gr-osmosdr/lib/bladerf/bladerf_source_c.cc

666 lines
20 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include "arg_helpers.h"
#include "bladerf_source_c.h"
#include "osmosdr/source.h"
/*
* Default size of sample FIFO, in entries.
*/
#define BLADERF_SAMPLE_FIFO_SIZE (2 * 1024 * 1024)
#define BLADERF_SAMPLE_FIFO_MIN_SIZE (3 * BLADERF_SAMPLE_BLOCK_SIZE)
using namespace boost::assign;
/*
* Create a new instance of bladerf_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_source_c_sptr make_bladerf_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr_block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
bladerf_source_c::bladerf_source_c (const std::string &args)
: gr::sync_block ("bladerf_source_c",
gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex)))
{
int ret;
size_t fifo_size;
std::string device_name;
struct bladerf_version fpga_version;
dict_t dict = params_to_dict(args);
init(dict, "source");
fifo_size = BLADERF_SAMPLE_FIFO_SIZE;
if (dict.count("fifo")) {
try {
fifo_size = boost::lexical_cast<size_t>(dict["fifo"]);
} catch (const boost::bad_lexical_cast &e) {
std::cerr << _pfx << "Warning: \"fifo\" value is invalid. Defaulting to "
<< fifo_size;
}
if (fifo_size < BLADERF_SAMPLE_FIFO_MIN_SIZE) {
fifo_size = BLADERF_SAMPLE_FIFO_MIN_SIZE;
std::cerr << _pfx << "Warning: \"fifo\" value is too small. Defaulting to "
<< BLADERF_SAMPLE_FIFO_MIN_SIZE;
}
}
_fifo = new boost::circular_buffer<gr_complex>(fifo_size);
if (!_fifo) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"Failed to allocate a sample FIFO!" );
}
if (dict.count("sampling"))
{
std::string sampling = dict["sampling"];
std::cerr << _pfx << "Setting bladerf sampling to " << sampling << std::endl;
if( sampling == "internal") {
ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_INTERNAL );
if ( ret != 0 )
std::cerr << _pfx << "Problem while setting sampling mode:"
<< bladerf_strerror(ret) << std::endl;
} else if( sampling == "external" ) {
ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_EXTERNAL );
if ( ret != 0 )
std::cerr << _pfx << "Problem while setting sampling mode:"
<< bladerf_strerror(ret) << std::endl;
} else {
std::cerr << _pfx << "Invalid sampling mode " << sampling << std::endl;
}
}
/* Set the range of LNA, G_LNA_RXFE[1:0] */
_lna_range = osmosdr::gain_range_t( 0, 6, 3 );
/* Set the range of VGA1, RFB_TIA_RXFE[6:0], nonlinear mapping done inside the lib */
_vga1_range = osmosdr::gain_range_t( 5, 30, 1 );
/* Set the range of VGA2 VGA2GAIN[4:0], not recommended to be used above 30dB */
_vga2_range = osmosdr::gain_range_t( 0, 60, 3 );
/* Warn user about using an old FPGA version, as we no longer strip off the
* markers that were pressent in the pre-v0.0.1 FPGA */
if (bladerf_fpga_version( _dev.get(), &fpga_version ) != 0) {
std::cerr << _pfx << "Failed to get FPGA version" << std::endl;
} else if ( fpga_version.major <= 0 &&
fpga_version.minor <= 0 &&
fpga_version.patch < 1 ) {
std::cerr << _pfx << "Warning: FPGA version v0.0.1 or later is required. "
<< "Using an earlier FPGA version will result in misinterpeted samples. "
<< std::endl;
}
}
/*
* Our virtual destructor.
*/
bladerf_source_c::~bladerf_source_c ()
{
int ret;
if (is_running()) {
std::cerr << _pfx << "Still running when destructor called!"
