/* -*- c++ -*- */ /* * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for feature_t, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifndef USE_ASIO #include #include #include #include #include #include #include #endif #include #include #include #include #include #ifdef USE_ASIO #include #endif #include #include "arg_helpers.h" #include "netsdr_source_c.h" using namespace boost::assign; #ifdef USE_ASIO using boost::asio::deadline_timer; #endif #define DEFAULT_HOST "127.0.0.1" /* We assume a running moetronix server */ #define DEFAULT_PORT 50000 /* * Create a new instance of netsdr_source_c and return * a boost shared_ptr. This is effectively the public constructor. */ netsdr_source_c_sptr make_netsdr_source_c (const std::string &args) { return gnuradio::get_initial_sptr(new netsdr_source_c (args)); } /* * Specify constraints on number of input and output streams. * This info is used to construct the input and output signatures * (2nd & 3rd args to gr_block's constructor). The input and * output signatures are used by the runtime system to * check that a valid number and type of inputs and outputs * are connected to this block. In this case, we accept * only 0 input and 1 output. */ static const int MIN_IN = 0; // mininum number of input streams static const int MAX_IN = 0; // maximum number of input streams static const int MIN_OUT = 1; // minimum number of output streams static const int MAX_OUT = 1; // maximum number of output streams /* * The private constructor */ netsdr_source_c::netsdr_source_c (const std::string &args) : gr::sync_block ("netsdr_source_c", gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)), gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))), #ifdef USE_ASIO _io_service(), _resolver(_io_service), _t(_io_service), _u(_io_service), #else _tcp(-1), _udp(-1), #endif _running(false), _sequence(0), _nchan(1) { std::string host = ""; unsigned short port = 0; dict_t dict = params_to_dict(args); if (dict.count("netsdr")) { std::string value = dict["netsdr"]; if ( ! value.length() ) { std::vector< std::string > devices = get_devices(); if ( devices.size() ) { dict_t first = params_to_dict( devices[0] ); dict["netsdr"] = value = first["netsdr"]; dict["label"] = first["label"]; } } std::vector< std::string > tokens; boost::algorithm::split( tokens, value, boost::is_any_of(":") ); if ( tokens[0].length() && (tokens.size() == 1 || tokens.size() == 2 ) ) host = tokens[0]; if ( tokens.size() == 2 ) // port given port = boost::lexical_cast< unsigned short >( tokens[1] ); } if (dict.count("nchan")) _nchan = boost::lexical_cast< size_t >( dict["nchan"] ); if ( _nchan < 1 || _nchan > 2 ) throw std::runtime_error("Number of channels (nchan) must be 1 or 2"); if ( ! host.length() ) host = DEFAULT_HOST; if (0 == port) port = DEFAULT_PORT; std::string port_str = boost::lexical_cast< std::string >( port ); std::string label = dict["label"]; if ( label.length() ) std::cerr << "Using " + label << " "; #ifdef USE_ASIO tcp::resolver::query query(tcp::v4(), host.c_str(), port_str.c_str()); tcp::resolver::iterator iterator = _resolver.resolve(query); boost::system::error_code ec; boost::asio::connect(_t, iterator, ec); if ( ec ) throw std::runtime_error(ec.message() + " (" + host + ":" + port_str + ")"); _u.open(udp::v4(), ec); if ( ec ) throw std::runtime_error(ec.message()); // TODO: make listener port dynamic _u.bind(udp::endpoint(udp::v4(), DEFAULT_PORT), ec); if ( ec ) throw std::runtime_error(ec.message()); _u.set_option(udp::socket::reuse_address(true)); _t.set_option(udp::socket::reuse_address(true)); #else