/* -*- c++ -*- */ /* * Copyright 2013-2017 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include "arg_helpers.h" #include "bladerf_sink_c.h" #include "osmosdr/sink.h" using namespace boost::assign; /****************************************************************************** * Functions ******************************************************************************/ /* * Create a new instance of bladerf_sink_c and return * a boost shared_ptr. This is effectively the public constructor. */ bladerf_sink_c_sptr make_bladerf_sink_c(const std::string &args) { return gnuradio::get_initial_sptr(new bladerf_sink_c(args)); } /****************************************************************************** * Private methods ******************************************************************************/ /* * The private constructor */ bladerf_sink_c::bladerf_sink_c(const std::string &args) : gr::sync_block( "bladerf_sink_c", args_to_io_signature(args), gr::io_signature::make(0, 0, 0)), _16icbuf(NULL), _32fcbuf(NULL), _in_burst(false), _running(false) { dict_t dict = params_to_dict(args); /* Perform src/sink agnostic initializations */ init(dict, BLADERF_TX); /* Check for RX-only params */ if (dict.count("loopback")) { BLADERF_WARNING("Warning: 'loopback' has been specified on a bladeRF " "sink, and will have no effect. This parameter should be " "specified on the associated bladeRF source."); } if (dict.count("rxmux")) { BLADERF_WARNING("Warning: 'rxmux' has been specified on a bladeRF sink, " "and will have no effect."); } /* Bias tee */ if (dict.count("biastee")) { set_biastee_mode(dict["biastee"]); } /* Initialize channel <-> antenna map */ for (std::string ant : get_antennas()) { _chanmap[str2channel(ant)] = -1; } /* Bounds-checking output signature depending on our underlying hardware */ if (get_num_channels() > get_max_channels()) { BLADERF_WARNING("Warning: number of channels specified on command line (" << get_num_channels() << ") is greater than the maximum " "number supported by this device (" << get_max_channels() << "). Resetting to " << get_max_channels() << "."); set_input_signature(gr::io_signature::make(get_max_channels(), get_max_channels(), sizeof(gr_complex))); } /* Set up constraints */ int const alignment_multiple = volk_get_alignment() / sizeof(gr_complex); set_alignment(std::max(1,alignment_multiple)); set_max_noutput_items(_samples_per_buffer); set_output_multiple(get_num_channels()); /* Set channel layout */ _layout = (get_num_channels() > 1) ? BLADERF_TX_X2 : BLADERF_TX_X1; /* Initial wiring of antennas to channels */ for (size_t ch = 0; ch < get_num_channels(); ++ch) { set_channel_enable(BLADERF_CHANNEL_TX(ch), true); _chanmap[BLADERF_CHANNEL_TX(ch)] = ch; } BLADERF_DEBUG("initialization complete"); } /****************************************************************************** * Public methods ******************************************************************************/ std::string bladerf_sink_c::name() { return "bladeRF transmitter"; } std::vector bladerf_sink_c::get_devices() { return bladerf_common::devices(); } size_t bladerf_sink_c::get_max_channels() { return bladerf_common::get_max_channels(BLADERF_TX); } size_t bladerf_sink_c::get_num_channels() { return input_signature()->max_streams(); } bool bladerf_sink_c::start() { int status; BLADERF_DEBUG("starting sink"); gr::thread::scoped_lock guard(d_mutex); _in_burst = false; status = bladerf_sync_config(_dev.get(), _layout, _format, _num_buffers, _samples_per_buffer, _num_transfers, _stream_timeout); if (status != 0) { BLADERF_THROW_STATUS(status, "bladerf_sync_config failed"); } for (size_t ch = 0; ch < get_max_channels(); ++ch) { bladerf_channel brfch = BLADERF_CHANNEL_TX(ch); if (get_channel_enable(brfch)) { status = bladerf_enable_module(_dev.get(), brfch, true); if (status != 0) { BLADERF_THROW_STATUS(status, "bladerf_enable_module failed"); } } } /* Allocate memory for conversions in work() */ size_t alignment = volk_get_alignment(); _16icbuf = reinterpret_cast(volk_malloc(2*_samples_per_buffer*sizeof(int16_t), alignment)); _32fcbuf = reinterpret_cast(volk_malloc(_samples_per_buffer*sizeof(gr_complex), alignment)); _running = true; return true; } bool bladerf_sink_c::stop() { int status; BLADERF_DEBUG("stopping sink"); gr::thread::scoped_lock guard(d_mutex); if (!_running) { BLADERF_WARNING("sink already stopped, nothing to do here"); return true; } _running = false; for (size_t ch = 0; ch < get_max_channels(); ++ch) { bladerf_channel brfch = BLADERF_CHANNEL_TX(ch); if (get_channel_enable(brfch)) { status = bladerf_enable_module(_dev.get(), brfch, false); if (status != 0) { BLADERF_THROW_STATUS(status, "bladerf_enable_module failed"); } } } /* Deallocate conversion memory */ volk_free(_16icbuf); volk_free(_32fcbuf); _16icbuf = NULL; _32fcbuf = NULL; return true; } int bladerf_sink_c::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int status; size_t nstreams = num_streams(_layout); gr::thread::scoped_lock guard(d_mutex); // if we aren't running, nothing to do here if (!