<< std::endl;
stop();
}
ret = bladerf_enable_module( _dev.get(), BLADERF_MODULE_RX, false );
if ( ret != 0 )
std::cerr << _pfx << "bladerf_enable_module failed: "
<< bladerf_strerror(ret) << std::endl;
/* Release stream resources */
bladerf_deinit_stream(_stream);
delete _fifo;
}
void *bladerf_source_c::stream_callback( struct bladerf *dev,
struct bladerf_stream *stream,
struct bladerf_metadata *metadata,
void *samples,
size_t num_samples,
void *user_data )
{
bladerf_source_c *obj = (bladerf_source_c *) user_data;
if ( ! obj->is_running() )
return NULL;
return obj->stream_task( samples, num_samples );
}
/* Convert & push samples to the sample fifo */
void *bladerf_source_c::stream_task( void *samples, size_t num_samples )
{
size_t i, n_avail, to_copy;
int16_t *sample = (int16_t *)samples;
void *ret;
const float scaling = 1.0f / 2048.0f;
ret = _buffers[_buf_index];
_buf_index = (_buf_index + 1) % _num_buffers;
_fifo_lock.lock();
n_avail = _fifo->capacity() - _fifo->size();
to_copy = (n_avail < num_samples ? n_avail : num_samples);
for(i = 0; i < to_copy; i++ ) {
/* Push sample to the fifo */
_fifo->push_back( gr_complex( *sample * scaling,
*(sample+1) * scaling) );
/* offset to the next I+Q sample */
sample += 2;
}
_fifo_lock.unlock();
/* We have made some new samples available to the consumer in work() */
if (to_copy) {
//std::cerr << "+" << std::flush;
_samp_avail.notify_one();
}
/* Indicate overrun, if neccesary */
if (to_copy < num_samples)
std::cerr << "O" << std::flush;
return ret;
}
void bladerf_source_c::read_task()
{
int status;
set_running( true );
/* Start stream and stay there until we kill the stream */
status = bladerf_stream(_stream, BLADERF_MODULE_RX);
if ( status < 0 ) {
set_running( false );
std::cerr << "Source stream error: " << bladerf_strerror(status) << std::endl;
if ( status == BLADERF_ERR_TIMEOUT ) {
std::cerr << _pfx << "Try adjusting your sample rate or the "
<< "\"buffers\", \"buflen\", and \"transfers\" parameters. "
<< std::endl;
}
}
}
bool bladerf_source_c::start()
{
int ret;
/* Initialize the stream */
_buf_index = 0;
ret = bladerf_init_stream( &_stream, _dev.get(), stream_callback,
&_buffers, _num_buffers, BLADERF_FORMAT_SC16_Q11,
_samples_per_buffer, _num_buffers, this );
if ( ret != 0 )
std::cerr << _pfx << "bladerf_init_stream failed: "
<< bladerf_strerror(ret) << std::endl;
ret = bladerf_enable_module( _dev.get(), BLADERF_MODULE_RX, true );
if ( ret != 0 )
std::cerr << _pfx << "bladerf_enable_module failed:"
<< bladerf_strerror(ret) << std::endl;
_thread = gr::thread::thread( boost::bind(&bladerf_source_c::read_task, this) );
while( is_running() == false ) {
boost::this_thread::sleep( boost::posix_time::milliseconds(1) );
}
return true;
}
bool bladerf_source_c::stop()
{
set_running(false);
_thread.join();
return true;
}
/* Main work function, pull samples from the sample fifo */
int bladerf_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
if ( ! is_running() )
return WORK_DONE;
if( noutput_items > 0 ) {
gr_complex *out = (gr_complex *)output_items[0];
boost::unique_lock<boost::mutex> lock(_fifo_lock);
/* Wait until we have the requested number of samples */
int n_samples_avail = _fifo->size();
while (n_samples_avail < noutput_items) {
_samp_avail.wait(lock);
n_samples_avail = _fifo->size();
}
for(int i = 0; i < noutput_items; ++i) {
out[i] = _fifo->at(0);
_fifo->pop_front();
}
}
return noutput_items;
}
std::vector<std::string> bladerf_source_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_source_c::get_num_channels()
{
/* We only support a single channel for each bladeRF */
return 1;
}
osmosdr::meta_range_t bladerf_source_c::get_sample_rates()
{
return sample_rates();
}
double bladerf_source_c::set_sample_rate( double rate )
{
return bladerf_common::set_sample_rate( BLADERF_MODULE_RX, rate);
}
double bladerf_source_c::get_sample_rate()
{
return bladerf_common::get_sample_rate( BLADERF_MODULE_RX );
}
osmosdr::freq_range_t bladerf_source_c::get_freq_range( size_t chan )
{
return freq_range();
}
double bladerf_source_c::set_center_freq( double freq, size_t chan )