if ( (_tcp = socket(AF_INET, SOCK_STREAM, 0) ) < 0) { throw std::runtime_error("Could not create TCP socket"); } int sockoptval = 1; setsockopt(_tcp, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int)); sockoptval = 1; setsockopt(_tcp, IPPROTO_TCP, TCP_NODELAY, &sockoptval, sizeof(int)); /* don't wait when shutting down */ linger lngr; lngr.l_onoff = 1; lngr.l_linger = 0; setsockopt(_tcp, SOL_SOCKET, SO_LINGER, &lngr, sizeof(linger)); struct hostent *hp; /* host information */ struct sockaddr_in host_sa; /* local address */ struct sockaddr_in peer_sa; /* remote address */ /* look up the address of the server given its name */ hp = gethostbyname( host.c_str() ); if (!hp) { close(_tcp); throw std::runtime_error(std::string(hstrerror(h_errno)) + " (" + host + ")"); } /* fill in the hosts's address and data */ memset(&host_sa, 0, sizeof(host_sa)); host_sa.sin_family = AF_INET; host_sa.sin_addr.s_addr = htonl(INADDR_ANY); host_sa.sin_port = htons(0); if ( bind(_tcp, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 ) { close(_tcp); throw std::runtime_error("Bind of TCP socket failed: " + std::string(strerror(errno))); } /* fill in the server's address and data */ memset(&peer_sa, 0, sizeof(peer_sa)); peer_sa.sin_family = AF_INET; peer_sa.sin_port = htons(port); /* put the host's address into the server address structure */ memcpy((void *)&peer_sa.sin_addr, hp->h_addr_list[0], hp->h_length); /* connect to server */ if ( connect(_tcp, (struct sockaddr *)&peer_sa, sizeof(peer_sa)) < 0 ) { close(_tcp); throw std::runtime_error(std::string(strerror(errno)) + " (" + host + ":" + port_str + ")"); } if ( (_udp = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ) { close(_tcp); throw std::runtime_error("Could not create UDP socket"); } sockoptval = 1; setsockopt(_udp, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int)); /* fill in the hosts's address and data */ memset(&host_sa, 0, sizeof(host_sa)); host_sa.sin_family = AF_INET; host_sa.sin_addr.s_addr = htonl(INADDR_ANY); host_sa.sin_port = htons(DEFAULT_PORT); if ( bind(_udp, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 ) { close(_tcp); close(_udp); throw std::runtime_error("Bind of UDP socket failed: " + std::string(strerror(errno))); } #endif // request & print device information std::vector< unsigned char > response; if ( ! label.length() ) /* label is empty, request name & sn from device */ { std::cerr << "Using "; unsigned char name[4] = { 0x04, 0x20, 0x01, 0x00 }; if ( transaction( name, sizeof(name), response ) ) std::cerr << &response[sizeof(name)] << " "; unsigned char sern[4] = { 0x04, 0x20, 0x02, 0x00 }; if ( transaction( sern, sizeof(sern), response ) ) std::cerr << &response[sizeof(sern)] << " "; } bool has_X2_option = false; unsigned char opts[4] = { 0x04, 0x20, 0x0A, 0x00 }; if ( transaction( opts, sizeof(opts), response ) ) { if ( response[sizeof(opts)] ) { has_X2_option = (response[sizeof(opts)] & 16 ? true : false); std::cerr << "option "; std::cerr << (response[sizeof(opts)] & 16 ? "2" : "-"); /* X2 board */ std::cerr << (response[sizeof(opts)] & 8 ? "U" : "-"); /* Up Converter */ std::cerr << (response[sizeof(opts)] & 4 ? "D" : "-"); /* Down Converter */ std::cerr << (response[sizeof(opts)] & 2 ? "R" : "-"); /* Reflock board */ std::cerr << (response[sizeof(opts)] & 1 ? "S" : "-"); /* Sound Enabled */ std::cerr << " "; } } unsigned char bootver[5] = { 0x05, 0x20, 0x04, 0x00, 0x00 }; if ( transaction( bootver, sizeof(bootver), response ) ) std::cerr << "BOOT " << *((uint16_t *)&response[sizeof(bootver)]) << " "; unsigned