gr-osmosdr/lib/rtl/rtl_source_c.cc

503 lines
12 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2012 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <rtl_source_c.h>
#include <gr_io_signature.h>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <stdexcept>
#include <iostream>
#include <stdio.h>
#include <rtl-sdr.h>
#include <osmosdr_arg_helpers.h>
using namespace boost::assign;
#define BUF_SIZE (16 * 32 * 512)
#define BUF_NUM 32
/*
* Create a new instance of rtl_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
rtl_source_c_sptr
make_rtl_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new rtl_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
rtl_source_c::rtl_source_c (const std::string &args)
: gr_sync_block ("rtl_source_c",
gr_make_io_signature (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr_make_io_signature (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
int ret;
unsigned int dev_index = 0, rtl_freq = 0, tuner_freq = 0;
dict_t dict = params_to_dict(args);
if (dict.count("rtl"))
dev_index = boost::lexical_cast< unsigned int >( dict["rtl"] );
if (dict.count("rtl_xtal"))
rtl_freq = (unsigned int)boost::lexical_cast< double >( dict["rtl_xtal"] );
if (dict.count("tuner_xtal"))
tuner_freq = (unsigned int)boost::lexical_cast< double >( dict["tuner_xtal"] );
_buf_num = BUF_NUM;
if (dict.count("buffers")) {
_buf_num = (unsigned int)boost::lexical_cast< double >( dict["buffers"] );
if (0 == _buf_num)
_buf_num = BUF_NUM;
std::cerr << "Using " << _buf_num << " buffers of size " << BUF_SIZE << "."
<< std::endl;
}
_buf = (unsigned short **) malloc(_buf_num * sizeof(unsigned short *));
for(unsigned int i = 0; i < _buf_num; ++i)
_buf[i] = (unsigned short *) malloc(BUF_SIZE);
_buf_head = _buf_used = _buf_offset = 0;
_samp_avail = BUF_SIZE;
// create a lookup table for gr_complex values
for (unsigned int i = 0; i <= 0xffff; i++) {
#if 1 // little endian
_lut.push_back( gr_complex( (float(i & 0xff) - 127.5f) *(1.0f/128.0f),
(float(i >> 8) - 127.5f) * (1.0f/128.0f) ) );
#else // big endian
_lut.push_back( gr_complex( (float(i >> 8) - 127.5f) * (1.0f/128.0f),
(float(i & 0xff) - 127.5f) * (1.0f/128.0f) ) );
#endif
}
if ( dev_index >= rtlsdr_get_device_count() )
throw std::runtime_error("Wrong rtlsdr device index given.");
std::cerr << "Using device #" << dev_index << " "
<< "(" << rtlsdr_get_device_name(dev_index) << ")"
<< std::endl;
_dev = NULL;
ret = rtlsdr_open( &_dev, dev_index );
if (ret < 0)
throw std::runtime_error("Failed to open rtlsdr device.");
if (rtl_freq > 0 || tuner_freq > 0) {
if (rtl_freq)
std::cerr << "Setting rtl clock to " << rtl_freq << " Hz." << std::endl;
if (tuner_freq)
std::cerr << "Setting tuner clock to " << tuner_freq << " Hz." << std::endl;
ret = rtlsdr_set_xtal_freq( _dev, rtl_freq, tuner_freq );
if (ret < 0)
throw std::runtime_error(
str(boost::format("Failed to set xtal frequencies. Error %d.") % ret ));
}
ret = rtlsdr_set_sample_rate( _dev, 1024000 );
if (ret < 0)
throw std::runtime_error("Failed to set default samplerate.");
ret = rtlsdr_reset_buffer( _dev );
if (ret < 0)
throw std::runtime_error("Failed to reset usb buffers.");
ret = rtlsdr_set_tuner_gain_mode(_dev, 1);
if (ret < 0)
throw std::runtime_error("Failed to enable manual gain mode.");
_running = true;
_auto_gain = false;
_thread = gruel::thread(_rtlsdr_wait, this);
}
/*
* Our virtual destructor.
