GNU Radio block for interfacing with various radio hardware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
gr-osmosdr/lib/sdrplay/sdrplay_source_c.cc

600 lines
15 KiB

/* -*- c++ -*- */
/*
* Copyright 2015 SDRplay Ltd <support@sdrplay.com>
* Copyright 2012 Dimitri Stolnikov <horiz0n@gmx.net>
* Copyright 2012 Steve Markgraf <steve@steve-m.de>
*
* GNU Radio is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU Radio is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Radio; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
/*
* config.h is generated by configure. It contains the results
* of probing for features, options etc. It should be the first
* file included in your .cc file.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "sdrplay_source_c.h"
#include <gnuradio/io_signature.h>
#include "osmosdr/source.h"
#include <boost/assign.hpp>
#include <boost/format.hpp>
#include <stdexcept>
#include <iostream>
#include <stdio.h>
#include <math.h>
#include <mirsdrapi-rsp.h>
#include "arg_helpers.h"
#define MAX_SUPPORTED_DEVICES 4
struct sdrplay_dev
{
int gRdB;
double gain_dB;
double fsHz;
double rfHz;
mir_sdr_Bw_MHzT bwType;
mir_sdr_If_kHzT ifType;
int samplesPerPacket;
int maxGain;
int minGain;
int dcMode;
};
using namespace boost::assign;
#define BYTES_PER_SAMPLE 4 // sdrplay device delivers 16 bit signed IQ data
// containing 12 bits of information
#define SDRPLAY_AM_MIN 150e3
#define SDRPLAY_AM_MAX 30e6
#define SDRPLAY_FM_MIN 64e6
#define SDRPLAY_FM_MAX 108e6
#define SDRPLAY_B3_MIN 162e6
#define SDRPLAY_B3_MAX 240e6
#define SDRPLAY_B45_MIN 470e6
#define SDRPLAY_B45_MAX 960e6
#define SDRPLAY_L_MIN 1450e6
#define SDRPLAY_L_MAX 1675e6
#define SDRPLAY_MAX_BUF_SIZE 504
/*
* Create a new instance of sdrplay_source_c and return
* a boost shared_ptr. This is effectively the public constructor.
*/
sdrplay_source_c_sptr
make_sdrplay_source_c (const std::string &args)
{
return gnuradio::get_initial_sptr(new sdrplay_source_c (args));
}
/*
* Specify constraints on number of input and output streams.
* This info is used to construct the input and output signatures
* (2nd & 3rd args to gr::block's constructor). The input and
* output signatures are used by the runtime system to
* check that a valid number and type of inputs and outputs
* are connected to this block. In this case, we accept
* only 0 input and 1 output.
*/
static const int MIN_IN = 0; // mininum number of input streams
static const int MAX_IN = 0; // maximum number of input streams
static const int MIN_OUT = 1; // minimum number of output streams
static const int MAX_OUT = 1; // maximum number of output streams
/*
* The private constructor
*/
sdrplay_source_c::sdrplay_source_c (const std::string &args)
: gr::sync_block ("sdrplay_source_c",
gr::io_signature::make(MIN_IN, MAX_IN, sizeof (gr_complex)),
gr::io_signature::make(MIN_OUT, MAX_OUT, sizeof (gr_complex))),
_running(false),
_uninit(false),
_auto_gain(false)
{
_dev = (sdrplay_dev_t *)malloc(sizeof(sdrplay_dev_t));
if (_dev == NULL)
{
return;
}
_dev->fsHz = 2048e3;
_dev->rfHz = 200e6;
_dev->bwType = mir_sdr_BW_1_536;
_dev->ifType = mir_sdr_IF_Zero;
_dev->samplesPerPacket = 0;
_dev->dcMode = 0;
_dev->gRdB = 60;
set_gain_limits(_dev->rfHz);
_dev->gain_dB = _dev->maxGain - _dev->gRdB;
_bufi.reserve(SDRPLAY_MAX_BUF_SIZE);
_bufq.reserve(SDRPLAY_MAX_BUF_SIZE);
_buf_mutex.lock();
_buf_offset = 0;
_buf_mutex.unlock();
}
/*
* Our virtual destructor.
