gr-osmosdr/lib/bladerf/bladerf_source_c.cc

628 lines
18 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include "arg_helpers.h"
#include "bladerf_source_c.h"
using namespace boost::assign;
/*
* Create a new instance of bladerf_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_source_c_sptr make_bladerf_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
bladerf_source_c::bladerf_source_c (const std::string &args)
: gr::sync_block ("bladerf_source_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
int ret;
unsigned int device_number = 0;
std::string device_name;
dict_t dict = params_to_dict(args);
if (dict.count("bladerf"))
{
std::string value = dict["bladerf"];
if ( value.length() )
{
try {
device_number = boost::lexical_cast< unsigned int >( value );
} catch ( std::exception &ex ) {
throw std::runtime_error(
"Failed to use '" + value + "' as device number: " + ex.what());
}
}
}
device_name = boost::str(boost::format( "libusb:instance=%d" ) % device_number);
try {
_dev = bladerf_common::open(device_name);
} catch(...) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to open bladeRF device " + device_name );
}
if (dict.count("fw"))
{
std::string fw = dict["fw"];
std::cerr << "Flashing firmware image " << fw << "..., DO NOT INTERRUPT!"
<< std::endl;
ret = bladerf_flash_firmware( _dev.get(), fw.c_str() );
if ( ret != 0 )
std::cerr << "bladerf_flash_firmware has failed with " << ret << std::endl;
else
std::cerr << "The firmware has been successfully flashed." << std::endl;
}
if (dict.count("fpga"))
{
std::string fpga = dict["fpga"];
std::cerr << "Loading FPGA bitstream " << fpga << "..." << std::endl;
ret = bladerf_load_fpga( _dev.get(), fpga.c_str() );
if ( ret != 0 && ret != 1 )
std::cerr << "bladerf_load_fpga has failed with " << ret << std::endl;
else
std::cerr << "The FPGA bitstream has been successfully loaded." << std::endl;
}
std::cerr << "Using nuand LLC bladeRF #" << device_number;
char serial[BLADERF_SERIAL_LENGTH];
if ( bladerf_get_serial( _dev.get(), serial ) == 0 )
std::cerr << " SN " << serial;
struct bladerf_version ver;
if ( bladerf_fw_version( _dev.get(), &ver ) == 0 )
std::cerr << " FW v" << ver.major << "." << ver.minor << "." << ver.patch;
if ( bladerf_fpga_version( _dev.get(), &ver ) == 0 )
std::cerr << " FPGA v" << ver.major << "." << ver.minor << "." << ver.patch;
std::cerr << std::endl;
if ( bladerf_is_fpga_configured( _dev.get() ) != 1 )
{
std::ostringstream oss;
oss << "The FPGA is not configured! "
<< "Provide device argument fpga=/path/to/the/bitstream.rbf to load it.";
throw std::runtime_error( oss.str() );
}
if (dict.count("sampling"))
{
std::string sampling = dict["sampling"];
std::cerr << "Setting bladerf sampling to " << sampling << std::endl;
if( sampling == "internal") {
ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_INTERNAL );
if ( ret != 0 )
std::cerr << "Problem while setting sampling mode " << ret << std::endl;
} else if( sampling == "external" ) {
ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_EXTERNAL );
if ( ret != 0 )
std::cerr << "Problem while setting sampling mode " << ret << std::endl;
} else {
std::cerr << "Invalid sampling mode " << sampling << std::endl;
}
}
/* Set the range of LNA, G_LNA_RXFE[1:0] */
_lna_range = osmosdr::gain_range_t( 0, 6, 3 );
/* Set the range of VGA1, RFB_TIA_RXFE[6:0], nonlinear mapping done inside the lib */
_vga1_range = osmosdr::gain_range_t( 5, 30, 1 );
/* Set the range of VGA2 VGA2GAIN[4:0], not recommended to be used above 30dB */
_vga2_range = osmosdr::gain_range_t( 0, 60, 3 );
_buf_index = 0;
_num_buffers = 8; /* TODO: make it an argument */
const size_t samp_per_buf = 1024 * 10; /* TODO: make it an argument */
/* Initialize the stream */
ret = bladerf_init_stream( &_stream, _dev.get(), stream_callback,
&_buffers, _num_buffers, BLADERF_FORMAT_SC16_Q12,
samp_per_buf, _num_buffers, this );
if ( ret != 0 )
std::cerr << "bladerf_init_stream has failed with " << ret << std::endl;
ret = bladerf_enable_module( _dev.get(), BLADERF_MODULE_RX, true );
if ( ret != 0 )
std::cerr << "bladerf_enable_module has failed with " << ret << std::endl;
_thread = gr::thread::thread( boost::bind(&bladerf_source_c::read_task, this) );
}
/*
* Our virtual destructor.
