/* -*- c++ -*- */ /* * Copyright 2013 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include "arg_helpers.h" #include "bladerf_sink_c.h" using namespace boost::assign; /* * Create a new instance of bladerf_source_c and return * a boost shared_ptr. This is effectively the public constructor. */ bladerf_sink_c_sptr make_bladerf_sink_c (const std::string &args) { return gnuradio::get_initial_sptr(new bladerf_sink_c (args)); } /* * Specify constraints on number of input and output streams. * This info is used to construct the input and output signatures * (2nd & 3rd args to gr_block's constructor). The input and * output signatures are used by the runtime system to * check that a valid number and type of inputs and outputs * are connected to this block. In this case, we accept * only 0 input and 1 output. */ static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 1; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 0; // maximum number of output streams /* * The private constructor */ bladerf_sink_c::bladerf_sink_c (const std::string &args) : gr::sync_block ("bladerf_sink_c", gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)), gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))) { unsigned int device_number = 0; std::string device_name; dict_t dict = params_to_dict(args); if (dict.count("bladerf")) { std::string value = dict["bladerf"]; if ( value.length() ) { try { device_number = boost::lexical_cast< unsigned int >( value ); } catch ( std::exception &ex ) { throw std::runtime_error( "Failed to use '" + value + "' as device number: " + ex.what()); } } } device_name = boost::str(boost::format( "/dev/bladerf%d" ) % device_number); /* Open a handle to the device */ this->dev = bladerf_open( device_name.c_str() ); if( NULL == this->dev ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "failed to open bladeRF device " + device_name ); } if (dict.count("fpga")) { std::string fpga = dict["fpga"]; std::cerr << "Loading FPGA bitstream " << fpga << "..." << std::endl; int ret = bladerf_load_fpga( this->dev, fpga.c_str() ); if ( ret != 0 ) std::cerr << "bladerf_load_fpga has returned with " << ret << std::endl; else std::cerr << "The FPGA bitstream has been successfully loaded." << std::endl; } if (dict.count("fw")) { std::string fw = dict["fw"]; std::cerr << "Flashing firmware image " << fw << "..., " << "DO NOT INTERRUPT!" << std::endl; int ret = bladerf_flash_firmware( this->dev, fw.c_str() ); if ( ret != 0 ) std::cerr << "bladerf_flash_firmware has failed with " << ret << std::endl; else std::cerr << "The firmare has been successfully flashed, " << "please power cycle the bladeRF before using it." << std::endl; } std::cerr << "Using nuand LLC bladeRF #" << device_number; u_int64_t serial; if ( bladerf_get_serial( this->dev, &serial ) == 0 ) std::cerr << " SN " << std::setfill('0') << std::setw(16) << serial; unsigned int major, minor; if ( bladerf_get_fw_version( this->dev, &major, &minor) == 0 ) std::cerr << " FW v" << major << "." << minor; if ( bladerf_get_fpga_version( this->dev, &major, &minor) == 0 ) std::cerr << " FPGA v" << major << "." << minor; std::cerr << std::endl; if ( bladerf_is_fpga_configured( this->dev ) != 1 ) { std::cerr << "ERROR: The FPGA is not configured! " << "Use the device argument fpga=/path/to/the/bitstream.rbf to load it." << std::endl; } /* Set the range of VGA1, VGA1GAINT[7:0] */ this->vga1_range = osmosdr::gain_range_t( -35, -4, 1 ); /* Set the range of VGA2, VGA2GAIN[4:0] */ this->vga2_range = osmosdr::gain_range_t( 0, 25, 1 ); this->setup_device(); this->thread = gr::thread::thread(write_task_dispatch, this); } /* * Our virtual destructor. */ bladerf_sink_c::~bladerf_sink_c () { this->set_running(false); this->thread.join(); /* Close the device */ bladerf_close( this->dev ); } void bladerf_sink_c::write_task_dispatch(bladerf_sink_c *obj) { obj->write_task(); } void bladerf_sink_c::write_task() { int i, n_samples_avail, n_samples; int16_t *p; gr_complex sample; while ( this->is_running() ) { { /* Lock the circular buffer */ boost::unique_lock lock(this->sample_fifo_lock); /* Check to make sure we have samples available */ n_samples_avail = this->sample_fifo->size(); while( n_samples_avail < BLADERF_SAMPLE_BLOCK_SIZE ) { /* Wait until there is at least a block size of samples ready */ this->samples_available.wait(lock); n_samples_avail = this->sample_fifo->size(); } /* Pop samples from circular buffer, write samples to outgoing buffer */ int16_t *p = this->raw_sample_buf; for( i = 0; i < BLADERF_SAMPLE_BLOCK_SIZE; ++i ) { sample = this->sample_fifo->at(0); this->sample_fifo->pop_front(); *p++ = 0xa000 | (int16_t)(real(sample)*2000); *p++ = 0x5000 | (int16_t)(imag(sample)*2000); } } /* Give up the lock by leaving the scope ...