char firmver[5] = { 0x05, 0x20, 0x04, 0x00, 0x01 }; if ( transaction( firmver, sizeof(firmver), response ) ) std::cerr << "FW " << *((uint16_t *)&response[sizeof(firmver)]) << " "; unsigned char hardver[5] = { 0x05, 0x20, 0x04, 0x00, 0x02 }; if ( transaction( hardver, sizeof(hardver), response ) ) std::cerr << "HW " << *((uint16_t *)&response[sizeof(hardver)]) << " "; unsigned char fpgaver[5] = { 0x05, 0x20, 0x04, 0x00, 0x03 }; if ( transaction( fpgaver, sizeof(fpgaver), response ) ) std::cerr << "FPGA " << int(response[sizeof(fpgaver)]) << "/" << int(response[sizeof(fpgaver)+1]) << " "; std::cerr << std::endl; { /* 4.2.2 Receiver Channel Setup */ unsigned char rxchan[5] = { 0x05, 0x00, 0x19, 0x00, 0x00 }; unsigned char mode = 0; /* 0 = Single Channel Mode */ if ( 2 == _nchan ) { if ( has_X2_option ) mode = 6; /* Dual Channel with dual A/D RF Path (requires X2 option) */ else mode = 4; /* Dual Channel with single A/D RF Path using main A/D. */ set_output_signature( gr::io_signature::make (2, 2, sizeof (gr_complex)) ); } rxchan[sizeof(rxchan)-1] = mode; transaction( rxchan, sizeof(rxchan) ); } set_sample_rate( 500e3 ); set_bandwidth( 0 ); /* switch to automatic filter selection by default */ } /* * Our virtual destructor. */ netsdr_source_c::~netsdr_source_c () { #ifndef USE_ASIO close(_tcp); close(_udp); #endif } void netsdr_source_c::apply_channel( unsigned char *cmd, size_t chan_pos, size_t chan ) { if ( 0 == chan ) { cmd[chan_pos] = 0; } else if ( 1 == chan ) { if ( _nchan < 2 ) throw std::runtime_error("Channel must be 0 or 1"); cmd[chan_pos] = 2; } else throw std::runtime_error("Channel must be 0 or 1"); } bool netsdr_source_c::transaction( const unsigned char *cmd, size_t size ) { std::vector< unsigned char > response; if ( ! transaction( cmd, size, response ) ) return false; /* comparing the contents is not really feasible due to protocol */ if ( response.size() == size ) /* check response size against request */ return true; return false; } //#define VERBOSE bool netsdr_source_c::transaction( const unsigned char *cmd, size_t size, std::vector< unsigned char > &response ) { size_t rx_bytes = 0; unsigned char data[1024*2]; response.clear(); #ifdef VERBOSE printf("< "); for (size_t i = 0; i < size; i++) printf("%02x ", (unsigned char) cmd[i]); printf("\n"); #endif #ifdef USE_ASIO _t.write_some( boost::asio::buffer(cmd, size) ); rx_bytes = _t.read_some( boost::asio::buffer(data, sizeof(data)) ); #else write(_tcp, cmd, size); int nbytes = read(_tcp, data, 2); /* read header */ if ( nbytes != 2 ) return false; int length = (data[1] & 0x1f) | data[0]; if ( (length < 2) || (length > (int)sizeof(data)) ) return false; length -= 2; /* subtract header size */ nbytes = read(_tcp, &data[2], length); /* read payload */ if ( nbytes != length ) return false; rx_bytes = 2 + length; /* header + payload */ #endif response.resize( rx_bytes ); memcpy( response.data(), data, rx_bytes ); #ifdef VERBOSE printf("> "); for (size_t i = 0; i < rx_bytes; i++) printf("%02x ", (unsigned char) data[i]); printf("\n"); #endif return true; } bool netsdr_source_c::start() { _sequence = 0; _running = true; // TODO: implement 24 bit sample format /* 4.2.1 Receiver State */ unsigned char start[8] = { 0x08, 0x00, 0x18, 0x00, 0x80, 0x02, 0x00, 0x00 }; return transaction( start, sizeof(start) ); } bool netsdr_source_c::stop() { _running = false; /* 4.2.1 Receiver State */ unsigned char stop[8] = { 0x08, 0x00, 0x18, 0x00, 0x00, 0x01, 0x00, 0x00 }; return transaction( stop, sizeof(stop) ); } /* Main work function, pull samples from the socket */ int