*/
rtl_source_c::~rtl_source_c ()
{
if (_dev) {
rtlsdr_cancel_async( _dev );
_thread.join();
rtlsdr_close( _dev );
_dev = NULL;
}
for(unsigned int i = 0; i < _buf_num; ++i) {
if (_buf[i])
free(_buf[i]);
}
free(_buf);
_buf = NULL;
}
void rtl_source_c::_rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
{
rtl_source_c *obj = (rtl_source_c *)ctx;
obj->rtlsdr_callback(buf, len);
}
void rtl_source_c::rtlsdr_callback(unsigned char *buf, uint32_t len)
{
if (len != BUF_SIZE) {
printf("U(%d)\n", len); fflush(stdout);
return;
}
{
boost::mutex::scoped_lock lock( _buf_mutex );
int buf_tail = (_buf_head + _buf_used) % _buf_num;
memcpy(_buf[buf_tail], buf, len);
if (_buf_used == _buf_num) {
printf("O"); fflush(stdout);
_buf_head = (_buf_head + 1) % _buf_num;
} else {
_buf_used++;
}
}
_buf_cond.notify_one();
}
void rtl_source_c::_rtlsdr_wait(rtl_source_c *obj)
{
obj->rtlsdr_wait();
}
void rtl_source_c::rtlsdr_wait()
{
int ret = rtlsdr_read_async( _dev, _rtlsdr_callback, (void *)this, 0, BUF_SIZE );
_running = false;
if ( ret != 0 )
std::cerr << "rtlsdr_read_async returned with " << ret << std::endl;
}
int rtl_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
gr_complex *out = (gr_complex *)output_items[0];
{
boost::mutex::scoped_lock lock( _buf_mutex );
while (_buf_used < 3 && _running)
_buf_cond.wait( lock );
}
if (!_running)
return WORK_DONE;
unsigned short *buf = _buf[_buf_head];
if (noutput_items <= int(_samp_avail)) {
for (int i = 0; i <= noutput_items; ++i)
*out++ = _lut[ *(buf + _buf_offset + i) ];
_buf_offset += noutput_items;
_samp_avail -= noutput_items;
return noutput_items;
} else {
for (int i = 0; i <= int(_samp_avail); ++i)
*out++ = _lut[ *(buf + _buf_offset + i) ];
{
boost::mutex::scoped_lock lock( _buf_mutex );
_buf_head = (_buf_head + 1) % _buf_num;
_buf_used--;
}
buf = _buf[_buf_head];
_buf_offset = 0;
int remaining = noutput_items - _samp_avail;
for (int i = 0; i <= remaining; ++i)
*out++ = _lut[ *(buf + _buf_offset + i) ];
_buf_offset = remaining;
_samp_avail = (BUF_SIZE/2) - remaining;
return noutput_items;
}
return noutput_items;
}
std::vector<std::string> rtl_source_c::get_devices()
{
std::vector<std::string> result;
for (unsigned int i = 0; i < rtlsdr_get_device_count(); i++)
result.push_back( "rtl=" + boost::lexical_cast< std::string >( i ) );
return result;
}
size_t rtl_source_c::get_num_channels()
{
return 1;
}
osmosdr::meta_range_t rtl_source_c::get_sample_rates()
{
osmosdr::meta_range_t range;
range += osmosdr::range_t( 1024000 ); // known to work
range += osmosdr::range_t( 1800000 ); // known to work
range += osmosdr::range_t( 2048000 ); // known to work
range += osmosdr::range_t( 2400000 ); // may work
range += osmosdr::range_t( 2600000 ); // may work
range += osmosdr::range_t( 2800000 ); // may work
range += osmosdr::range_t( 3000000 ); // may work
range += osmosdr::range_t( 3200000 ); // max rate, may work
// TODO: read from the librtlsdr as soon as the api is available
return range;
}
double rtl_source_c::set_sample_rate(double rate)
{
if (_dev) {
rtlsdr_set_sample_rate( _dev, (uint32_t)rate );
}
return get_sample_rate();
}
double rtl_source_c::get_sample_rate()
{
if (_dev)
return (double)rtlsdr_get_sample_rate( _dev );
