof(opts)] & 2 ? "R" : "-"); /* Reflock board */
std::cerr << (response[sizeof(opts)] & 1 ? "S" : "-"); /* Sound Enabled */
std::cerr << " ";
}
}
unsigned char bootver[5] = { 0x05, 0x20, 0x04, 0x00, 0x00 };
if ( transaction( bootver, sizeof(bootver), response ) )
std::cerr << "BOOT " << *((uint16_t *)&response[sizeof(bootver)]) << " ";
unsigned char firmver[5] = { 0x05, 0x20, 0x04, 0x00, 0x01 };
if ( transaction( firmver, sizeof(firmver), response ) )
std::cerr << "FW " << *((uint16_t *)&response[sizeof(firmver)]) << " ";
unsigned char hardver[5] = { 0x05, 0x20, 0x04, 0x00, 0x02 };
if ( transaction( hardver, sizeof(hardver), response ) )
std::cerr << "HW " << *((uint16_t *)&response[sizeof(hardver)]) << " ";
unsigned char fpgaver[5] = { 0x05, 0x20, 0x04, 0x00, 0x03 };
if ( transaction( fpgaver, sizeof(fpgaver), response ) )
std::cerr << "FPGA " << int(response[sizeof(fpgaver)])
<< "/" << int(response[sizeof(fpgaver)+1]) << " ";
std::cerr << std::endl;
{
/* 4.2.2 Receiver Channel Setup */
unsigned char rxchan[5] = { 0x05, 0x00, 0x19, 0x00, 0x00 };
unsigned char mode = 0; /* 0 = Single Channel Mode */
if ( 2 == _nchan )
{
if ( has_X2_option )
mode = 6; /* Dual Channel with dual A/D RF Path (requires X2 option) */
else
mode = 4; /* Dual Channel with single A/D RF Path using main A/D. */
set_output_signature( gr::io_signature::make (2, 2, sizeof (gr_complex)) );
}
rxchan[sizeof(rxchan)-1] = mode;
transaction( rxchan, sizeof(rxchan) );
}
set_sample_rate( 500e3 );
set_bandwidth( 0 ); /* switch to automatic filter selection by default */
}
/*
* Our virtual destructor.
*/
netsdr_source_c::~netsdr_source_c ()
{
#ifndef USE_ASIO
close(_tcp);
close(_udp);
#endif
}
void netsdr_source_c::apply_channel( unsigned char *cmd, size_t chan_pos, size_t chan )
{
if ( 0 == chan )
{
cmd[chan_pos] = 0;
}
else if ( 1 == chan )
{
if ( _nchan < 2 )
throw std::runtime_error("Channel must be 0 or 1");
cmd[chan_pos] = 2;
}
else
throw std::runtime_error("Channel must be 0 or 1");
}
bool netsdr_source_c::transaction( const unsigned char *cmd, size_t size )
{
std::vector< unsigned char > response;
if ( ! transaction( cmd, size, response ) )
return false;
/* comparing the contents is not really feasible due to protocol */
if ( response.size() == size ) /* check response size against request */
return true;
return false;
}
//#define VERBOSE
bool netsdr_source_c::transaction( const unsigned char *cmd, size_t size,
std::vector< unsigned char > &response )
{
size_t rx_bytes = 0;
unsigned char data[1024*2];
response.clear();
#ifdef VERBOSE
printf("< ");
for (size_t i = 0; i < size; i++)
printf("%02x ", (unsigned char) cmd[i]);
printf("\n");
#endif
#ifdef USE_ASIO
_t.write_some( boost::asio::buffer(cmd, size) );
rx_bytes = _t.read_some( boost::asio::buffer(data, sizeof(data)) );
#else
write(_tcp, cmd, size);
int nbytes = read(_tcp, data, 2); /* read header */
if ( nbytes != 2 )
return false;
int length = (data[1] & 0x1f) | data[0];
if ( (length < 2) || (length > (int)sizeof(data)) )
return false;
length -= 2; /* subtract header size */
nbytes = read(_tcp, &data[2], length); /* read payload */
if ( nbytes != length )
return false;
rx_bytes = 2 + length; /* header + payload */
#endif
response.resize( rx_bytes );
memcpy( response.data(), data, rx_bytes );
#ifdef VERBOSE
printf("> ");
for (size_t i = 0; i < rx_bytes; i++)
printf("%02x ", (unsigned char) data[i]);
printf("\n");
#endif
return true;