*/
sdrplay_source_c::~sdrplay_source_c ()
{
free(_dev);
_dev = NULL;
_buf_mutex.lock();
if (_running)
{
_running = false;
}
_uninit = true;
_buf_mutex.unlock();
}
void sdrplay_source_c::reinit_device()
{
std::cerr << "reinit_device started" << std::endl;
_buf_mutex.lock();
std::cerr << "after mutex.lock" << std::endl;
if (_running)
{
std::cerr << "mir_sdr_Uninit started" << std::endl;
mir_sdr_Uninit();
}
std::cerr << "mir_sdr_Init started" << std::endl;
mir_sdr_Init(_dev->gRdB, _dev->fsHz / 1e6, _dev->rfHz / 1e6, _dev->bwType, _dev->ifType, &_dev->samplesPerPacket);
if (_dev->dcMode)
{
std::cerr << "mir_sdr_SetDcMode started" << std::endl;
mir_sdr_SetDcMode(4, 1);
}
_buf_offset = 0;
_buf_mutex.unlock();
std::cerr << "reinit_device end" << std::endl;
}
void sdrplay_source_c::set_gain_limits(double freq)
{
if (freq <= SDRPLAY_AM_MAX)
{
_dev->minGain = -4;
_dev->maxGain = 98;
}
else if (freq <= SDRPLAY_FM_MAX)
{
_dev->minGain = 1;
_dev->maxGain = 103;
}
else if (freq <= SDRPLAY_B3_MAX)
{
_dev->minGain = 5;
_dev->maxGain = 107;
}
else if (freq <= SDRPLAY_B45_MAX)
{
_dev->minGain = 9;
_dev->maxGain = 94;
}
else if (freq <= SDRPLAY_L_MAX)
{
_dev->minGain = 24;
_dev->maxGain = 105;
}
}
int sdrplay_source_c::work( int noutput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items )
{
gr_complex *out = (gr_complex *)output_items[0];
int cnt = noutput_items;
unsigned int sampNum;
int grChanged;
int rfChanged;
int fsChanged;
if (_uninit)
{
return WORK_DONE;
}
if (!_running)
{
reinit_device();
_running = true;
}
_buf_mutex.lock();
if (_buf_offset)
{
for (int i = _buf_offset; i < _dev->samplesPerPacket; i++)
{
*out++ = gr_complex( float(_bufi[i]) * (1.0f/2048.0f), float(_bufq[i]) * (1.0f/2048.0f) );
}
cnt -= (_dev->samplesPerPacket - _buf_offset);
}
while ((cnt - _dev->samplesPerPacket) >= 0)
{
mir_sdr_ReadPacket(_bufi.data(), _bufq.data(), &sampNum, &grChanged, &rfChanged, &fsChanged);
for (int i = 0; i < _dev->samplesPerPacket; i++)
{
*out++ = gr_complex( float(_bufi[i]) * (1.0f/2048.0f), float(_bufq[i]) * (1.0f/2048.0f) );
}
cnt -= _dev->samplesPerPacket;
}
_buf_offset = 0;
if (cnt)
{
mir_sdr_ReadPacket(_bufi.data(), _bufq.data(), &sampNum, &grChanged, &rfChanged, &fsChanged);
for (int i = 0; i < cnt; i++)
{
*out++ = gr_complex( float(_bufi[i]) * (1.0f/2048.0f), float(_bufq[i]) * (1.0f/2048.0f) );
}
_buf_offset = cnt;
}
_buf_mutex.unlock();
return noutput_items;
}
std::vector<std::string> sdrplay_source_c::get_devices()
{
std::vector<std::string> devices;
std::cerr << "get_devices started" << std::endl;
unsigned int dev_cnt = 0;
int samplesPerPacket;
while(mir_sdr_Init(60, 2.048, 200.0, mir_sdr_BW_1_536, mir_sdr_IF_Zero, &samplesPerPacket) == mir_sdr_Success)
{
dev_cnt++;
}
std::cerr << "Device count: " << dev_cnt << std::endl;
for (unsigned int i = 0; i < dev_cnt; i++)
{
mir_sdr_Uninit();
std::string args = "sdrplay=" + boost::lexical_cast< std::string >( i );
args += ",label='" + std::string("SDRplay RSP") + "'";
std::cerr << args << std::endl;
devices.push_back( args );
}
std::cerr << "get_devices end" << std::endl;
return devices;
}
size_t sdrplay_source_c::get_num_channels()
{
std::cerr << "get_num_channels: 1" << std::endl;
return 1;
}
osmosdr::meta_range_t sdrplay_source_c::get_sample_rates()
{
