gr-osmosdr/lib/bladerf/bladerf_source_c.cc

441 lines
12 KiB
C++

/* -*- c++ -*- */
/*
* Copyright 2013-2017 Nuand LLC
* Copyright 2013 Dimitri Stolnikov <horiz0n@gmx.net>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <iostream>
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <boost/lexical_cast.hpp>
#include <gnuradio/io_signature.h>
#include <volk/volk.h>
#include "arg_helpers.h"
#include "bladerf_source_c.h"
#include "osmosdr/source.h"
using namespace boost::assign;
/*
* Create a new instance of bladerf_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
bladerf_source_c_sptr make_bladerf_source_c(const std::string &args)
{
return gnuradio::get_initial_sptr(new bladerf_source_c(args));
}
/*
* The private constructor
*/
bladerf_source_c::bladerf_source_c(const std::string &args)
:gr::sync_block("bladerf_source_c",
gr::io_signature::make(0, 0, 0),
args_to_io_signature(args))
{
int status;
std::string device_name;
struct bladerf_version fpga_version;
dict_t dict = params_to_dict(args);
init(dict, BLADERF_RX);
if (dict.count("sampling")) {
std::string sampling = dict["sampling"];
std::cerr << _pfx
<< "Setting bladerf sampling to " << sampling
<< std::endl;
if (sampling == "internal") {
status = bladerf_set_sampling(_dev.get(), BLADERF_SAMPLING_INTERNAL);
if (status != 0) {
std::cerr << _pfx
<< "Problem while setting sampling mode: "
<< bladerf_strerror(status)
<< std::endl;
}
} else if (sampling == "external") {
status = bladerf_set_sampling(_dev.get(), BLADERF_SAMPLING_EXTERNAL);
if (status != 0) {
std::cerr << _pfx
<< "Problem while setting sampling mode: "
<< bladerf_strerror(status)
<< std::endl;
}
} else {
std::cerr << _pfx << "Invalid sampling mode " << sampling << std::endl;
}
}
/* Warn user about using an old FPGA version, as we no longer strip off the
* markers that were pressent in the pre-v0.0.1 FPGA */
if (bladerf_fpga_version(_dev.get(), &fpga_version) != 0) {
std::cerr << _pfx << "Failed to get FPGA version" << std::endl;
} else if (fpga_version.major <= 0 &&
fpga_version.minor <= 0 && fpga_version.patch < 1) {
std::cerr << _pfx
<< "Warning: FPGA version v0.0.1 or later is required. Using an "
<< "earlier FPGA version will result in misinterpeted samples."
<< std::endl;
}
/* Bounds-checking output signature depending on our underlying hardware */
size_t max_nchan = 1;
if (get_board_type(_dev.get()) == BLADERF_REV_2) {
max_nchan = 2;
}
if (get_num_channels() > max_nchan) {
std::cerr << _pfx
<< "Warning: number of channels specified on command line ("
<< get_num_channels() << ") is greater than the maximum number "
<< "supported by this device (" << max_nchan << "). Resetting "
<< "to " << max_nchan << "."
<< std::endl;
set_output_signature( gr::io_signature::make(max_nchan, max_nchan, sizeof(gr_complex) ) );
}
_use_mimo = get_num_channels() > 1;
}
bool bladerf_source_c::start()
{
return bladerf_common::start(BLADERF_RX);
}
bool bladerf_source_c::stop()
{
return bladerf_common::stop(BLADERF_RX);
}
int bladerf_source_c::work(int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)
{
const float scaling = 2048.0f;
int status;
gr_complex *out = static_cast<gr_complex *>(output_items[0]);
struct bladerf_metadata meta;
struct bladerf_metadata *meta_ptr = NULL;
if (noutput_items > _conv_buf_size) {
void *tmp;
_conv_buf_size = noutput_items;
tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t));
if (tmp == NULL) {
throw std::runtime_error(_pfx + "Failed to realloc _conv_buf");
}
_conv_buf = static_cast<int16_t *>(tmp);
}
if (_use_metadata) {
memset(&meta, 0, sizeof(meta));
meta.flags = BLADERF_META_FLAG_RX_NOW;
meta_ptr = &meta;
}
/* Grab all the samples into the temporary buffer */
status = bladerf_sync_rx(_dev.get(), static_cast<void *>(_conv_buf),
noutput_items, meta_ptr, _stream_timeout_ms);
if (status != 0) {
std::cerr << _pfx
<< "bladerf_sync_rx error: " << bladerf_strerror(status)
<< std::endl;
_consecutive_failures++;
if (_consecutive_failures >= MAX_CONSECUTIVE_FAILURES) {
std::cerr << _pfx
<< "Consecutive error limit hit. Shutting down."