}
bool netsdr_source_c::start()
{
_sequence = 0;
_running = true;
_keep_running = false;
/* 4.2.1 Receiver State */
unsigned char start[8] = { 0x08, 0x00, 0x18, 0x00, 0x80, 0x02, 0x00, 0x00 };
unsigned char mode = 0; /* 0 = 16 bit Contiguous Mode */
if ( 0 ) /* TODO: 24 bit Contiguous mode */
mode |= 0x80;
if ( 0 ) /* TODO: Hardware Triggered Pulse mode */
mode |= 0x03;
start[sizeof(start)-2] = mode;
return transaction( start, sizeof(start) );
}
bool netsdr_source_c::stop()
{
if ( ! _keep_running )
_running = false;
_keep_running = false;
/* 4.2.1 Receiver State */
unsigned char stop[8] = { 0x08, 0x00, 0x18, 0x00, 0x00, 0x01, 0x00, 0x00 };
return transaction( stop, sizeof(stop) );
}
/* Main work function, pull samples from the socket */
int netsdr_source_c::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
unsigned char data[1024*2];
if ( ! _running )
return WORK_DONE;
#ifdef USE_ASIO
udp::endpoint ep;
size_t rx_bytes = _u.receive_from( boost::asio::buffer(data, sizeof(data)), ep );
#else
struct sockaddr_in sa_in; /* remote address */
socklen_t addrlen = sizeof(sa_in); /* length of addresses */
ssize_t rx_bytes = recvfrom(_udp, data, sizeof(data), 0, (struct sockaddr *)&sa_in, &addrlen);
if ( rx_bytes <= 0 )
{
std::cerr << "recvfrom returned " << rx_bytes << std::endl;
return WORK_DONE;
}
#endif
#define HEADER_SIZE 2
#define SEQNUM_SIZE 2
// bool is_24_bit = false; // TODO: implement 24 bit sample format
/* check header */
if ( (0x04 == data[0] && (0x84 == data[1] || 0x82 == data[1])) )
{
// is_24_bit = false;
}
else if ( (0xA4 == data[0] && 0x85 == data[1]) ||
(0x84 == data[0] && 0x81 == data[1]) )
{
// is_24_bit = true;
return 0;
}
else
return 0;
uint16_t sequence = *((uint16_t *)(data + HEADER_SIZE));
uint16_t diff = sequence - _sequence;
if ( diff > 1 )
{
std::cerr << "Lost " << diff << " packets from "
#ifdef USE_ASIO
<< ep
#else
<< inet_ntoa(sa_in.sin_addr) << ":" << ntohs(sa_in.sin_port)
#endif
<< std::endl;
}
_sequence = (0xffff == sequence) ? 0 : sequence;
/* get pointer to samples */
int16_t *sample = (int16_t *)(data + HEADER_SIZE + SEQNUM_SIZE);
size_t rx_samples = (rx_bytes - HEADER_SIZE - SEQNUM_SIZE) / (sizeof(int16_t) * 2);
#define SCALE_16 (1.0f/32768.0f)
if ( 1 == _nchan )
{
gr_complex *out = (gr_complex *)output_items[0];
for ( size_t i = 0; i < rx_samples; i++ )
{
out[i] = gr_complex( *(sample+0) * SCALE_16,
*(sample+1) * SCALE_16 );
sample += 2;
}
}
else if ( 2 == _nchan )
{
rx_samples /= 2;
gr_complex *out1 = (gr_complex *)output_items[0];
gr_complex *out2 = (gr_complex *)output_items[1];
for ( size_t i = 0; i < rx_samples; i++ )
{
out1[i] = gr_complex( *(sample+0) * SCALE_16,
*(sample+1) * SCALE_16 );
out2[i] = gr_complex( *(sample+2) * SCALE_16,
*(sample+3) * SCALE_16 );
sample += 4;
}
}
noutput_items = rx_samples;
return noutput_items;
}
/* discovery protocol internals taken from CuteSDR project */
typedef struct __attribute__ ((__packed__))
{
/* 56 fixed common byte fields */
unsigned char length[2]; /* length of total message in bytes (little endian byte order) */
unsigned char key[2]; /* fixed key key[0]==0x5A key[1]==0xA5 */
unsigned char op; /* 0 == Tx_msg(to device), 1 == Rx_msg(from device), 2 == Set(to device) */
char name[16]; /* Device name string null terminated */
char sn[16]; /* Serial number string null terminated */
unsigned char ipaddr[16]; /* device IP address (little endian byte order) */
