GNU Radio block for interfacing with various radio hardware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gr-osmosdr/lib/rtl/rtl_source_c.cc

699 lines
17 KiB

/* -*- c++ -*- */
/*
* Copyright 2012 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "rtl_source_c.h"
#include <gnuradio/io_signature.h>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/detail/endian.hpp>
#include <boost/algorithm/string.hpp>
#include <stdexcept>
#include <iostream>
#include <stdio.h>
#include <rtl-sdr.h>
#include "arg_helpers.h"
using namespace boost::assign;
#define BUF_LEN (16 * 32 * 512) /* must be multiple of 512 */
#define BUF_NUM 15
#define BUF_SKIP 1 // buffers to skip due to initial garbage
#define BYTES_PER_SAMPLE 2 // rtl device delivers 8 bit unsigned IQ data
/*
* Create a new instance of rtl_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
rtl_source_c_sptr
make_rtl_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new rtl_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr::block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
rtl_source_c::rtl_source_c (const std::string &args)
: gr::sync_block ("rtl_source_c",
gr::io_signature::make(MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make(MIN_OUT, MAX_OUT, sizeof (gr_complex))),
_dev(NULL),
_buf(NULL),
_running(false),
_no_tuner(false),
_auto_gain(false),
_if_gain(0),
_skipped(0)
{
int ret;
int index;
unsigned int dev_index = 0, rtl_freq = 0, tuner_freq = 0, direct_samp = 0;
unsigned int offset_tune = 0;
char manufact[256];
char product[256];
char serial[256];
dict_t dict = params_to_dict(args);
if (dict.count("rtl")) {
std::string value = dict["rtl"];
if ( (index = rtlsdr_get_index_by_serial( value.c_str() )) >= 0 ) {
dev_index = index; /* use the resolved index value */
} else { /* use the numeric value of the argument */
if ( value.length() ) {
try {
dev_index = boost::lexical_cast< unsigned int >( value );
} catch ( std::exception &ex ) {
throw std::runtime_error(
"Failed to use '" + value + "' as index: " + ex.what());
}
}
}
}
if ( dev_index >= rtlsdr_get_device_count() )
throw std::runtime_error("Wrong rtlsdr device index given.");
std::cerr << "Using device #" << dev_index;
memset(manufact, 0, sizeof(manufact));
memset(product, 0, sizeof(product));
memset(serial, 0, sizeof(serial));
if ( !rtlsdr_get_device_usb_strings( dev_index, manufact, product, serial ) ) {
if (strlen(manufact))
std::cerr << " " << manufact;
if (strlen(product))
std::cerr << " " << product;
if (strlen(serial))
std::cerr << " SN: " << serial;
} else {
std::cerr << " " << rtlsdr_get_device_name(dev_index);
}
std::cerr << std::endl;
if (dict.count("rtl_xtal"))
rtl_freq = (unsigned int)boost::lexical_cast< double >( dict["rtl_xtal"] );
if (dict.count("tuner_xtal"))
tuner_freq = (unsigned int)boost::lexical_cast< double >( dict["tuner_xtal"] );
if (dict.count("direct_samp"))
direct_samp = boost::lexical_cast< unsigned int >( dict["direct_samp"] );
if (dict.count("offset_tune"))
offset_tune = boost::lexical_cast< unsigned int >( dict["offset_tune"] );
_buf_num = _buf_len = _buf_head = _buf_used = _buf_offset = 0;
if (dict.count("buffers"))
_buf_num = boost::lexical_cast< unsigned int >( dict["buffers"] );
if (dict.count("buflen"))
_buf_len = boost::lexical_cast< unsigned int >( dict["buflen"] );
if (0 == _buf_num)
_buf_num = BUF_NUM;
if (0 == _buf_len || _buf_len % 512 != 0) /* len must be multiple of 512 */
_buf_len = BUF_LEN;
if ( BUF_NUM != _buf_num || BUF_LEN != _buf_len ) {
std::cerr << "Using " << _buf_num << " buffers of size " << _buf_len << "."