<< std::endl;
return WORK_DONE;
}
} else {
_consecutive_failures = 0;
}
/* Convert them from fixed to floating point */
volk_16i_s32f_convert_32f((float *) out, _conv_buf, scaling,
2 * noutput_items);
return noutput_items;
}
std::vector < std::string > bladerf_source_c::get_devices()
{
return bladerf_common::devices();
}
size_t bladerf_source_c::get_num_channels()
{
return output_signature()->max_streams();
}
osmosdr::meta_range_t bladerf_source_c::get_sample_rates()
{
return sample_rates();
}
double bladerf_source_c::set_sample_rate(double rate)
{
return bladerf_common::set_sample_rate(BLADERF_RX, rate);
}
double bladerf_source_c::get_sample_rate()
{
return bladerf_common::get_sample_rate(BLADERF_RX);
}
osmosdr::freq_range_t bladerf_source_c::get_freq_range(size_t chan)
{
return bladerf_common::get_freq_range(BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::set_center_freq(double freq, size_t chan)
{
return bladerf_common::set_center_freq(freq, BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::get_center_freq(size_t chan)
{
return bladerf_common::get_center_freq(BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::set_freq_corr(double ppm, size_t chan)
{
/* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */
return get_freq_corr(BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::get_freq_corr(size_t chan)
{
/* TODO: Return back the frequency correction in ppm */
return 0;
}
std::vector < std::string > bladerf_source_c::get_gain_names(size_t chan)
{
return bladerf_common::get_gain_names(BLADERF_CHANNEL_RX(chan));
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range(size_t chan)
{
return bladerf_common::get_gain_range(BLADERF_CHANNEL_RX(chan));
}
osmosdr::gain_range_t bladerf_source_c::get_gain_range(const std::string &name,
size_t chan)
{
return bladerf_common::get_gain_range(name, BLADERF_CHANNEL_RX(chan));
}
bool bladerf_source_c::set_gain_mode(bool automatic, size_t chan)
{
return bladerf_common::set_gain_mode(automatic, BLADERF_CHANNEL_RX(chan));
}
bool bladerf_source_c::get_gain_mode(size_t chan)
{
return bladerf_common::get_gain_mode(BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::set_gain(double gain, size_t chan)
{
return bladerf_common::set_gain(gain, BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::set_gain(double gain, const std::string &name,
size_t chan)
{
return bladerf_common::set_gain(gain, name, BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::get_gain(size_t chan)
{
return bladerf_common::get_gain(BLADERF_CHANNEL_RX(chan));
}
double bladerf_source_c::get_gain(const std::string &name, size_t chan)
{
return bladerf_common::get_gain(name, BLADERF_CHANNEL_RX(chan));
}
std::vector < std::string > bladerf_source_c::get_antennas(size_t chan)
{
std::vector < std::string > antennas;
antennas += "RX0";
if (BLADERF_REV_2 == get_board_type(_dev.get())) {
antennas += "RX1";
}
return antennas;
}
std::string bladerf_source_c::set_antenna(const std::string &antenna,
size_t chan)
{
return get_antenna(BLADERF_CHANNEL_RX(chan));
}
std::string bladerf_source_c::get_antenna(size_t chan)
{
/* We only have a single receive antenna here */
// TODO: this is a lie
return "RX0";
}
void bladerf_source_c::set_dc_offset_mode(int mode, size_t chan)
{
if (osmosdr::source::DCOffsetOff == mode) {
//_src->set_auto_dc_offset( false, chan );
/* reset to default for off-state */
set_dc_offset(std::complex < double >(0.0, 0.0), chan);
} else if (osmosdr::source::DCOffsetManual == mode) {
/* disable auto mode, but keep correcting with last known values */
//_src->set_auto_dc_offset( false, chan );
} else if (osmosdr::source::DCOffsetAutomatic == mode) {
//_src->set_auto_dc_offset( true, chan );
std::cerr << _pfx
<< "Automatic DC correction mode is not implemented."
<< std::endl;
}
}
void bladerf_source_c::set_dc_offset(const std::complex < double > &offset,
size_t chan)
{
int status;
status = bladerf_common::set_dc_offset(BLADERF_RX, offset, chan);
if (status != 0) {
throw std::runtime_error(_pfx + "could not set dc offset: " +
bladerf_strerror(status));
}
}
void bladerf_source_c::set_iq_balance_mode(int mode, size_t chan)
{
if (osmosdr::source::IQBalanceOff == mode) {
//_src->set_auto_iq_balance( false, chan );
/* reset to default for off-state */
set_iq_balance(std::complex < double >(0.0, 0.0), chan);
} else if (osmosdr::source::IQBalanceManual == mode) {
/* disable auto mode, but keep correcting with last known values */
//_src->set_auto_iq_balance( false, chan );
} else if (osmosdr::source::IQBalanceAutomatic == mode) {
//_src->set_auto_iq_balance( true, chan );
std::cerr << _pfx
<< "Automatic IQ correction mode is not implemented."
<< std::endl;
}
}
void bladerf_source_c::set_iq_balance(const std::complex < double > &balance,
size_t chan)
{
int status;
status = bladerf_common::set_iq_balance(BLADERF_RX, balance, chan);
if (status != 0) {
throw std::runtime_error(_pfx + "could not set iq balance: " +
bladerf_strerror(status));
}
}
double bladerf_source_c::set_bandwidth(double bandwidth, size_t chan)
{
int status;
uint32_t actual;
if (bandwidth == 0.0) {
/* bandwidth of 0 means automatic filter selection */
/* select narrower filters to prevent aliasing */
bandwidth = get_sample_rate() * 0.75;
}
status = bladerf_set_bandwidth(_dev.get(), BLADERF_RX, (uint32_t) bandwidth,
&actual);
if (status != 0) {
throw std::runtime_error(_pfx + "could not set bandwidth: " +
bladerf_strerror(status));
}
return get_bandwidth();
}
double bladerf_source_c::get_bandwidth(size_t chan)
{
int status;
uint32_t bandwidth;
status = bladerf_get_bandwidth(_dev.get(), BLADERF_RX, &bandwidth);
if (status != 0) {
throw std::runtime_error(_pfx + "could not get bandwidth: " +
bladerf_strerror(status));
}
return (double) bandwidth;
}
osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range(size_t chan)
{
return filter_bandwidths();
}
void bladerf_source_c::set_clock_source(const std::string &source,
const size_t mboard)
{
bladerf_common::set_clock_source(source, mboard);
}
std::string bladerf_source_c::get_clock_source(const size_t mboard)
{
return bladerf_common::get_clock_source(mboard);
}
std::vector < std::string > bladerf_source_c::get_clock_sources(const size_t mboard)
{
return bladerf_common::get_clock_sources(mboard);
}