unsigned char port[2]; /* device Port number (little endian byte order) */
unsigned char customfield; /* Specifies a custom data field for a particular device */
} discover_common_msg_t;
/* UDP port numbers for discovery protocol */
#define DISCOVER_SERVER_PORT 48321 /* PC client Tx port, SDR Server Rx Port */
#define DISCOVER_CLIENT_PORT 48322 /* PC client Rx port, SDR Server Tx Port */
#define KEY0 0x5A
#define KEY1 0xA5
#define MSG_REQ 0
#define MSG_RESP 1
#define MSG_SET 2
typedef struct
{
std::string name;
std::string sn;
std::string addr;
uint16_t port;
} unit_t;
#ifdef USE_ASIO
static void handle_receive( const boost::system::error_code& ec,
std::size_t length,
boost::system::error_code* out_ec,
std::size_t* out_length )
{
*out_ec = ec;
*out_length = length;
}
static void handle_timer( const boost::system::error_code& ec,
boost::system::error_code* out_ec )
{
*out_ec = boost::asio::error::timed_out;
}
#endif
static std::vector < unit_t > discover_netsdr()
{
std::vector < unit_t > units;
#ifdef USE_ASIO
boost::system::error_code ec;
boost::asio::io_service ios;
udp::socket socket(ios);
deadline_timer timer(ios);
timer.expires_at(boost::posix_time::pos_infin);
socket.open(udp::v4(), ec);
if ( ec )
return units;
socket.bind(udp::endpoint(udp::v4(), DISCOVER_CLIENT_PORT), ec);
if ( ec )
return units;
socket.set_option(udp::socket::reuse_address(true));
socket.set_option(boost::asio::socket_base::broadcast(true));
#else
int sock;
if ( (sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 )
return units;
int sockoptval = 1;
setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int));
sockoptval = 1;
setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &sockoptval, sizeof(int));
struct sockaddr_in host_sa; /* local address */
struct sockaddr_in peer_sa; /* remote address */
/* fill in the server's address and data */
memset((char*)&peer_sa, 0, sizeof(peer_sa));
peer_sa.sin_family = AF_INET;
peer_sa.sin_addr.s_addr = htonl(INADDR_BROADCAST);
peer_sa.sin_port = htons(DISCOVER_SERVER_PORT);
/* fill in the hosts's address and data */
memset(&host_sa, 0, sizeof(host_sa));
host_sa.sin_family = AF_INET;
host_sa.sin_addr.s_addr = htonl(INADDR_ANY);
host_sa.sin_port = htons(DISCOVER_CLIENT_PORT);
if ( bind(sock, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 )
{
close(sock);
return units;
}
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = 100000;
if ( setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0 )
{
close(sock);
return units;
}
#endif
discover_common_msg_t tx_msg;
memset( (void *)&tx_msg, 0, sizeof(discover_common_msg_t) );
tx_msg.length[0] = sizeof(discover_common_msg_t);
tx_msg.length[1] = sizeof(discover_common_msg_t) >> 8;
tx_msg.key[0] = KEY0;
tx_msg.key[1] = KEY1;
tx_msg.op = MSG_REQ;
#ifdef USE_ASIO
udp::endpoint ep(boost::asio::ip::address_v4::broadcast(), DISCOVER_SERVER_PORT);
socket.send_to(boost::asio::buffer(&tx_msg, sizeof(tx_msg)), ep);
#else
sendto(sock, &tx_msg, sizeof(tx_msg), 0, (struct sockaddr *)&peer_sa, sizeof(peer_sa));
#endif
while ( true )
{
std::size_t rx_bytes = 0;
unsigned char data[1024*2];
#ifdef USE_ASIO
// Set up the variables that receive the result of the asynchronous
// operation. The error code is set to would_block to signal that the
// operation is incomplete. Asio guarantees that its asynchronous
// operations will never fail with would_block, so any other value in
// ec indicates completion.