<< std::endl;
}
_samp_avail = _buf_len / BYTES_PER_SAMPLE;
// create a lookup table for gr_complex values
for (unsigned int i = 0; i < 0x100; i++)
_lut.push_back((i - 127.4f) / 128.0f);
_dev = NULL;
ret = rtlsdr_open( &_dev, dev_index );
if (ret < 0)
throw std::runtime_error("Failed to open rtlsdr device.");
if (rtl_freq > 0 || tuner_freq > 0) {
if (rtl_freq)
std::cerr << "Setting rtl clock to " << rtl_freq << " Hz." << std::endl;
if (tuner_freq)
std::cerr << "Setting tuner clock to " << tuner_freq << " Hz." << std::endl;
ret = rtlsdr_set_xtal_freq( _dev, rtl_freq, tuner_freq );
if (ret < 0)
throw std::runtime_error(
str(boost::format("Failed to set xtal frequencies. Error %d.") % ret ));
}
ret = rtlsdr_set_sample_rate( _dev, 1024000 );
if (ret < 0)
throw std::runtime_error("Failed to set default samplerate.");
ret = rtlsdr_set_tuner_gain_mode(_dev, int(!_auto_gain));
if (ret < 0)
throw std::runtime_error("Failed to set tuner gain mode.");
ret = rtlsdr_set_agc_mode(_dev, int(_auto_gain));
if (ret < 0)
throw std::runtime_error("Failed to set agc mode.");
if (direct_samp) {
ret = rtlsdr_set_direct_sampling(_dev, direct_samp);
if (ret < 0)
throw std::runtime_error("Failed to enable direct sampling.");
_no_tuner = true;
}
if (offset_tune) {
ret = rtlsdr_set_offset_tuning(_dev, offset_tune);
if (ret < 0)
throw std::runtime_error("Failed to enable offset tuning.");
}
ret = rtlsdr_reset_buffer( _dev );
if (ret < 0)
throw std::runtime_error("Failed to reset usb buffers.");
set_if_gain( 24 ); /* preset to a reasonable default (non-GRC use case) */
_buf = (unsigned char **)malloc(_buf_num * sizeof(unsigned char *));
if (_buf) {
for(unsigned int i = 0; i < _buf_num; ++i)
_buf[i] = (unsigned char *)malloc(_buf_len);
}
}
/*
* Our virtual destructor.
*/
rtl_source_c::~rtl_source_c ()
{
if (_dev) {
if (_running)
{
_running = false;
rtlsdr_cancel_async( _dev );
_thread.join();
}
rtlsdr_close( _dev );
_dev = NULL;
}
if (_buf) {
for(unsigned int i = 0; i < _buf_num; ++i) {
free(_buf[i]);
}
free(_buf);
_buf = NULL;
}
}
bool rtl_source_c::start()
{
_running = true;
_thread = gr::thread::thread(_rtlsdr_wait, this);
return true;
}
bool rtl_source_c::stop()
{
_running = false;
if (_dev)
rtlsdr_cancel_async( _dev );
_thread.join();
return true;
}
void rtl_source_c::_rtlsdr_callback(unsigned char *buf, uint32_t len, void *ctx)
{
rtl_source_c *obj = (rtl_source_c *)ctx;
obj->rtlsdr_callback(buf, len);
}
void rtl_source_c::rtlsdr_callback(unsigned char *buf, uint32_t len)
{
if (_skipped < BUF_SKIP) {
_skipped++;
return;
}
{
boost::mutex::scoped_lock lock( _buf_mutex );
int buf_tail = (_buf_head + _buf_used) % _buf_num;
memcpy(_buf[buf_tail], buf, len);
if (_buf_used == _buf_num) {
std::cerr << "O" << std::flush;
_buf_head = (_buf_head + 1) % _buf_num;
} else {
_buf_used++;
}
}
_buf_cond.notify_one();
}
void rtl_source_c::_rtlsdr_wait(rtl_source_c *obj)
{
obj->rtlsdr_wait();
}
void rtl_source_c::rtlsdr_wait()
{
int ret = rtlsdr_read_async( _dev, _rtlsdr_callback, (void *)this, _buf_num, _buf_len );
_running = false;
if ( ret != 0 )
std::cerr << "rtlsdr_read_async returned with " << ret << std::endl;
_buf_cond.notify_one();
}
int rtl_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
gr_complex *out = (gr_complex *)output_items[0];
{
boost::mutex::scoped_lock lock( _buf_mutex );
while (_buf_used < 3 && _running) // collect at least 3 buffers
_buf_cond.wait( lock );
}
if (!_running)
return WORK_DONE;
while (noutput_items && _buf_used) {
const int nout = std::min(noutput_items, _samp_avail);
const unsigned char *buf = _buf[_buf_head] + _buf_offset * 2;
for (int i = 0; i < nout; ++i)
*out++ = gr_complex(_lut[buf[i * 2]], _lut[buf[i * 2 + 1]]);