*/ /* Notify that we've just popped some samples */ this->samples_available.notify_one(); /* Samples are available to write out */ n_samples = bladerf_send_c16(this->dev, this->raw_sample_buf, BLADERF_SAMPLE_BLOCK_SIZE); /* Check n_samples return value */ if( n_samples < 0 ) { std::cerr << "Failed to write samples: " << bladerf_strerror(n_samples) << std::endl; this->set_running(false); } else { if(n_samples != BLADERF_SAMPLE_BLOCK_SIZE) { if(n_samples > BLADERF_SAMPLE_BLOCK_SIZE) { std::cerr << "Warning: sent bloated sample block of " << n_samples << " samples!" << std::endl; } else { std::cerr << "Warning: sent truncated sample block of " << n_samples << " samples!" << std::endl; } } } } } int bladerf_sink_c::work( int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items ) { int n_space_avail, to_copy, limit, i; const gr_complex *in = (const gr_complex *) input_items[0]; if ( ! this->is_running() ) return WORK_DONE; if( noutput_items >= 0 ) { /* Total samples we want to process */ to_copy = noutput_items; /* While there are still samples to copy out ... */ while( to_copy > 0 ) { { /* Acquire the circular buffer lock */ boost::unique_lock lock(this->sample_fifo_lock); /* Check to see how much space is available */ n_space_avail = this->sample_fifo->capacity() - this->sample_fifo->size(); while (n_space_avail == 0) { this->samples_available.wait(lock); n_space_avail = this->sample_fifo->capacity() - this->sample_fifo->size(); } /* Limit ourselves to either the number of output items ... ... or whatever space is available */ limit = (n_space_avail < noutput_items ? n_space_avail : noutput_items); /* Consume! */ for( i = 0; i < limit; i++ ) { this->sample_fifo->push_back(*in++); } /* Decrement the amount we need to copy */ to_copy -= limit; } /* Unlock by leaving the scope */ /* Notify that we've just added some samples */ this->samples_available.notify_one(); } } return noutput_items; } std::vector bladerf_sink_c::get_devices() { return bladerf_common::devices(); } size_t bladerf_sink_c::get_num_channels() { /* We only support a single channel for each bladeRF */ return 1; } osmosdr::meta_range_t bladerf_sink_c::get_sample_rates() { return this->sample_rates(); } double bladerf_sink_c::set_sample_rate(double rate) { int ret; uint32_t actual; /* Set the Si5338 to be 2x this sample rate */ /* Check to see if the sample rate is an integer */ if( (uint32_t)round(rate) == (uint32_t)rate ) { ret = bladerf_set_sample_rate( this->dev, TX, (uint32_t)rate, &actual ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "has failed to set integer rate, error " + boost::lexical_cast(ret) ); } } else { /* TODO: Fractional sample rate */ ret = bladerf_set_sample_rate( this->dev, TX, (uint32_t)rate, &actual ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "has failed to set fractional rate, error " + boost::lexical_cast(ret) ); } } return get_sample_rate(); } double bladerf_sink_c::get_sample_rate() { int ret; unsigned int rate = 0; ret = bladerf_get_sample_rate( this->dev, TX, &rate ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "has failed to get sample rate, error " + boost::lexical_cast(ret) ); } return (double)rate; } osmosdr::freq_range_t bladerf_sink_c::get_freq_range( size_t chan ) { return this->freq_range(); } double bladerf_sink_c::set_center_freq( double freq, size_t chan ) { int ret; /* Check frequency range */ if( freq < get_freq_range( chan ).start() || freq > get_freq_range( chan ).stop() ) { std::cerr << "Failed to set out of bound frequency: " << freq << std::endl; } else { ret = bladerf_set_frequency( this->dev, TX, (uint32_t)freq ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "failed to set center frequency " + boost::lexical_cast(freq) + ", error " + boost::lexical_cast(ret) ); } } return