_running) { return 0; } // copy the samples from input_items gr_complex const **in = reinterpret_cast(&input_items[0]); if (nstreams > 1) { // we need to interleave the streams as we copy gr_complex *intl_out = _32fcbuf; for (size_t i = 0; i < (noutput_items/nstreams); ++i) { for (size_t n = 0; n < nstreams; ++n) { memcpy(intl_out++, in[n]++, sizeof(gr_complex)); } } } else { // no interleaving to do: simply copy everything memcpy(_32fcbuf, in[0], noutput_items * sizeof(gr_complex)); } // convert floating point to fixed point and scale // input_items is gr_complex (2x float), so num_points is 2*noutput_items volk_32f_s32f_convert_16i(_16icbuf, reinterpret_cast(_32fcbuf), SCALING_FACTOR, 2*noutput_items); // transmit the samples from the temp buffer if (BLADERF_FORMAT_SC16_Q11_META == _format) { status = transmit_with_tags(_16icbuf, noutput_items); } else { status = bladerf_sync_tx(_dev.get(), static_cast(_16icbuf), noutput_items, NULL, _stream_timeout); } // handle failure if (status != 0) { BLADERF_WARNING("bladerf_sync_tx error: " << bladerf_strerror(status)); ++_failures; if (_failures >= MAX_CONSECUTIVE_FAILURES) { BLADERF_WARNING("Consecutive error limit hit. Shutting down."); return WORK_DONE; } } else { _failures = 0; } return noutput_items; } int bladerf_sink_c::transmit_with_tags(int16_t const *samples, int noutput_items) { int status; int count = 0; // For a long burst, we may be transmitting the burst contents over // multiple work calls, so we'll just be sending the entire buffer // Therefore, we initialize our indicies for this case. int start_idx = 0; int end_idx = (noutput_items - 1); struct bladerf_metadata meta; std::vector tags; int const INVALID_IDX = -1; int16_t const zeros[8] = { 0 }; memset(&meta, 0, sizeof(meta)); BLADERF_DEBUG("transmit_with_tags(" << noutput_items << ")"); // Important Note: We assume that these tags are ordered by their offsets. // This is true for GNU Radio 3.7.7.x, since the GR runtime libs store // these in a multimap. // // If you're using an earlier GNU Radio version, you may have to sort // the tags vector. get_tags_in_window(tags, 0, 0, noutput_items); if (tags.size() == 0) { if (_in_burst) { BLADERF_DEBUG("TX'ing " << noutput_items << " samples within a burst..."); return bladerf_sync_tx(_dev.get(), samples, noutput_items, &meta, _stream_timeout); } else { BLADERF_WARNING("Dropping " << noutput_items << " samples not in a burst."); } } for (gr::tag_t tag : tags) { // Upon seeing an SOB tag, update our offset. We'll TX the start of the // burst when we see an EOB or at the end of this function - whichever // occurs first. if (pmt::symbol_to_string(tag.key) == "tx_sob") { if (_in_burst) { BLADERF_WARNING("Got SOB while already within a burst"); return BLADERF_ERR_INVAL; } else { start_idx = static_cast(tag.offset - nitems_read(0)); BLADERF_DEBUG("Got SOB " << start_idx << " samples into work payload"); meta.flags |= (BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START); _in_burst = true; } } else if (pmt::symbol_to_string(tag.key) == "tx_eob") { if (!_in_burst) { BLADERF_WARNING("Got EOB while not in burst"); return BLADERF_ERR_INVAL; } // Upon seeing an EOB, transmit what we have and reset our state end_idx = static_cast(tag.offset - nitems_read(0)); BLADERF_DEBUG("Got EOB " << end_idx << " samples into work payload"); if ((start_idx == INVALID_IDX) || (start_idx > end_idx)) { BLADERF_DEBUG("Buffer indicies are in an invalid state!"); return BLADERF_ERR_INVAL; } count = end_idx - start_idx + 1; BLADERF_DEBUG("TXing @ EOB [" << start_idx << ":" << end_idx << "]"); status = bladerf_sync_tx(_dev.get(), static_cast(&samples[2 * start_idx]), count, &meta, _stream_timeout); if (status != 0) { return status; } /* TODO: libbladeRF should now take care of this for us, * as of the libbladeRF version that includes the * TX_UPDATE_TIMESTAMP flag. Verify this potentially remove this. * (The meta.flags changes would then be applied to the previous * bladerf_sync_tx() call.) */ BLADERF_DEBUG("TXing Zeros with burst end flag"); meta.flags &= ~(BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START); meta.flags |= BLADERF_META_FLAG_TX_BURST_END; status = bladerf_sync_tx(_dev.get(), static_cast(zeros), 4, &meta, _stream_timeout); /* Reset our state */ start_idx = INVALID_IDX; end_idx = (noutput_items - 1); meta.flags = 0; _in_burst = false; if (status != 0) { BLADERF_DEBUG("Failed to send zero samples to flush EOB"); return status; } } } // We had a start of burst with no end yet - transmit those samples if (_in_burst) { count = end_idx - start_idx + 1; BLADERF_DEBUG("TXing