GNU Radio block for interfacing with various radio hardware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gr-osmosdr/lib/hackrf/hackrf_source_c.cc

444 lines
11 KiB

/* -*- c++ -*- */
/*
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
* Copyright 2020 Clayton Smith <argilo@gmail.com>
*
* gr-osmosdr is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* gr-osmosdr is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with gr-osmosdr; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <stdexcept>
#include <iostream>
#include <gnuradio/io_signature.h>
#include "hackrf_source_c.h"
#include "arg_helpers.h"
hackrf_source_c_sptr make_hackrf_source_c (const std::string & args)
{
return gnuradio::get_initial_sptr(new hackrf_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr::block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
hackrf_source_c::hackrf_source_c (const std::string &args)
: gr::sync_block ("hackrf_source_c",
gr::io_signature::make(MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make(MIN_OUT, MAX_OUT, sizeof (gr_complex))),
hackrf_common::hackrf_common(args),
_buf(NULL),
_lna_gain(0),
_vga_gain(0)
{
dict_t dict = params_to_dict(args);
_buf_num = _buf_len = _buf_head = _buf_used = _buf_offset = 0;
if (dict.count("buffers"))
_buf_num = std::stoi(dict["buffers"]);
// if (dict.count("buflen"))
// _buf_len = std::stoi(dict["buflen"]);
if (0 == _buf_num)
_buf_num = BUF_NUM;
if (0 == _buf_len || _buf_len % 512 != 0) /* len must be multiple of 512 */
_buf_len = BUF_LEN;
_samp_avail = _buf_len / BYTES_PER_SAMPLE;
// create a lookup table for gr_complex values
for (unsigned int i = 0; i <= 0xff; i++) {
_lut.push_back( float(i) * (1.0f/128.0f) );
}
if ( BUF_NUM != _buf_num || BUF_LEN != _buf_len ) {
std::cerr << "Using " << _buf_num << " buffers of size " << _buf_len << "."
<< std::endl;
}
set_center_freq( (get_freq_range().start() + get_freq_range().stop()) / 2.0 );
set_sample_rate( get_sample_rates().start() );
set_bandwidth( 0 );
set_gain( 0 ); /* disable AMP gain stage by default to protect full sprectrum pre-amp from physical damage */
set_if_gain( 16 ); /* preset to a reasonable default (non-GRC use case) */
set_bb_gain( 20 ); /* preset to a reasonable default (non-GRC use case) */
// Check device args to find out if bias/phantom power is desired.
if ( dict.count("bias") ) {
hackrf_common::set_bias(dict["bias"] == "1");
}
_buf = (unsigned char **) malloc(_buf_num * sizeof(unsigned char *));
if (_buf) {
for(unsigned int i = 0; i < _buf_num; ++i)
_buf[i] = (unsigned char *) malloc(_buf_len);
}
}
/*
* Our virtual destructor.
*/
hackrf_source_c::~hackrf_source_c ()
{
if (_buf) {
for(unsigned int i = 0; i < _buf_num; ++i) {
free(_buf[i]);
}
free(_buf);
_buf = NULL;
}
}
int hackrf_source_c::_hackrf_rx_callback(hackrf_transfer *transfer)
{
hackrf_source_c *obj = (hackrf_source_c *)transfer->rx_ctx;
return obj->hackrf_rx_callback(transfer->buffer, transfer->valid_length);
}
int hackrf_source_c::hackrf_rx_callback(unsigned char *buf, uint32_t len)
{
{
std::lock_guard<std::mutex> lock(_buf_mutex);
int buf_tail = (_buf_head + _buf_used) % _buf_num;
memcpy(_buf[buf_tail], buf, len);
if (_buf_used == _buf_num) {
std::cerr << "O" << std::flush;
_buf_head = (_buf_head + 1) % _buf_num;
} else {
_buf_used++;
}
}
_buf_cond.notify_one();
return 0; // TODO: return -1 on error/stop
}
bool hackrf_source_c::start()
{
if ( ! _dev.get() )
return false;
hackrf_common::start();
int ret = hackrf_start_rx( _dev.get(), _hackrf_rx_callback, (void *)this );
if ( ret != HACKRF_SUCCESS ) {
std::cerr << "Failed to start RX streaming (" << ret << ")" << std::endl;
return false;
}
return true;
}
bool hackrf_source_c::stop()
{
if ( ! _dev.get() )
return false;
hackrf_common::stop();
int ret = hackrf_stop_rx( _dev.get() );
if ( ret != HACKRF_SUCCESS ) {
std::cerr << "Failed to stop RX streaming (" << ret << ")" << std::endl;
return false;
}
return true;
}
int hackrf_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
gr_complex *out = (gr_complex *)output_items[0];
bool running = false;
if ( _dev.get() )
running = (hackrf_is_streaming( _dev.get() ) == HACKRF_TRUE);
{
std::unique_lock<std::mutex> lock(_buf_mutex);
while (_buf_used < 3 && running) // collect at least 3 buffers
_buf_cond.wait( lock );
}
if ( ! running )
return WORK_DONE;
const uint8_t *buf = _buf[_buf_head] + _buf_offset * BYTES_PER_SAMPLE;
#define TO_COMPLEX(p) gr_complex( _lut[(p)[0]], _lut[(p)[1]] )
if (noutput_items <= _samp_avail) {
for (int i = 0; i < noutput_items; ++i)
*out++ = TO_COMPLEX( buf + i*BYTES_PER_SAMPLE );