ec = boost::asio::error::would_block;
// Start the asynchronous receive operation. The handle_receive function
// used as a callback will update the ec and rx_bytes variables.
socket.async_receive( boost::asio::buffer(data, sizeof(data)),
boost::bind(handle_receive, _1, _2, &ec, &rx_bytes) );
// Set a deadline for the asynchronous operation.
timer.expires_from_now( boost::posix_time::milliseconds(10) );
// Start an asynchronous wait on the timer. The handle_timer function
// used as a callback will update the ec variable.
timer.async_wait( boost::bind(handle_timer, _1, &ec) );
// Reset the io_service in preparation for a subsequent run_one() invocation.
ios.reset();
// Block until at least one asynchronous operation has completed.
do ios.run_one(); while ( ec == boost::asio::error::would_block );
if ( boost::asio::error::timed_out == ec ) /* timer was first to complete */
{
// Please note that cancel() has portability issues on some versions of
// Microsoft Windows, and it may be necessary to use close() instead.
// Consult the documentation for cancel() for further information.
socket.cancel();
break;
}
else /* socket was first to complete */
{
timer.cancel();
}
#else
socklen_t addrlen = sizeof(peer_sa); /* length of addresses */
int nbytes = recvfrom(sock, data, sizeof(data), 0, (struct sockaddr *)&peer_sa, &addrlen);
if ( nbytes <= 0 )
break;
rx_bytes = nbytes;
#endif
if ( rx_bytes >= sizeof(discover_common_msg_t) )
{
discover_common_msg_t *rx_msg = (discover_common_msg_t *)data;
if ( KEY0 == rx_msg->key[0] && KEY1 == rx_msg->key[1] &&
MSG_RESP == rx_msg->op )
{
void *temp = rx_msg->port;
uint16_t port = *((uint16_t *)temp);
std::string addr = str(boost::format("%d.%d.%d.%d")
% int(rx_msg->ipaddr[3]) % int(rx_msg->ipaddr[2])
% int(rx_msg->ipaddr[1]) % int(rx_msg->ipaddr[0]));
unit_t unit;
unit.name = rx_msg->name;
unit.sn = rx_msg->sn;
unit.addr = addr;
unit.port = port;
units.push_back( unit );
}
}
}
#ifdef USE_ASIO
socket.close(ec);
#else
close(sock);
#endif
return units;
}
std::vector<std::string> netsdr_source_c::get_devices( bool fake )
{
std::vector<std::string> devices;
std::vector < unit_t > units = discover_netsdr();
BOOST_FOREACH( unit_t u, units )
{
// std::cerr << u.name << " " << u.sn << " " << u.addr << ":" << u.port
// << std::endl;
devices += str(boost::format("netsdr=%s:%d,label='RFSPACE %s SN %s'")
% u.addr % u.port % u.name % u.sn);
}
if ( devices.empty() && fake )
devices += str(boost::format("netsdr=%s:%d,label='RFSPACE NetSDR Server'")
% DEFAULT_HOST % DEFAULT_PORT);
return devices;
}
size_t netsdr_source_c::get_num_channels()
{
return _nchan;
}
#define MAX_RATE 2e6
#define ADC_CLOCK 80e6
osmosdr::meta_range_t netsdr_source_c::get_sample_rates()
{
osmosdr::meta_range_t range;
/* Calculate NetSDR sample rates */
for ( size_t i = 625; i >= 10; i-- )
{
double rate = ADC_CLOCK/(4.0*i);
if ( rate > (MAX_RATE / _nchan) )
break;
if ( floor(rate) == rate )