SOB [" << start_idx << ":" << end_idx << "]"); status = bladerf_sync_tx(_dev.get(), static_cast(&samples[2 * start_idx]), count, &meta, _stream_timeout); } return status; } osmosdr::meta_range_t bladerf_sink_c::get_sample_rates() { return sample_rates(chan2channel(BLADERF_TX, 0)); } double bladerf_sink_c::set_sample_rate(double rate) { return bladerf_common::set_sample_rate(rate, chan2channel(BLADERF_TX, 0)); } double bladerf_sink_c::get_sample_rate() { return bladerf_common::get_sample_rate(chan2channel(BLADERF_TX, 0)); } osmosdr::freq_range_t bladerf_sink_c::get_freq_range(size_t chan) { return bladerf_common::freq_range(chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::set_center_freq(double freq, size_t chan) { return bladerf_common::set_center_freq(freq, chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::get_center_freq(size_t chan) { return bladerf_common::get_center_freq(chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::set_freq_corr(double ppm, size_t chan) { /* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */ BLADERF_WARNING("Frequency correction is not implemented."); return get_freq_corr(chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::get_freq_corr(size_t chan) { /* TODO: Return back the frequency correction in ppm */ return 0; } std::vector bladerf_sink_c::get_gain_names(size_t chan) { return bladerf_common::get_gain_names(chan2channel(BLADERF_TX, chan)); } osmosdr::gain_range_t bladerf_sink_c::get_gain_range(size_t chan) { return bladerf_common::get_gain_range(chan2channel(BLADERF_TX, chan)); } osmosdr::gain_range_t bladerf_sink_c::get_gain_range(const std::string &name, size_t chan) { return bladerf_common::get_gain_range(name, chan2channel(BLADERF_TX, chan)); } bool bladerf_sink_c::set_gain_mode(bool automatic, size_t chan) { return bladerf_common::set_gain_mode(automatic, chan2channel(BLADERF_TX, chan)); } bool bladerf_sink_c::get_gain_mode(size_t chan) { return bladerf_common::get_gain_mode(chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::set_gain(double gain, size_t chan) { return bladerf_common::set_gain(gain, chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::set_gain(double gain, const std::string &name, size_t chan) { return bladerf_common::set_gain(gain, name, chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::get_gain(size_t chan) { return bladerf_common::get_gain(chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::get_gain(const std::string &name, size_t chan) { return bladerf_common::get_gain(name, chan2channel(BLADERF_TX, chan)); } std::vector bladerf_sink_c::get_antennas(size_t chan) { return bladerf_common::get_antennas(BLADERF_TX); } std::string bladerf_sink_c::set_antenna(const std::string &antenna, size_t chan) { bool _was_running = _running; if (_was_running) { stop(); } bladerf_common::set_antenna(BLADERF_TX, chan, antenna); if (_was_running) { start(); } return get_antenna(chan); } std::string bladerf_sink_c::get_antenna(size_t chan) { return channel2str(chan2channel(BLADERF_TX, chan)); } void bladerf_sink_c::set_dc_offset(const std::complex < double > &offset, size_t chan) { int status; status = bladerf_common::set_dc_offset(offset, chan2channel(BLADERF_TX, chan)); if (status != 0) { BLADERF_THROW_STATUS(status, "could not set dc offset"); } } void bladerf_sink_c::set_iq_balance(const std::complex < double > &balance, size_t chan) { int status; status = bladerf_common::set_iq_balance(balance, chan2channel(BLADERF_TX, chan)); if (status != 0) { BLADERF_THROW_STATUS(status, "could not set iq balance"); } } osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range(size_t chan) { return filter_bandwidths(chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::set_bandwidth(double bandwidth, size_t chan) { return bladerf_common::set_bandwidth(bandwidth, chan2channel(BLADERF_TX, chan)); } double bladerf_sink_c::get_bandwidth(size_t chan) { return bladerf_common::get_bandwidth(chan2channel(BLADERF_TX, chan)); } std::vector < std::string > bladerf_sink_c::get_clock_sources(size_t mboard) { return bladerf_common::get_clock_sources(mboard); } void bladerf_sink_c::set_clock_source(const std::string &source, size_t mboard) { bladerf_common::set_clock_source(source, mboard); } std::string bladerf_sink_c::get_clock_source(size_t mboard) { return bladerf_common::get_clock_source(mboard); } void bladerf_sink_c::set_biastee_mode(const std::string &mode) { int status; bool enable; if (mode == "on" || mode == "1" || mode == "rx") { enable = true; } else { enable = false; } status = bladerf_set_bias_tee(_dev.get(), BLADERF_CHANNEL_TX(0), enable); if (BLADERF_ERR_UNSUPPORTED == status) { // unsupported, but not worth crashing out BLADERF_WARNING("Bias-tee not supported by device"); } else if (status != 0) { BLADERF_THROW_STATUS(status, "Failed to set bias-tee"); } }