_buf_offset += noutput_items;
_samp_avail -= noutput_items;
} else {
for (int i = 0; i < _samp_avail; ++i)
*out++ = TO_COMPLEX( buf + i*BYTES_PER_SAMPLE );
{
std::lock_guard<std::mutex> lock(_buf_mutex);
_buf_head = (_buf_head + 1) % _buf_num;
_buf_used--;
}
buf = _buf[_buf_head];
int remaining = noutput_items - _samp_avail;
for (int i = 0; i < remaining; ++i)
*out++ = TO_COMPLEX( buf + i*BYTES_PER_SAMPLE );
_buf_offset = remaining;
_samp_avail = (_buf_len / BYTES_PER_SAMPLE) - remaining;
}
return noutput_items;
}
std::vector<std::string> hackrf_source_c::get_devices()
{
return hackrf_common::get_devices();
}
size_t hackrf_source_c::get_num_channels()
{
return 1;
}
osmosdr::meta_range_t hackrf_source_c::get_sample_rates()
{
return hackrf_common::get_sample_rates();
}
double hackrf_source_c::set_sample_rate( double rate )
{
return hackrf_common::set_sample_rate(rate);
}
double hackrf_source_c::get_sample_rate()
{
return hackrf_common::get_sample_rate();
}
osmosdr::freq_range_t hackrf_source_c::get_freq_range( size_t chan )
{
return hackrf_common::get_freq_range(chan);
}
double hackrf_source_c::set_center_freq( double freq, size_t chan )
{
return hackrf_common::set_center_freq(freq, chan);
}
double hackrf_source_c::get_center_freq( size_t chan )
{
return hackrf_common::get_center_freq(chan);
}
double hackrf_source_c::set_freq_corr( double ppm, size_t chan )
{
return hackrf_common::set_freq_corr(ppm, chan);
}
double hackrf_source_c::get_freq_corr( size_t chan )
{
return hackrf_common::get_freq_corr(chan);
}
std::vector<std::string> hackrf_source_c::get_gain_names( size_t chan )
{
return { "RF", "IF", "BB" };
}
osmosdr::gain_range_t hackrf_source_c::get_gain_range( size_t chan )
{
return get_gain_range( "RF", chan );
}
osmosdr::gain_range_t hackrf_source_c::get_gain_range( const std::string & name, size_t chan )
{
if ( "RF" == name ) {
return osmosdr::gain_range_t( 0, 14, 14 );
}
if ( "IF" == name ) {
return osmosdr::gain_range_t( 0, 40, 8 );
}
if ( "BB" == name ) {
return osmosdr::gain_range_t( 0, 62, 2 );
}
return osmosdr::gain_range_t();
}
bool hackrf_source_c::set_gain_mode( bool automatic, size_t chan )
{
return hackrf_common::set_gain_mode(automatic, chan);
}
bool hackrf_source_c::get_gain_mode( size_t chan )
{
return hackrf_common::get_gain_mode(chan);
}
double hackrf_source_c::set_gain( double gain, size_t chan )
{
return hackrf_common::set_gain(gain, chan);
}
double hackrf_source_c::set_gain( double gain, const std::string & name, size_t chan)
{
if ( "RF" == name ) {
return set_gain( gain, chan );
}
if ( "IF" == name ) {
return set_if_gain( gain, chan );
}
if ( "BB" == name ) {
return set_bb_gain( gain, chan );
}
return set_gain( gain, chan );
}
double hackrf_source_c::get_gain( size_t chan )
{
return hackrf_common::get_gain(chan);
}
double hackrf_source_c::get_gain( const std::string & name, size_t chan )
{
if ( "RF" == name ) {
return get_gain( chan );
}
if ( "IF" == name ) {
return _lna_gain;
}
if ( "BB" == name ) {
return _vga_gain;
}
return get_gain( chan );
}
double hackrf_source_c::set_if_gain(double gain, size_t chan)
{
int ret;
osmosdr::gain_range_t rf_gains = get_gain_range( "IF", chan );
if (_dev.get()) {
double clip_gain = rf_gains.clip( gain, true );
ret = hackrf_set_lna_gain( _dev.get(), uint32_t(clip_gain) );
if ( HACKRF_SUCCESS == ret ) {
_lna_gain = clip_gain;
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_lna_gain", clip_gain ) )
}
}
return _lna_gain;
}
double hackrf_source_c::set_bb_gain( double gain, size_t chan )
{
int ret;
osmosdr::gain_range_t if_gains = get_gain_range( "BB", chan );
if (_dev.get()) {
double clip_gain = if_gains.clip( gain, true );
ret = hackrf_set_vga_gain( _dev.get(), uint32_t(clip_gain) );
if ( HACKRF_SUCCESS == ret ) {
_vga_gain = clip_gain;
} else {
HACKRF_THROW_ON_ERROR( ret, HACKRF_FUNC_STR( "hackrf_set_vga_gain", clip_gain ) )
}
}
return _vga_gain;
}
std::vector< std::string > hackrf_source_c::get_antennas( size_t chan )
{
return hackrf_common::get_antennas(chan);
}
std::string hackrf_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return hackrf_common::set_antenna(antenna, chan);
}
std::string hackrf_source_c::get_antenna( size_t chan )
{
return hackrf_common::get_antenna(chan);
}
double hackrf_source_c::set_bandwidth( double bandwidth, size_t chan )
{
return hackrf_common::set_bandwidth(bandwidth, chan);
}
double hackrf_source_c::get_bandwidth( size_t chan )
{
return hackrf_common::get_bandwidth(chan);
}
osmosdr::freq_range_t hackrf_source_c::get_bandwidth_range( size_t chan )
{
return hackrf_common::get_bandwidth_range(chan);
}