range += osmosdr::range_t( rate );
}
/* TODO: Calculate SDR-IP sample rates */
return range;
}
double netsdr_source_c::set_sample_rate( double rate )
{
unsigned char samprate[9] = { 0x09, 0x00, 0xB8, 0x00, 0x00, 0x20, 0xA1, 0x07, 0x00 };
uint32_t u32_rate = rate;
samprate[sizeof(samprate)-4] = u32_rate >> 0;
samprate[sizeof(samprate)-3] = u32_rate >> 8;
samprate[sizeof(samprate)-2] = u32_rate >> 16;
samprate[sizeof(samprate)-1] = u32_rate >> 24;
std::vector< unsigned char > response;
if ( _running )
{
_keep_running = true;
stop();
}
if ( ! transaction( samprate, sizeof(samprate), response ) )
throw std::runtime_error("set_sample_rate failed");
if ( _running )
{
start();
}
u32_rate = 0;
u32_rate |= response[sizeof(samprate)-4] << 0;
u32_rate |= response[sizeof(samprate)-3] << 8;
u32_rate |= response[sizeof(samprate)-2] << 16;
u32_rate |= response[sizeof(samprate)-1] << 24;
_sample_rate = u32_rate;
if ( rate != _sample_rate )
std::cerr << "Radio reported a sample rate of " << (uint32_t)_sample_rate << " Hz"
<< std::endl;
return get_sample_rate();
}
double netsdr_source_c::get_sample_rate()
{
return _sample_rate;
}
osmosdr::freq_range_t netsdr_source_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
/* query freq range(s) of the radio */
/* 4.2.3 Receiver Frequency */
unsigned char frange[5] = { 0x05, 0x40, 0x20, 0x00, 0x00 };
apply_channel( frange, 4, chan );
std::vector< unsigned char > response;
transaction( frange, sizeof(frange), response );
if ( response.size() >= sizeof(frange) + 1 )
{
for ( size_t i = 0; i < response[sizeof(frange)]; i++ )
{
uint32_t min = *((uint32_t *)&response[sizeof(frange)+1+i*15]);
uint32_t max = *((uint32_t *)&response[sizeof(frange)+1+5+i*15]);
//uint32_t vco = *((uint32_t *)&response[sizeof(frange)+1+10+i*15]);
//std::cerr << min << " " << max << " " << vco << std::endl;
range += osmosdr::range_t(min, max); /* must be monotonic */
}
}
if ( range.empty() ) /* assume reasonable default */
range += osmosdr::range_t(0, ADC_CLOCK/2.0);
return range;
}
double netsdr_source_c::set_center_freq( double freq, size_t chan )
{
uint32_t u32_freq = freq;
/* 4.2.3 Receiver Frequency */
unsigned char tune[10] = { 0x0A, 0x00, 0x20, 0x00, 0x00, 0xb0, 0x19, 0x6d, 0x00, 0x00 };
apply_channel( tune, 4, chan );
tune[sizeof(tune)-5] = u32_freq >> 0;
tune[sizeof(tune)-4] = u32_freq >> 8;
tune[sizeof(tune)-3] = u32_freq >> 16;
tune[sizeof(tune)-2] = u32_freq >> 24;
tune[sizeof(tune)-1] = 0;
transaction( tune, sizeof(tune) );
return get_center_freq( chan );
}
double netsdr_source_c::get_center_freq( size_t chan )
{
/* 4.2.3 Receiver Frequency */
unsigned char freq[10] = { 0x05, 0x20, 0x20, 0x00, 0x00 };
apply_channel( freq, 4, chan );
std::vector< unsigned char > response;
if ( ! transaction( freq, sizeof(freq), response ) )
throw std::runtime_error("get_center_freq failed");
uint32_t frequency = 0;
frequency |= response[response.size()-5] << 0;
frequency |= response[response.size()-4] << 8;