noutput_items -= nout;
_samp_avail -= nout;
if (!_samp_avail) {
{
boost::mutex::scoped_lock lock( _buf_mutex );
_buf_head = (_buf_head + 1) % _buf_num;
_buf_used--;
}
_samp_avail = _buf_len / BYTES_PER_SAMPLE;
_buf_offset = 0;
} else {
_buf_offset += nout;
}
}
return (out - ((gr_complex *)output_items[0]));
}
std::vector<std::string> rtl_source_c::get_devices()
{
std::vector<std::string> devices;
std::string label;
char manufact[256];
char product[256];
char serial[256];
for (unsigned int i = 0; i < rtlsdr_get_device_count(); i++) {
std::string args = "rtl=" + boost::lexical_cast< std::string >( i );
label.clear();
memset(manufact, 0, sizeof(manufact));
memset(product, 0, sizeof(product));
memset(serial, 0, sizeof(serial));
if ( !rtlsdr_get_device_usb_strings( i, manufact, product, serial ) ) {
if (strlen(manufact))
label += std::string(manufact) + " ";
if (strlen(product))
label += std::string(product) + " ";
if (strlen(serial))
label += "SN: " + std::string(serial) + " ";
} else {
label = std::string(rtlsdr_get_device_name(i));
}
boost::algorithm::trim(label);
args += ",label='" + label + "'";
devices.push_back( args );
}
return devices;
}
size_t rtl_source_c::get_num_channels()
{
return 1;
}
osmosdr::meta_range_t rtl_source_c::get_sample_rates()
{
osmosdr::meta_range_t range;
range += osmosdr::range_t( 250000 ); // known to work
range += osmosdr::range_t( 1000000 ); // known to work
range += osmosdr::range_t( 1024000 ); // known to work
range += osmosdr::range_t( 1800000 ); // known to work
range += osmosdr::range_t( 1920000 ); // known to work
range += osmosdr::range_t( 2000000 ); // known to work
range += osmosdr::range_t( 2048000 ); // known to work
range += osmosdr::range_t( 2400000 ); // known to work
range += osmosdr::range_t( 2560000 ); // known to work
// range += osmosdr::range_t( 2600000 ); // may work
// range += osmosdr::range_t( 2800000 ); // may work
// range += osmosdr::range_t( 3000000 ); // may work
// range += osmosdr::range_t( 3200000 ); // max rate
return range;
}
double rtl_source_c::set_sample_rate(double rate)
{
if (_dev) {
rtlsdr_set_sample_rate( _dev, (uint32_t)rate );
}
return get_sample_rate();
}
double rtl_source_c::get_sample_rate()
{
if (_dev)
return (double)rtlsdr_get_sample_rate( _dev );
return 0;
}
osmosdr::freq_range_t rtl_source_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
if (_dev) {
if (_no_tuner) {
uint32_t rtl_freq;
if ( !rtlsdr_get_xtal_freq( _dev, &rtl_freq, NULL ) )
range += osmosdr::range_t( 0, double(rtl_freq) );
return range;
}
enum rtlsdr_tuner tuner = rtlsdr_get_tuner_type(_dev);
if ( tuner == RTLSDR_TUNER_E4000 ) {
/* there is a (temperature dependent) gap between 1100 to 1250 MHz */
range += osmosdr::range_t( 52e6, 2.2e9 );
} else if ( tuner == RTLSDR_TUNER_FC0012 ) {
range += osmosdr::range_t( 22e6, 948e6 );
} else if ( tuner == RTLSDR_TUNER_FC0013 ) {
range += osmosdr::range_t( 22e6, 1.1e9 );
} else if ( tuner == RTLSDR_TUNER_FC2580 ) {
range += osmosdr::range_t( 146e6, 308e6 );
range += osmosdr::range_t( 438e6, 924e6 );
} else if ( tuner == RTLSDR_TUNER_R820T ) {
range += osmosdr::range_t( 24e6, 1766e6 );
} else if ( tuner == RTLSDR_TUNER_R828D ) {
range += osmosdr::range_t( 24e6, 1766e6 );
}
}
return range;
}
double rtl_source_c::set_center_freq( double freq, size_t chan )
{
if (_dev)
rtlsdr_set_center_freq( _dev, (uint32_t)freq );
return get_center_freq( chan );
}
double rtl_source_c::get_center_freq( size_t chan )
{
if (_dev)
return (double)rtlsdr_get_center_freq( _dev );
return 0;
}
double rtl_source_c::set_freq_corr( double ppm, size_t chan )
{
if ( _dev )
rtlsdr_set_freq_correction( _dev, (int)ppm );