{
int ret;
/* Check frequency range */
if( freq < get_freq_range( chan ).start() ||
freq > get_freq_range( chan ).stop() ) {
std::cerr << "Failed to set out of bound frequency: " << freq << std::endl;
} else {
ret = bladerf_set_frequency( _dev.get(), BLADERF_MODULE_RX, (uint32_t)freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to set center frequency " +
boost::lexical_cast<std::string>(freq) + ": " +
std::string(bladerf_strerror(ret)) );
}
}
return get_center_freq( chan );
}
double bladerf_source_c::get_center_freq( size_t chan )
{
uint32_t freq;
int ret;
ret = bladerf_get_frequency( _dev.get(), BLADERF_MODULE_RX, &freq );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"failed to get center frequency: " +
std::string(bladerf_strerror(ret)) );
}
return (double)freq;
}
double bladerf_source_c::set_freq_corr( double ppm, size_t chan )
{
/* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */
return get_freq_corr( chan );
}
double bladerf_source_c::get_freq_corr( size_t chan )
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector<std::string> bladerf_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > names;
names += "LNA", "VGA1", "VGA2";
return names;
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range( size_t chan )
{
/* TODO: This is an overall system gain range. Given the LNA, VGA1 and VGA2
how much total gain can we have in the system */
return get_gain_range( "LNA", chan ); /* we use only LNA here for now */
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range( const std::string & name, size_t chan )
{
osmosdr::gain_range_t range;
if( name == "LNA" ) {
range = _lna_range;
} else if( name == "VGA1" ) {
range = _vga1_range;
} else if( name == "VGA2" ) {
range = _vga2_range;
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested an invalid gain element " + name );
}
return range;
}
bool bladerf_source_c::set_gain_mode( bool automatic, size_t chan )
{
/* TODO: Implement AGC in the FPGA */
return false;
}
bool bladerf_source_c::get_gain_mode( size_t chan )
{
/* TODO: Read back AGC mode */
return false;
}
double bladerf_source_c::set_gain( double gain, size_t chan )
{
/* TODO: This is an overall system gain that has to be set */
return set_gain( gain, "LNA", chan ); /* we use only LNA here for now */
}
double bladerf_source_c::set_gain( double gain, const std::string & name, size_t chan )
{
int ret = 0;
if( name == "LNA" ) {
bladerf_lna_gain g;
if ( gain >= 6.0f )
g = BLADERF_LNA_GAIN_MAX;
else if ( gain >= 3.0f )
g = BLADERF_LNA_GAIN_MID;
else /* gain < 3.0f */
g = BLADERF_LNA_GAIN_BYPASS;
ret = bladerf_set_lna_gain( _dev.get(), g );
} else if( name == "VGA1" ) {
ret = bladerf_set_rxvga1( _dev.get(), (int)gain );
} else if( name == "VGA2" ) {
ret = bladerf_set_rxvga2( _dev.get(), (int)gain );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested to set the gain "
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set " + name + " gain: " +
std::string(bladerf_strerror(ret)) );
}
return get_gain( name, chan );
}
double bladerf_source_c::get_gain( size_t chan )
{
/* TODO: This is an overall system gain that has to be set */
return get_gain( "LNA", chan ); /* we use only LNA here for now */
}
double bladerf_source_c::get_gain( const std::string & name, size_t chan )
{
int g;
int ret = 0;
if( name == "LNA" ) {
bladerf_lna_gain lna_g;
ret = bladerf_get_lna_gain( _dev.get(), &lna_g );
g = lna_g == BLADERF_LNA_GAIN_BYPASS ? 0 : lna_g == BLADERF_LNA_GAIN_MID ? 3 : 6;
} else if( name == "VGA1" ) {
ret = bladerf_get_rxvga1( _dev.get(), &g );
} else if( name == "VGA2" ) {
ret = bladerf_get_rxvga2( _dev.get(), &g );
} else {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"requested to get the gain "
"of an unknown gain element " + name );
}
/* Check for errors */
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get " + name + " gain: " +
std::string(bladerf_strerror(ret)) );
}
return (double)g;
}
double bladerf_source_c::set_bb_gain( double gain, size_t chan )
{
/* TODO: for RX, we should combine VGA1 & VGA2 which both are in BB path */