osmosdr::meta_range_t range;
range += osmosdr::range_t( 2000e3, 12000e3 );
return range;
}
double sdrplay_source_c::set_sample_rate(double rate)
{
std::cerr << "set_sample_rate start" << std::endl;
double diff = rate - _dev->fsHz;
_dev->fsHz = rate;
std::cerr << "rate = " << rate << std::endl;
std::cerr << "diff = " << diff << std::endl;
if (_running)
{
if (fabs(diff) < 10000.0)
{
std::cerr << "mir_sdr_SetFs started" << std::endl;
mir_sdr_SetFs(diff, 0, 0, 0);
}
else
{
std::cerr << "reinit_device started" << std::endl;
reinit_device();
}
}
std::cerr << "set_sample_rate end" << std::endl;
return get_sample_rate();
}
double sdrplay_source_c::get_sample_rate()
{
if (_running)
{
return _dev->fsHz;
}
// return 0;
return _dev->fsHz;
}
osmosdr::freq_range_t sdrplay_source_c::get_freq_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( SDRPLAY_AM_MIN, SDRPLAY_AM_MAX ); /* LW/MW/SW (150 kHz - 30 MHz) */
range += osmosdr::range_t( SDRPLAY_FM_MIN, SDRPLAY_FM_MAX ); /* VHF Band II (64 - 108 MHz) */
range += osmosdr::range_t( SDRPLAY_B3_MIN, SDRPLAY_B3_MAX ); /* Band III (162 - 240 MHz) */
range += osmosdr::range_t( SDRPLAY_B45_MIN, SDRPLAY_B45_MAX ); /* Band IV/V (470 - 960 MHz) */
range += osmosdr::range_t( SDRPLAY_L_MIN, SDRPLAY_L_MAX ); /* L-Band (1450 - 1675 MHz) */
return range;
}
double sdrplay_source_c::set_center_freq( double freq, size_t chan )
{
std::cerr << "set_center_freq start" << std::endl;
std::cerr << "freq = " << freq << std::endl;
double diff = freq - _dev->rfHz;
std::cerr << "diff = " << diff << std::endl;
_dev->rfHz = freq;
set_gain_limits(freq);
if (_running)
{
if (fabs(diff) < 10000.0)
{
std::cerr << "mir_sdr_SetRf started" << std::endl;
mir_sdr_SetRf(diff, 0, 0);
}
else
{
std::cerr << "reinit_device started" << std::endl;
reinit_device();
}
}
std::cerr << "set_center_freq end" << std::endl;
return get_center_freq( chan );
}
double sdrplay_source_c::get_center_freq( size_t chan )
{
if (_running)
{
return _dev->rfHz;
}
// return 0;
return _dev->rfHz;
}
double sdrplay_source_c::set_freq_corr( double ppm, size_t chan )
{
return get_freq_corr( chan );
}
double sdrplay_source_c::get_freq_corr( size_t chan )
{
return 0;
}
std::vector<std::string> sdrplay_source_c::get_gain_names( size_t chan )
{
std::vector< std::string > gains;
gains += "LNA_MIX_BB";
return gains;
}
osmosdr::gain_range_t sdrplay_source_c::get_gain_range( size_t chan )
{
osmosdr::gain_range_t range;
for (int i = _dev->minGain; i < _dev->maxGain; i++)
{
range += osmosdr::range_t( (float)i );
}
return range;
}
osmosdr::gain_range_t sdrplay_source_c::get_gain_range( const std::string & name, size_t chan )
{
return get_gain_range( chan );
}
bool sdrplay_source_c::set_gain_mode( bool automatic, size_t chan )
{
std::cerr << "set_gain_mode started" << std::endl;
_auto_gain = automatic;
std::cerr << "automatic = " << automatic << std::endl;
if (automatic)
{
/* Start AGC */
std::cerr << "AGC not yet implemented" << std::endl;
}
std::cerr << "set_gain_mode end" << std::endl;
return get_gain_mode(chan);
}
bool sdrplay_source_c::get_gain_mode( size_t chan )
{
return _auto_gain;
}
double sdrplay_source_c::set_gain( double gain, size_t chan )
{
std::cerr << "set_gain started" << std::endl;
_dev->gain_dB = gain;
std::cerr << "gain = " << gain << std::endl;
