gr-osmosdr/lib/bladerf/bladerf_sink_c.cc

413 lines
11 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include "arg_helpers.h"
#include "bladerf_sink_c.h"
using namespace boost::assign;
/*
* Create a new instance of bladerf_sink_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_sink_c_sptr make_bladerf_sink_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_sink_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 1; // mininum number of input streams
static const int MAX_IN = 1; // maximum number of input streams
static const int MIN_OUT = 0; // minimum number of output streams
static const int MAX_OUT = 0; // maximum number of output streams
/*
* The private constructor
*/
bladerf_sink_c::bladerf_sink_c (const std::string &args)
: gr::sync_block ("bladerf_sink_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
dict_t dict = params_to_dict(args);
/* Perform src/sink agnostic initializations */
init(dict, BLADERF_MODULE_TX);
/* Set the range of VGA1, VGA1GAINT[7:0] */
_vga1_range = osmosdr::gain_range_t( -35, -4, 1 );
/* Set the range of VGA2, VGA2GAIN[4:0] */
_vga2_range = osmosdr::gain_range_t( 0, 25, 1 );
}
bool bladerf_sink_c::start()
{
return bladerf_common::start(BLADERF_MODULE_TX);
}
bool bladerf_sink_c::stop()
{
return bladerf_common::stop(BLADERF_MODULE_TX);
}
int bladerf_sink_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
const gr_complex *in = (const gr_complex *) input_items[0];
struct bladerf_metadata meta;
const float scaling = 2000.0f;
int ret;
if (noutput_items > _conv_buf_size) {
void *tmp;
_conv_buf_size = noutput_items;
tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t));
if (tmp == NULL) {
throw std::runtime_error( std::string(__FUNCTION__) +
"Failed to realloc _conv_buf" );
}
_conv_buf = static_cast<int16_t*>(tmp);
}
/* Convert floating point samples into fixed point */
for (int i = 0; i < 2 * noutput_items;) {
_conv_buf[i++] = (int16_t)(scaling * real(*in));
_conv_buf[i++] = (int16_t)(scaling * imag(*in++));
}
/* Submit them to the device */
ret = bladerf_sync_tx(_dev.get(), static_cast<void *>(_conv_buf),
noutput_items, &meta, _stream_timeout_ms);
if ( ret != 0 ) {
std::cerr << _pfx << "bladerf_sync_tx error: "
<< bladerf_strerror(ret) << std::endl;
return WORK_DONE;
}
return noutput_items;
}
std::vector<std::string> bladerf_sink_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_sink_c::get_num_channels()
{
/* We only support a single channel for each bladeRF */
return 1;
}
osmosdr::meta_range_t bladerf_sink_c::get_sample_rates()
{
return sample_rates();
}
double bladerf_sink_c::set_sample_rate(double rate)
{
return bladerf_common::set_sample_rate(BLADERF_MODULE_TX, rate);
}
double bladerf_sink_c::get_sample_rate()
{
return bladerf_common::get_sample_rate(BLADERF_MODULE_TX);
}
osmosdr::freq_range_t bladerf_sink_c::get_freq_range( size_t chan )
{
return freq_range();
}
double bladerf_sink_c::set_center_freq( double freq, size_t chan )
{
int ret;
/* Check frequency range */
if( freq < get_freq_range( chan ).start() ||
freq > get_freq_range( chan ).stop() ) {
std::cerr << "Failed to set out of bound frequency: " << freq << std::endl;
} else {
ret = bladerf_set_frequency( _dev.get(), BLADERF_MODULE_TX, (uint32_t)freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Failed to set center frequency " +
boost::lexical_cast<std::string>(freq) +
":" + std::string(bladerf_strerror(ret)));
}
}
return get_center_freq( chan );
}
double bladerf_sink_c::get_center_freq( size_t chan )
{
uint32_t freq;
int ret;
ret = bladerf_get_frequency( _dev.get(), BLADERF_MODULE_TX, &freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Failed to get center frequency:" +
std::string(bladerf_strerror(ret)));
}
return (double)freq;
}
double bladerf_sink_c::set_freq_corr( double ppm, size_t chan )
{
/* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */
return get_freq_corr( chan );
}
double bladerf_sink_c::get_freq_corr( size_t chan )
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_sink_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "VGA1", "VGA2";