osmosdr::gain_range_t bb_gains = get_gain_range( "VGA2", chan );
double clip_gain = bb_gains.clip( gain, true );
gain = set_gain( clip_gain, "VGA2", chan );
return gain;
}
std::vector< std::string > bladerf_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string bladerf_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string bladerf_source_c::get_antenna( size_t chan )
{
/* We only have a single receive antenna here */
return "RX";
}
void bladerf_source_c::set_dc_offset_mode( int mode, size_t chan )
{
if ( osmosdr::source::DCOffsetOff == mode ) {
//_src->set_auto_dc_offset( false, chan );
set_dc_offset( std::complex<double>(0.0, 0.0), chan ); /* reset to default for off-state */
} else if ( osmosdr::source::DCOffsetManual == mode ) {
//_src->set_auto_dc_offset( false, chan ); /* disable auto mode, but keep correcting with last known values */
} else if ( osmosdr::source::DCOffsetAutomatic == mode ) {
//_src->set_auto_dc_offset( true, chan );
std::cerr << "Automatic DC correction mode is not implemented." << std::endl;
}
}
void bladerf_source_c::set_dc_offset( const std::complex<double> &offset, size_t chan )
{
int ret = 0;
int16_t val_i,val_q;
//the lms dc correction provides for 6 bits of DC correction and 1 sign bit
//scale the correction appropriately
val_i = (int16_t)(fabs(offset.real()) * BLADERF_RX_DC_RANGE);
val_q = (int16_t)(fabs(offset.imag()) * BLADERF_RX_DC_RANGE);
val_i = (offset.real() > 0) ? val_i : -val_i;
val_q = (offset.imag() > 0) ? val_q : -val_q;
ret = bladerf_set_correction(_dev.get(), BLADERF_MODULE_RX,
BLADERF_IQ_CORR_DC_I, val_i);
ret |= bladerf_set_correction(_dev.get(), BLADERF_MODULE_RX,
BLADERF_IQ_CORR_DC_Q, val_q);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set dc offset: " +
std::string(bladerf_strerror(ret)) );
}
}
void bladerf_source_c::set_iq_balance_mode( int mode, size_t chan )
{
if ( osmosdr::source::IQBalanceOff == mode ) {
//_src->set_auto_iq_balance( false, chan );
set_iq_balance( std::complex<double>(0.0, 0.0), chan ); /* reset to default for off-state */
} else if ( osmosdr::source::IQBalanceManual == mode ) {
//_src->set_auto_iq_balance( false, chan ); /* disable auto mode, but keep correcting with last known values */
} else if ( osmosdr::source::IQBalanceAutomatic == mode ) {
//_src->set_auto_iq_balance( true, chan );
std::cerr << "Automatic IQ correction mode is not implemented." << std::endl;
}
}
void bladerf_source_c::set_iq_balance( const std::complex<double> &balance, size_t chan )
{
int ret = 0;
int16_t val_gain,val_phase;
//FPGA gain correction defines 0.0 as BLADERF_GAIN_ZERO, scale the offset range to +/- BLADERF_GAIN_RANGE
val_gain = (int16_t)(balance.real() * (int16_t)BLADERF_GAIN_RANGE) + BLADERF_GAIN_ZERO;
//FPGA phase correction steps from -45 to 45 degrees
val_phase = (int16_t)(balance.imag() * BLADERF_PHASE_RANGE);
ret = bladerf_set_correction(_dev.get(), BLADERF_MODULE_RX,
BLADERF_IQ_CORR_GAIN, val_gain);
ret |= bladerf_set_correction(_dev.get(), BLADERF_MODULE_RX,
BLADERF_IQ_CORR_PHASE, val_phase);
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set iq balance: " +
std::string(bladerf_strerror(ret)) );
}
}
double bladerf_source_c::set_bandwidth( double bandwidth, size_t chan )
{
int ret;
uint32_t actual;
if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */
bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */
ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_RX, (uint32_t)bandwidth, &actual );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not set bandwidth: " +
std::string(bladerf_strerror(ret)) );
}
return get_bandwidth();
}
double bladerf_source_c::get_bandwidth( size_t chan )
{
uint32_t bandwidth;
int ret;
ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_RX, &bandwidth );
if( ret ) {
throw std::runtime_error( std::string(__FUNCTION__) + " " +
"could not get bandwidth:" +
std::string(bladerf_strerror(ret)) );
}
return (double)bandwidth;
}
osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range( size_t chan )
{
return filter_bandwidths();
}