return 0;
}
osmosdr::freq_range_t rtl_source_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( 50e6, 2.2e9, 100 );
// TODO: read from the librtlsdr as soon as the api is available
return range;
}
double rtl_source_c::set_center_freq( double freq, size_t chan )
{
if (_dev)
rtlsdr_set_center_freq( _dev, (uint32_t)freq );
return get_center_freq( chan );
}
double rtl_source_c::get_center_freq( size_t chan )
{
if (_dev)
return (double)rtlsdr_get_center_freq( _dev );
return 0;
}
double rtl_source_c::set_freq_corr( double ppm, size_t chan )
{
if ( _dev )
rtlsdr_set_freq_correction( _dev, (int)ppm );
return get_freq_corr( chan );
}
double rtl_source_c::get_freq_corr( size_t chan )
{
if ( _dev )
return (double)rtlsdr_get_freq_correction( _dev );
return 0;
}
std::vector<std::string> rtl_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > antennas;
antennas += "LNA";
return antennas;
}
osmosdr::gain_range_t rtl_source_c::get_gain_range( size_t chan )
{
osmosdr::gain_range_t range;
range += osmosdr::range_t( -1.0 );
range += osmosdr::range_t( 1.5 );
range += osmosdr::range_t( 4.0 );
range += osmosdr::range_t( 6.5 );
range += osmosdr::range_t( 9.0 );
range += osmosdr::range_t( 11.5 );
range += osmosdr::range_t( 14.0 );
range += osmosdr::range_t( 16.5 );
range += osmosdr::range_t( 19.0 );
range += osmosdr::range_t( 21.5 );
range += osmosdr::range_t( 24.0 );
range += osmosdr::range_t( 29.0 );
range += osmosdr::range_t( 34.0 );
range += osmosdr::range_t( 42.0 );
range += osmosdr::range_t( 43.0 );
range += osmosdr::range_t( 45.0 );
range += osmosdr::range_t( 47.0 );
range += osmosdr::range_t( 49.0 );
// TODO: read from the librtlsdr as soon as the api is available
return range;
}
osmosdr::gain_range_t rtl_source_c::get_gain_range( const std::string & name, size_t chan )
{
return get_gain_range( chan );
}
bool rtl_source_c::set_gain_mode( bool mode, size_t chan )
{
if (_dev) {
if (!rtlsdr_set_tuner_gain_mode(_dev, int(!mode))) {
_auto_gain = mode;
}
}
return get_gain_mode(chan);
}
bool rtl_source_c::get_gain_mode( size_t chan )
{
return _auto_gain;
}
double pick_closest_gain(osmosdr::gain_range_t &gains, double required)
{
double result = required;
double distance = 100;
BOOST_FOREACH(osmosdr::range_t gain, gains)
{
double diff = fabs(gain.start() - required);
if (diff < distance) {
distance = diff;
result = gain.start();
}
}
return result;
}
double rtl_source_c::set_gain( double gain, size_t chan )
{
osmosdr::gain_range_t gains = rtl_source_c::get_gain_range( chan );
double picked_gain = pick_closest_gain( gains, gain );
if (_dev)
rtlsdr_set_tuner_gain( _dev, int(picked_gain * 10.0) );
return get_gain( chan );
}
double rtl_source_c::set_gain( double gain, const std::string & name, size_t chan)
{
return set_gain( gain, chan );
}
double rtl_source_c::get_gain( size_t chan )
{
if ( _dev )
return ((double)rtlsdr_get_tuner_gain( _dev )) / 10.0;
return 0;
}
double rtl_source_c::get_gain( const std::string & name, size_t chan )
{
return get_gain( chan );
}
std::vector< std::string > rtl_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string rtl_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string rtl_source_c::get_antenna( size_t chan )
{
return "ANT";
}