gr-osmosdr/lib/bladerf/bladerf_source_c.cc

414 lines
12 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013-2017 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include "arg_helpers.h"
#include "bladerf_source_c.h"
#include "osmosdr/source.h"
using namespace boost::assign;
/*
* Create a new instance of bladerf_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_source_c_sptr make_bladerf_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept either
* 1 or 2 outputs.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 2; // maximum number of output streams
/*
* The private constructor
*/
bladerf_source_c::bladerf_source_c (const std::string &args)
: gr::sync_block ("bladerf_source_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
int ret;
std::string device_name;
struct bladerf_version fpga_version;
dict_t dict = params_to_dict(args);
init(dict, BLADERF_MODULE_RX);
if (dict.count("sampling"))
{
std::string sampling = dict["sampling"];
std::cerr << _pfx << "Setting bladerf sampling to " << sampling << std::endl;
if( sampling == "internal") {
ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_INTERNAL );
if ( ret != 0 )
std::cerr << _pfx << "Problem while setting sampling mode:"
<< bladerf_strerror(ret) << std::endl;
} else if( sampling == "external" ) {
ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_EXTERNAL );
if ( ret != 0 )
std::cerr << _pfx << "Problem while setting sampling mode:"
<< bladerf_strerror(ret) << std::endl;
} else {
std::cerr << _pfx << "Invalid sampling mode " << sampling << std::endl;
}
}
/* Warn user about using an old FPGA version, as we no longer strip off the
* markers that were pressent in the pre-v0.0.1 FPGA */
if (bladerf_fpga_version( _dev.get(), &fpga_version ) != 0) {
std::cerr << _pfx << "Failed to get FPGA version" << std::endl;
} else if ( fpga_version.major <= 0 &&
fpga_version.minor <= 0 &&
fpga_version.patch < 1 ) {
std::cerr << _pfx << "Warning: FPGA version v0.0.1 or later is required. "
<< "Using an earlier FPGA version will result in misinterpeted samples. "
<< std::endl;
}
}
bool bladerf_source_c::start()
{
return bladerf_common::start(BLADERF_MODULE_RX);
}
bool bladerf_source_c::stop()
{
return bladerf_common::stop(BLADERF_MODULE_RX);
}
int bladerf_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
int ret;
const float scaling = 2048.0f;
gr_complex *out = static_cast<gr_complex *>(output_items[0]);
struct bladerf_metadata meta;
struct bladerf_metadata *meta_ptr = NULL;
if (noutput_items > _conv_buf_size) {
void *tmp;
_conv_buf_size = noutput_items;
tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t));
if (tmp == NULL) {
throw std::runtime_error( std::string(__FUNCTION__) +
"Failed to realloc _conv_buf" );
}
_conv_buf = static_cast<int16_t*>(tmp);
}
if (_use_metadata) {
memset(&meta, 0, sizeof(meta));
meta.flags = BLADERF_META_FLAG_RX_NOW;
meta_ptr = &meta;
}
/* Grab all the samples into the temporary buffer */
ret = bladerf_sync_rx(_dev.get(), static_cast<void *>(_conv_buf),
noutput_items, meta_ptr, _stream_timeout_ms);
if ( ret != 0 ) {
std::cerr << _pfx << "bladerf_sync_rx error: "
<< bladerf_strerror(ret) << std::endl;
_consecutive_failures++;
if ( _consecutive_failures >= MAX_CONSECUTIVE_FAILURES ) {
std::cerr << _pfx
<< "Consecutive error limit hit. Shutting down."