if (gain < _dev->minGain)
{
_dev->gain_dB = _dev->minGain;
}
if (gain > _dev->maxGain)
{
_dev->gain_dB = _dev->maxGain;
}
_dev->gRdB = (int)(_dev->maxGain - gain);
if (_running)
{
std::cerr << "mir_sdr_SetGr started" << std::endl;
mir_sdr_SetGr(_dev->gRdB, 1, 0);
}
std::cerr << "set_gain end" << std::endl;
return get_gain( chan );
}
double sdrplay_source_c::set_gain( double gain, const std::string & name, size_t chan)
{
return set_gain( gain, chan );
}
double sdrplay_source_c::get_gain( size_t chan )
{
if ( _running )
{
return _dev->gain_dB;
}
// return 0;
return _dev->gain_dB;
}
double sdrplay_source_c::get_gain( const std::string & name, size_t chan )
{
return get_gain( chan );
}
std::vector< std::string > sdrplay_source_c::get_antennas( size_t chan )
{
std::vector< std::string > antennas;
antennas += get_antenna( chan );
return antennas;
}
std::string sdrplay_source_c::set_antenna( const std::string & antenna, size_t chan )
{
return get_antenna( chan );
}
std::string sdrplay_source_c::get_antenna( size_t chan )
{
return "RX";
}
void sdrplay_source_c::set_dc_offset_mode( int mode, size_t chan )
{
if ( osmosdr::source::DCOffsetOff == mode )
{
_dev->dcMode = 0;
if (_running)
{
mir_sdr_SetDcMode(4, 1);
}
}
else if ( osmosdr::source::DCOffsetManual == mode )
{
std::cerr << "Manual DC correction mode is not implemented." << std::endl;
_dev->dcMode = 0;
if (_running)
{
mir_sdr_SetDcMode(4, 1);
}
}
else if ( osmosdr::source::DCOffsetAutomatic == mode )
{
_dev->dcMode = 1;
if (_running)
{
mir_sdr_SetDcMode(4, 1);
}
}
}
void sdrplay_source_c::set_dc_offset( const std::complex<double> &offset, size_t chan )
{
std::cerr << "Manual DC correction mode is not implemented." << std::endl;
}
double sdrplay_source_c::set_bandwidth( double bandwidth, size_t chan )
{
if (bandwidth <= 200e3) _dev->bwType = mir_sdr_BW_0_200;
else if (bandwidth <= 300e3) _dev->bwType = mir_sdr_BW_0_300;
else if (bandwidth <= 600e3) _dev->bwType = mir_sdr_BW_0_600;
else if (bandwidth <= 1536e3) _dev->bwType = mir_sdr_BW_1_536;
else if (bandwidth <= 5000e3) _dev->bwType = mir_sdr_BW_5_000;
else if (bandwidth <= 6000e3) _dev->bwType = mir_sdr_BW_6_000;
else if (bandwidth <= 7000e3) _dev->bwType = mir_sdr_BW_7_000;
else _dev->bwType = mir_sdr_BW_8_000;
if (_running)
{
reinit_device();
}
return get_bandwidth( chan );
}
double sdrplay_source_c::get_bandwidth( size_t chan )
{
double tmpbw=0.0f;
if (_dev->bwType == mir_sdr_BW_0_200) tmpbw = 200e3;
else if (_dev->bwType == mir_sdr_BW_0_300) tmpbw = 300e3;
else if (_dev->bwType == mir_sdr_BW_0_600) tmpbw = 600e3;
else if (_dev->bwType == mir_sdr_BW_1_536) tmpbw = 1536e3;
else if (_dev->bwType == mir_sdr_BW_5_000) tmpbw = 5000e3;
else if (_dev->bwType == mir_sdr_BW_6_000) tmpbw = 6000e3;
else if (_dev->bwType == mir_sdr_BW_7_000) tmpbw = 7000e3;
else tmpbw = 8000e3;
return (double)tmpbw;
}
osmosdr::freq_range_t sdrplay_source_c::get_bandwidth_range( size_t chan )
{
osmosdr::freq_range_t range;
range += osmosdr::range_t( 200e3 );
range += osmosdr::range_t( 300e3 );
range += osmosdr::range_t( 600e3 );
range += osmosdr::range_t( 1536e3 );
range += osmosdr::range_t( 5000e3 );
range += osmosdr::range_t( 6000e3 );
range += osmosdr::range_t( 7000e3 );
range += osmosdr::range_t( 8000e3 );
return range;
}