*/
bladerf_source_c::~bladerf_source_c ()
{
int ret;
set_running(false);
_thread.join();
ret = bladerf_enable_module( _dev.get(), BLADERF_MODULE_RX, false );
if ( ret != 0 )
std::cerr << "bladerf_enable_module has failed with " << ret << std::endl;
/* Release stream resources */
bladerf_deinit_stream(_stream);
}
void *bladerf_source_c::stream_callback( struct bladerf *dev,
struct bladerf_stream *stream,
struct bladerf_metadata *metadata,
void *samples,
size_t num_samples,
void *user_data )
{
bladerf_source_c *obj = (bladerf_source_c *) user_data;
if ( ! obj->is_running() )
return NULL;
return obj->stream_task( samples, num_samples );
}
/* Convert & push samples to the sample fifo */
void *bladerf_source_c::stream_task( void *samples, size_t num_samples )
{
size_t i, n_avail, to_copy;
int16_t *sample = (int16_t *)samples;
void *ret;
ret = _buffers[_buf_index];
_buf_index = (_buf_index + 1) % _num_buffers;
_fifo_lock.lock();
n_avail = _fifo->capacity() - _fifo->size();
to_copy = (n_avail < num_samples ? n_avail : num_samples);
for(i = 0; i < to_copy; i++ ) {
/* Mask valid bits only */
*(sample) &= 0xfff;
*(sample+1) &= 0xfff;
/* Sign extend the 12-bit IQ values, if needed */
if( (*sample) & 0x800 ) *(sample) |= 0xf000;
if( *(sample+1) & 0x800 ) *(sample+1) |= 0xf000;
/* Push sample to the fifo */
_fifo->push_back( gr_complex( *sample * (1.0f/2048.0f),
*(sample+1) * (1.0f/2048.0f) ) );
/* offset to the next I+Q sample */
sample += 2;
}
_fifo_lock.unlock();
/* We have made some new samples available to the consumer in work() */
if (to_copy) {
//std::cerr << "+" << std::flush;
_samp_avail.notify_one();
}
/* Indicate overrun, if neccesary */
if (to_copy < num_samples)
std::cerr << "O" << std::flush;
return ret;
}
void bladerf_source_c::read_task()
{
int status;
set_running( true );
/* Start stream and stay there until we kill the stream */
status = bladerf_stream(_stream, BLADERF_MODULE_RX);
if (status < 0)
std::cerr << "Source stream error: " << bladerf_strerror(status) << std::endl;
set_running( false );
}
/* Main work function, pull samples from the sample fifo */
int bladerf_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
if ( ! is_running() )
return WORK_DONE;
if( noutput_items > 0 ) {
gr_complex *out = (gr_complex *)output_items[0];
boost::unique_lock<boost::mutex> lock(_fifo_lock);
/* Wait until we have the requested number of samples */
int n_samples_avail = _fifo->size();
while (n_samples_avail < noutput_items) {
_samp_avail.wait(lock);
n_samples_avail = _fifo->size();
}
for(int i = 0; i < noutput_items; ++i) {
out[i] = _fifo->at(0);
_fifo->pop_front();
}
//std::cerr << "-" << std::flush;
}
return noutput_items;
}
std::vector<std::string> bladerf_source_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_source_c::get_num_channels()
{
/* We only support a single channel for each bladeRF */
return 1;
}
osmosdr::meta_range_t bladerf_source_c::get_sample_rates()
{
return sample_rates();
}
double bladerf_source_c::set_sample_rate( double rate )
{
int ret;
uint32_t actual;
/* Set the Si5338 to be 2x this sample rate */
/* Check to see if the sample rate is an integer */
if( (uint32_t)round(rate) == (uint32_t)rate )
{
ret = bladerf_set_sample_rate( _dev.get(), BLADERF_MODULE_RX, (uint32_t)rate, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"has failed to set integer rate, error " +
boost::lexical_cast<std::string>(ret) );
}
} else {
/* TODO: Fractional sample rate */
ret = bladerf_set_sample_rate( _dev.get(), BLADERF_MODULE_RX, (uint32_t)rate, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"has failed to set fractional rate, error " +
boost::lexical_cast<std::string>(ret) );
}
}
return get_sample_rate();
}
double bladerf_source_c::get_sample_rate()
{
int ret;
unsigned int rate = 0;
ret = bladerf_get_sample_rate( _dev.get(), BLADERF_MODULE_RX, &rate );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"has failed to get sample rate, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)rate;
}
osmosdr::freq_range_t bladerf_source_c::get_freq_range( size_t chan )
{
return freq_range();
}
double bladerf_source_c::set_center_freq( double freq, size_t chan )
{
int ret;
/* Check frequency range */
if( freq < get_freq_range( chan ).start() ||
freq > get_freq_range( chan ).stop() ) {
std::cerr << "Failed to set out of bound frequency: " << freq << std::endl;
} else {
ret = bladerf_set_frequency( _dev.get(), BLADERF_MODULE_RX, (uint32_t)freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to set center frequency " +
boost::lexical_cast<std::string>(freq) +
", error " +
boost::lexical_cast<std::string>(ret) );
}
}