<< std::endl;
return WORK_DONE;
}
} else {
_consecutive_failures = 0;
}
/* Convert them from fixed to floating point */
volk_16i_s32f_convert_32f((float*)out, _conv_buf, scaling, 2*noutput_items);
return noutput_items;
}
std::vector<std::string> bladerf_source_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_source_c::get_num_channels()
{
return bladerf_common::get_num_channels(BLADERF_MODULE_RX);
}
osmosdr::meta_range_t bladerf_source_c::get_sample_rates()
{
return sample_rates();
}
double bladerf_source_c::set_sample_rate( double rate )
{
return bladerf_common::set_sample_rate( BLADERF_MODULE_RX, rate);
}
double bladerf_source_c::get_sample_rate()
{
return bladerf_common::get_sample_rate( BLADERF_MODULE_RX );
}
osmosdr::freq_range_t bladerf_source_c::get_freq_range(size_t chan)
{
return bladerf_common::get_freq_range(chan);
}
double bladerf_source_c::set_center_freq(double freq, size_t chan)
{
return bladerf_common::set_center_freq(freq, chan);
}
double bladerf_source_c::get_center_freq(size_t chan)
{
return bladerf_common::get_center_freq(chan);
}
double bladerf_source_c::set_freq_corr( double ppm, size_t chan )
{
/* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */
return get_freq_corr( chan );
}
double bladerf_source_c::get_freq_corr( size_t chan )
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_source_c::get_gain_names( size_t chan )
{
return bladerf_common::get_gain_names(chan);
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range( size_t chan )
{
return bladerf_common::get_gain_range(chan);
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range( const std::string & name, size_t chan )
{
return bladerf_common::get_gain_range(name, chan);
}
bool bladerf_source_c::set_gain_mode( bool automatic, size_t chan )
{
return bladerf_common::set_gain_mode(automatic, chan);
}
bool bladerf_source_c::get_gain_mode( size_t chan )
{
return bladerf_common::get_gain_mode(chan);
}
double bladerf_source_c::set_gain( double gain, size_t chan )
{
return bladerf_common::set_gain(gain, chan);
}
double bladerf_source_c::set_gain( double gain, const std::string & name, size_t chan)
{
return bladerf_common::set_gain(gain, name, chan);
}
double bladerf_source_c::get_gain( size_t chan )
{
return bladerf_common::get_gain(chan);
}
double bladerf_source_c::get_gain( const std::string & name, size_t chan )
{
return bladerf_common::get_gain(name, chan);
}
double bladerf_source_c::set_bb_gain( double gain, size_t chan )
{
return bladerf_common::set_bb_gain(gain, chan);
}
std::vector< std::string > bladerf_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += "RX0";
if (BLADERF_REV_2 == get_board_type(_dev.get())) {
antennas += "RX1";
}
return antennas;
}
std::string bladerf_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string bladerf_source_c::get_antenna( size_t chan )
{
/* We only have a single receive antenna here */
return "RX0";
}
void bladerf_source_c::set_dc_offset_mode( int mode, size_t chan )
{
if ( osmosdr::source::DCOffsetOff == mode ) {
//_src->set_auto_dc_offset( false, chan );
set_dc_offset( std::complex<double>(0.0, 0.0), chan ); /* reset to default for off-state */
} else if ( osmosdr::source::DCOffsetManual == mode ) {
//_src->set_auto_dc_offset( false, chan ); /* disable auto mode, but keep correcting with last known values */
} else if ( osmosdr::source::DCOffsetAutomatic == mode ) {
//_src->set_auto_dc_offset( true, chan );
std::cerr << "Automatic DC correction mode is not implemented." << std::endl;
}
}
void bladerf_source_c::set_dc_offset( const std::complex<double> &offset, size_t chan )
{
int ret = 0;
ret = bladerf_common::set_dc_offset(BLADERF_MODULE_RX, offset, chan);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set dc offset: " +
std::string(bladerf_strerror(ret)) );
}
}
void bladerf_source_c::set_iq_balance_mode( int mode, size_t chan )
{
if ( osmosdr::source::IQBalanceOff == mode ) {
//_src->set_auto_iq_balance( false, chan );
set_iq_balance( std::complex<double>(0.0, 0.0), chan ); /* reset to default for off-state */
} else if ( osmosdr::source::IQBalanceManual == mode ) {
//_src->set_auto_iq_balance( false, chan ); /* disable auto mode, but keep correcting with last known values */
} else if ( osmosdr::source::IQBalanceAutomatic == mode ) {
//_src->set_auto_iq_balance( true, chan );
std::cerr << "Automatic IQ correction mode is not implemented." << std::endl;
}
}
void bladerf_source_c::set_iq_balance( const std::complex<double> &balance, size_t chan )
{
int ret = 0;
ret = bladerf_common::set_iq_balance(BLADERF_MODULE_RX, balance, chan);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set iq balance: " +
std::string(bladerf_strerror(ret)) );
}
}
double bladerf_source_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
uint32_t actual;
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */
ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_RX, (uint32_t)bandwidth, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set bandwidth: " +
std::string(bladerf_strerror(ret)) );
}
return get_bandwidth();
}
double bladerf_source_c::get_bandwidth( size_t chan )
{
uint32_t bandwidth;
int ret;
ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_RX, &bandwidth );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get bandwidth:" +
std::string(bladerf_strerror(ret)) );
}
return (double)bandwidth;
}
osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range( size_t chan )
{
return filter_bandwidths();
}
void bladerf_source_c::set_clock_source(const std::string &source, const size_t mboard)
{
bladerf_common::set_clock_source(source, mboard);
}
std::string bladerf_source_c::get_clock_source(const size_t mboard)
{
return bladerf_common::get_clock_source(mboard);
}
std::vector<std::string> bladerf_source_c::get_clock_sources(const size_t mboard)
{
return bladerf_common::get_clock_sources(mboard);
}