return names;
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range( size_t chan )
{
/* TODO: This is an overall system gain range. Given the VGA1 and VGA2
how much total gain can we have in the system */
return get_gain_range( "VGA2", chan ); /* we use only VGA2 here for now */
}
osmosdr::gain_range_t bladerf_sink_c::get_gain_range( const std::string & name, size_t chan )
{
osmosdr::gain_range_t range;
if( name == "VGA1" ) {
range = _vga1_range;
} else if( name == "VGA2" ) {
range = _vga2_range;
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Requested an invalid gain element " + name );
}
return range;
}
bool bladerf_sink_c::set_gain_mode( bool automatic, size_t chan )
{
return false;
}
bool bladerf_sink_c::get_gain_mode( size_t chan )
{
return false;
}
double bladerf_sink_c::set_gain( double gain, size_t chan )
{
return set_gain( gain, "VGA2", chan ); /* we use only VGA2 here for now */
}
double bladerf_sink_c::set_gain( double gain, const std::string & name, size_t chan)
{
int ret = 0;
if( name == "VGA1" ) {
ret = bladerf_set_txvga1( _dev.get(), (int)gain );
} else if( name == "VGA2" ) {
ret = bladerf_set_txvga2( _dev.get(), (int)gain );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Requested to set the gain " +
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error(std::string(__FUNCTION__) + " " +
"Could not set " + name + " gain, error " +
std::string(bladerf_strerror(ret)));
}
return get_gain( name, chan );
}
double bladerf_sink_c::get_gain( size_t chan )
{
return get_gain( "VGA2", chan ); /* we use only VGA2 here for now */
}
double bladerf_sink_c::get_gain( const std::string & name, size_t chan )
{
int g;
int ret = 0;
if( name == "VGA1" ) {
ret = bladerf_get_txvga1( _dev.get(), &g );
} else if( name == "VGA2" ) {
ret = bladerf_get_txvga2( _dev.get(), &g );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Requested to get the gain " +
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Could not get " + name + " gain, error " +
std::string(bladerf_strerror(ret)));
}
return (double)g;
}
double bladerf_sink_c::set_bb_gain( double gain, size_t chan )
{
/* for TX, only VGA1 is in the BB path */
osmosdr::gain_range_t bb_gains = get_gain_range( "VGA1", chan );
double clip_gain = bb_gains.clip( gain, true );
gain = set_gain( clip_gain, "VGA1", chan );
return gain;
}
std::vector< std::string > bladerf_sink_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string bladerf_sink_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string bladerf_sink_c::get_antenna( size_t chan )
{
/* We only have a single transmit antenna here */
return "TX";
}
void bladerf_sink_c::set_dc_offset( const std::complex<double> &offset, size_t chan )
{
int ret = 0;
ret = bladerf_common::set_dc_offset(BLADERF_MODULE_TX, offset, chan);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set dc offset: " +
std::string(bladerf_strerror(ret)) );
}
}
void bladerf_sink_c::set_iq_balance( const std::complex<double> &balance, size_t chan )
{
int ret = 0;
ret = bladerf_common::set_iq_balance(BLADERF_MODULE_TX, balance, chan);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set iq balance: " +
std::string(bladerf_strerror(ret)) );
}
}
double bladerf_sink_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
uint32_t actual;
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */
ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_TX, (uint32_t)bandwidth, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set bandwidth:" +
std::string(bladerf_strerror(ret)) );
}
return get_bandwidth();
}
double bladerf_sink_c::get_bandwidth( size_t chan )
{
uint32_t bandwidth;
int ret;
ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_TX, &bandwidth );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get bandwidth: " +
std::string(bladerf_strerror(ret)) );
}
return (double)bandwidth;
}
osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range( size_t chan )
{
return filter_bandwidths();
}