return get_freq_corr( chan );
}
double rtl_source_c::get_freq_corr( size_t chan )
{
if ( _dev )
return (double)rtlsdr_get_freq_correction( _dev );
return 0;
}
std::vector<std::string> rtl_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "LNA";
if ( _dev ) {
if ( rtlsdr_get_tuner_type(_dev) == RTLSDR_TUNER_E4000 ) {
names += "IF";
}
}
return names;
}
osmosdr::gain_range_t rtl_source_c::get_gain_range( size_t chan )
{
osmosdr::gain_range_t range;
if (_dev) {
int count = rtlsdr_get_tuner_gains(_dev, NULL);
if (count > 0) {
int* gains = new int[ count ];
count = rtlsdr_get_tuner_gains(_dev, gains);
for (int i = 0; i < count; i++)
range += osmosdr::range_t( gains[i] / 10.0 );
delete[] gains;
}
}
return range;
}
osmosdr::gain_range_t rtl_source_c::get_gain_range( const std::string & name, size_t chan )
{
if ( "IF" == name ) {
if ( _dev ) {
if ( rtlsdr_get_tuner_type(_dev) == RTLSDR_TUNER_E4000 ) {
return osmosdr::gain_range_t(3, 56, 1);
} else {
return osmosdr::gain_range_t();
}
}
}
return get_gain_range( chan );
}
bool rtl_source_c::set_gain_mode( bool automatic, size_t chan )
{
if (_dev) {
if (!rtlsdr_set_tuner_gain_mode(_dev, int(!automatic))) {
_auto_gain = automatic;
}
rtlsdr_set_agc_mode(_dev, int(automatic));
}
return get_gain_mode(chan);
}
bool rtl_source_c::get_gain_mode( size_t chan )
{
return _auto_gain;
}
double rtl_source_c::set_gain( double gain, size_t chan )
{
osmosdr::gain_range_t rf_gains = rtl_source_c::get_gain_range( chan );
if (_dev) {
rtlsdr_set_tuner_gain( _dev, int(rf_gains.clip(gain) * 10.0) );
}
return get_gain( chan );
}
double rtl_source_c::set_gain( double gain, const std::string & name, size_t chan)
{
if ( "IF" == name ) {
return set_if_gain( gain, chan );
}
return set_gain( gain, chan );
}
double rtl_source_c::get_gain( size_t chan )
{
if ( _dev )
return ((double)rtlsdr_get_tuner_gain( _dev )) / 10.0;
return 0;
}
double rtl_source_c::get_gain( const std::string & name, size_t chan )
{
if ( "IF" == name ) {
return _if_gain;
}
return get_gain( chan );
}
double rtl_source_c::set_if_gain(double gain, size_t chan)
{
if ( _dev ) {
if ( rtlsdr_get_tuner_type(_dev) != RTLSDR_TUNER_E4000 ) {
_if_gain = 0;
return _if_gain;
}
}
std::vector< osmosdr::gain_range_t > if_gains;
if_gains += osmosdr::gain_range_t(-3, 6, 9);
if_gains += osmosdr::gain_range_t(0, 9, 3);
if_gains += osmosdr::gain_range_t(0, 9, 3);
if_gains += osmosdr::gain_range_t(0, 2, 1);
if_gains += osmosdr::gain_range_t(3, 15, 3);
if_gains += osmosdr::gain_range_t(3, 15, 3);
std::map< int, double > gains;
/* initialize with min gains */
for (unsigned int i = 0; i < if_gains.size(); i++) {
gains[ i + 1 ] = if_gains[ i ].start();
}
for (int i = if_gains.size() - 1; i >= 0; i--) {
osmosdr::gain_range_t range = if_gains[ i ];
double error = gain;
for( double g = range.start(); g <= range.stop(); g += range.step() ) {
double sum = 0;
for (int j = 0; j < int(gains.size()); j++) {
if ( i == j )
sum += g;
else
sum += gains[ j + 1 ];
}
double err = std::abs(gain - sum);
if (err < error) {
error = err;
gains[ i + 1 ] = g;
}
}
}
#if 0
std::cerr << gain << " => "; double sum = 0;
for (unsigned int i = 0; i < gains.size(); i++) {
sum += gains[ i + 1 ];
std::cerr << gains[ i + 1 ] << " ";
}
std::cerr << " = " << sum << std::endl;
#endif
if (_dev) {
for (unsigned int stage = 1; stage <= gains.size(); stage++) {
rtlsdr_set_tuner_if_gain( _dev, stage, int(gains[ stage ] * 10.0));
}
}
_if_gain = gain;
return gain;
}
std::vector< std::string > rtl_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string rtl_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string rtl_source_c::get_antenna( size_t chan )
{
return "RX";
}