return get_center_freq( chan );
}
double bladerf_source_c::get_center_freq( size_t chan )
{
uint32_t freq;
int ret;
ret = bladerf_get_frequency( _dev.get(), BLADERF_MODULE_RX, &freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to get center frequency, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)freq;
}
double bladerf_source_c::set_freq_corr( double ppm, size_t chan )
{
/* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */
return get_freq_corr( chan );
}
double bladerf_source_c::get_freq_corr( size_t chan )
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "LNA", "VGA1", "VGA2";
return names;
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range( size_t chan )
{
/* TODO: This is an overall system gain range. Given the LNA, VGA1 and VGA2
how much total gain can we have in the system */
return get_gain_range( "LNA", chan ); /* we use only LNA here for now */
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range( const std::string & name, size_t chan )
{
osmosdr::gain_range_t range;
if( name == "LNA" ) {
range = _lna_range;
} else if( name == "VGA1" ) {
range = _vga1_range;
} else if( name == "VGA2" ) {
range = _vga2_range;
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested an invalid gain element " + name );
}
return range;
}
bool bladerf_source_c::set_gain_mode( bool automatic, size_t chan )
{
/* TODO: Implement AGC in the FPGA */
return false;
}
bool bladerf_source_c::get_gain_mode( size_t chan )
{
/* TODO: Read back AGC mode */
return false;
}
double bladerf_source_c::set_gain( double gain, size_t chan )
{
/* TODO: This is an overall system gain that has to be set */
return set_gain( gain, "LNA", chan ); /* we use only LNA here for now */
}
double bladerf_source_c::set_gain( double gain, const std::string & name, size_t chan )
{
int ret = 0;
if( name == "LNA" ) {
bladerf_lna_gain g;
if ( gain >= 6.0f )
g = BLADERF_LNA_GAIN_MAX;
else if ( gain >= 3.0f )
g = BLADERF_LNA_GAIN_MID;
else /* gain < 3.0f */
g = BLADERF_LNA_GAIN_BYPASS;
ret = bladerf_set_lna_gain( _dev.get(), g );
} else if( name == "VGA1" ) {
ret = bladerf_set_rxvga1( _dev.get(), (int)gain );
} else if( name == "VGA2" ) {
ret = bladerf_set_rxvga2( _dev.get(), (int)gain );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested to set the gain "
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set " + name + " gain, error " +
boost::lexical_cast<std::string>(ret) );
}
return get_gain( name, chan );
}
double bladerf_source_c::get_gain( size_t chan )
{
/* TODO: This is an overall system gain that has to be set */
return get_gain( "LNA", chan ); /* we use only LNA here for now */
}
double bladerf_source_c::get_gain( const std::string & name, size_t chan )
{
int g;
int ret = 0;
if( name == "LNA" ) {
bladerf_lna_gain lna_g;
ret = bladerf_get_lna_gain( _dev.get(), &lna_g );
g = lna_g == BLADERF_LNA_GAIN_BYPASS ? 0 : lna_g == BLADERF_LNA_GAIN_MID ? 3 : 6;
} else if( name == "VGA1" ) {
ret = bladerf_get_rxvga1( _dev.get(), &g );
} else if( name == "VGA2" ) {
ret = bladerf_get_rxvga2( _dev.get(), &g );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested to get the gain "
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get " + name + " gain, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)g;
}
double bladerf_source_c::set_bb_gain( double gain, size_t chan )
{
/* TODO: for RX, we should combine VGA1 & VGA2 which both are in BB path */
osmosdr::gain_range_t bb_gains = get_gain_range( "VGA2", chan );
double clip_gain = bb_gains.clip( gain, true );
gain = set_gain( clip_gain, "VGA2", chan );
return gain;
}
std::vector< std::string > bladerf_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string bladerf_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string bladerf_source_c::get_antenna( size_t chan )
{
/* We only have a single receive antenna here */
return "RX";
}
double bladerf_source_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
uint32_t actual;
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */
ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_RX, (uint32_t)bandwidth, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set bandwidth, error " +
boost::lexical_cast<std::string>(ret) );
}
return get_bandwidth();
}
double bladerf_source_c::get_bandwidth( size_t chan )
{
uint32_t bandwidth;
int ret;
ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_RX, &bandwidth );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get bandwidth, error " +
boost::lexical_cast<std::string>(ret) );
}
return (double)bandwidth;
}
osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range( size_t chan )
{
return filter_bandwidths();
}