get_center_freq( chan ); } double bladerf_sink_c::get_center_freq( size_t chan ) { uint32_t freq; int ret; ret = bladerf_get_frequency( this->dev, TX, &freq ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "failed to get center frequency, error " + boost::lexical_cast(ret) ); } return (double)freq; } double bladerf_sink_c::set_freq_corr( double ppm, size_t chan ) { /* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */ return get_freq_corr( chan ); } double bladerf_sink_c::get_freq_corr( size_t chan ) { /* TODO: Return back the frequency correction in ppm */ return 0; } std::vector bladerf_sink_c::get_gain_names( size_t chan ) { std::vector< std::string > names; names += "VGA1", "VGA2"; return names; } osmosdr::gain_range_t bladerf_sink_c::get_gain_range( size_t chan ) { /* TODO: This is an overall system gain range. Given the VGA1 and VGA2 how much total gain can we have in the system */ return get_gain_range( "VGA2", chan ); /* we use only VGA2 here for now */ } osmosdr::gain_range_t bladerf_sink_c::get_gain_range( const std::string & name, size_t chan ) { osmosdr::gain_range_t range; if( name == "VGA1" ) { range = this->vga1_range; } else if( name == "VGA2" ) { range = this->vga2_range; } else { throw std::runtime_error( std::string(__FUNCTION__) + " " + "requested an invalid gain element " + name ); } return range; } bool bladerf_sink_c::set_gain_mode( bool automatic, size_t chan ) { return false; } bool bladerf_sink_c::get_gain_mode( size_t chan ) { return false; } double bladerf_sink_c::set_gain( double gain, size_t chan ) { return set_gain( gain, "VGA2", chan ); /* we use only VGA2 here for now */ } double bladerf_sink_c::set_gain( double gain, const std::string & name, size_t chan) { int ret = 0; if( name == "VGA1" ) { ret = bladerf_set_txvga1( this->dev, (int)gain ); } else if( name == "VGA2" ) { ret = bladerf_set_txvga2( this->dev, (int)gain ); } else { throw std::runtime_error( std::string(__FUNCTION__) + " " + "requested to set the gain " "of an unknown gain element " + name ); } /* Check for errors */ if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set " + name + " gain, error " + boost::lexical_cast(ret) ); } return get_gain( name, chan ); } double bladerf_sink_c::get_gain( size_t chan ) { return get_gain( "VGA2", chan ); /* we use only VGA2 here for now */ } double bladerf_sink_c::get_gain( const std::string & name, size_t chan ) { int g; int ret = 0; if( name == "VGA1" ) { ret = bladerf_get_txvga1( this->dev, &g ); } else if( name == "VGA2" ) { ret = bladerf_get_txvga2( this->dev, &g ); } else { throw std::runtime_error( std::string(__FUNCTION__) + " " + "requested to get the gain " "of an unknown gain element " + name ); } /* Check for errors */ if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not get " + name + " gain, error " + boost::lexical_cast(ret) ); } return (double)g; } double bladerf_sink_c::set_bb_gain( double gain, size_t chan ) { /* for TX, only VGA1 is in the BB path */ osmosdr::gain_range_t bb_gains = get_gain_range( "VGA1", chan ); double clip_gain = bb_gains.clip( gain, true ); gain = set_gain( clip_gain, "VGA1", chan ); return gain; } std::vector< std::string > bladerf_sink_c::get_antennas( size_t chan ) { std::vector< std::string > antennas; antennas += get_antenna( chan ); return antennas; } std::string bladerf_sink_c::set_antenna( const std::string & antenna, size_t chan ) { return get_antenna( chan ); } std::string bladerf_sink_c::get_antenna( size_t chan ) { /* We only have a single transmit antenna here */ return "TX"; } double bladerf_sink_c::set_bandwidth( double bandwidth, size_t chan ) { int ret; uint32_t actual; ret = bladerf_set_bandwidth( this->dev, TX, (uint32_t)bandwidth, &actual ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set bandwidth, error " + boost::lexical_cast(ret) ); } return this->get_bandwidth(); } double bladerf_sink_c::get_bandwidth( size_t chan ) { uint32_t bandwidth; int ret; ret = bladerf_get_bandwidth( this->dev, TX, &bandwidth ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not get bandwidth, error " + boost::lexical_cast(ret) ); } return (double)bandwidth; } osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range( size_t chan ) { return this->filter_bandwidths(); }