frequency |= response[response.size()-3] << 16;
frequency |= response[response.size()-2] << 24;
return frequency;
}
double netsdr_source_c::set_freq_corr( double ppm, size_t chan )
{
return get_freq_corr( chan );
}
double netsdr_source_c::get_freq_corr( size_t chan )
{
return 0;
}
std::vector<std::string> netsdr_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "ATT";
return names;
}
osmosdr::gain_range_t netsdr_source_c::get_gain_range( size_t chan )
{
return osmosdr::gain_range_t(-30, 0, 10);
}
osmosdr::gain_range_t netsdr_source_c::get_gain_range( const std::string & name, size_t chan )
{
return get_gain_range( chan );
}
bool netsdr_source_c::set_gain_mode( bool automatic, size_t chan )
{
return false;
}
bool netsdr_source_c::get_gain_mode( size_t chan )
{
return false;
}
double netsdr_source_c::set_gain( double gain, size_t chan )
{
/* 4.2.6 RF Gain */
unsigned char atten[] = { 0x06, 0x00, 0x38, 0x00, 0x00, 0x00 };
apply_channel( atten, 4, chan );
if ( gain <= -30 )
atten[sizeof(atten)-1] = 0xE2;
else if ( gain <= -20 )
atten[sizeof(atten)-1] = 0xEC;
else if ( gain <= -10 )
atten[sizeof(atten)-1] = 0xF6;
else /* 0 dB */
atten[sizeof(atten)-1] = 0x00;
transaction( atten, sizeof(atten) );
return get_gain( chan );
}
double netsdr_source_c::set_gain( double gain, const std::string & name, size_t chan )
{
return set_gain( gain, chan );
}
double netsdr_source_c::get_gain( size_t chan )
{
/* 4.2.6 RF Gain */
unsigned char atten[] = { 0x05, 0x20, 0x38, 0x00, 0x00 };
apply_channel( atten, 4, chan );
std::vector< unsigned char > response;
if ( ! transaction( atten, sizeof(atten), response ) )
throw std::runtime_error("get_gain failed");
return (char) response[response.size()-1];
}
double netsdr_source_c::get_gain( const std::string & name, size_t chan )
{
return get_gain( chan );
}
std::vector< std::string > netsdr_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string netsdr_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string netsdr_source_c::get_antenna( size_t chan )
{
/* We only have a single receive antenna here */
return "RX";
}
#define BANDWIDTH 34e6
double netsdr_source_c::set_bandwidth( double bandwidth, size_t chan )
{
/* 4.2.7 RF Filter Selection */
unsigned char filter[6] = { 0x06, 0x00, 0x44, 0x00, 0x00, 0x00 };
apply_channel( filter, 4, chan );
if ( 0.0f == bandwidth )
{
_bandwidth = 0.0f;
filter[sizeof(filter)-1] = 0x00; /* Select bandpass filter based on NCO frequency */
}
else if ( BANDWIDTH == bandwidth )
{
_bandwidth = BANDWIDTH;
filter[sizeof(filter)-1] = 0x0B; /* Bypass bandpass filter, use only antialiasing */
}
transaction( filter, sizeof(filter) );
return get_bandwidth();
}
double netsdr_source_c::get_bandwidth( size_t chan )
{
return _bandwidth;
}
osmosdr::freq_range_t netsdr_source_c::get_bandwidth_range( size_t chan )
{
osmosdr::freq_range_t bandwidths;
bandwidths += osmosdr::range_t( BANDWIDTH );
return bandwidths;
}