netsdr_source_c::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items ) { unsigned char data[1024*2]; if ( ! _running ) return WORK_DONE; #ifdef USE_ASIO udp::endpoint ep; size_t rx_bytes = _u.receive_from( boost::asio::buffer(data, sizeof(data)), ep ); #else struct sockaddr_in sa_in; /* remote address */ socklen_t addrlen = sizeof(sa_in); /* length of addresses */ ssize_t rx_bytes = recvfrom(_udp, data, sizeof(data), 0, (struct sockaddr *)&sa_in, &addrlen); if ( rx_bytes <= 0 ) { std::cerr << "recvfrom returned " << rx_bytes << std::endl; return WORK_DONE; } #endif #define HEADER_SIZE 2 #define SEQNUM_SIZE 2 // bool is_24_bit = false; /* check header */ if ( (0x04 == data[0] && (0x84 == data[1] || 0x82 == data[1])) ) { // is_24_bit = false; } else if ( (0xA4 == data[0] && 0x85 == data[1]) || (0x84 == data[0] && 0x81 == data[1]) ) { // is_24_bit = true; return 0; } else return 0; uint16_t sequence = *((uint16_t *)(data + HEADER_SIZE)); uint16_t diff = sequence - _sequence; if ( diff > 1 ) { std::cerr << "Lost " << diff << " packets from " #ifdef USE_ASIO << ep #else << inet_ntoa(sa_in.sin_addr) << ":" << ntohs(sa_in.sin_port) #endif << std::endl; } _sequence = (0xffff == sequence) ? 0 : sequence; /* get pointer to samples */ int16_t *sample = (int16_t *)(data + HEADER_SIZE + SEQNUM_SIZE); size_t rx_samples = (rx_bytes - HEADER_SIZE - SEQNUM_SIZE) / (sizeof(int16_t) * 2); #define SCALE_16 (1.0f/32768.0f) if ( 1 == _nchan ) { gr_complex *out = (gr_complex *)output_items[0]; for ( size_t i = 0; i < rx_samples; i++ ) { out[i] = gr_complex( *(sample+0) * SCALE_16, *(sample+1) * SCALE_16 ); sample += 2; } } else if ( 2 == _nchan ) { rx_samples /= 2; gr_complex *out1 = (gr_complex *)output_items[0]; gr_complex *out2 = (gr_complex *)output_items[1]; for ( size_t i = 0; i < rx_samples; i++ ) { out1[i] = gr_complex( *(sample+0) * SCALE_16, *(sample+1) * SCALE_16 ); out2[i] = gr_complex( *(sample+2) * SCALE_16, *(sample+3) * SCALE_16 ); sample += 4; } } noutput_items = rx_samples; return noutput_items; } /* discovery protocol internals taken from CuteSDR project */ typedef struct __attribute__ ((__packed__)) { /* 56 fixed common byte fields */ unsigned char length[2]; /* length of total message in bytes (little endian byte order) */ unsigned char key[2]; /* fixed key key[0]==0x5A key[1]==0xA5 */ unsigned char op; /* 0 == Tx_msg(to device), 1 == Rx_msg(from device), 2 == Set(to device) */ char name[16]; /* Device name string null terminated */ char sn[16]; /* Serial number string null terminated */ unsigned char ipaddr[16]; /* device IP address (little endian byte order) */ unsigned char port[2]; /* device Port number (little endian byte order) */ unsigned char customfield; /* Specifies a custom data field for a particular device */ } discover_common_msg_t; /* UDP port numbers for discovery protocol */ #define DISCOVER_SERVER_PORT 48321 /* PC client Tx port, SDR Server Rx Port */ #define DISCOVER_CLIENT_PORT 48322 /* PC client Rx port, SDR Server Tx Port */ #define KEY0 0x5A #define KEY1 0xA5 #define MSG_REQ 0 #define MSG_RESP 1 #define MSG_SET 2 typedef struct { std::string name; std::string sn; std::string addr; uint16_t port; } unit_t; #ifdef USE_ASIO static void handle_receive( const boost::system::error_code& ec, std::size_t length, boost::system::error_code* out_ec, std::size_t* out_length ) { *out_ec = ec; *out_length = length; } static void handle_timer( const boost::system::error_code& ec, boost::system::error_code* out_ec ) { *out_ec = boost::asio::error::timed_out; } #endif static std::vector < unit_t > discover_netsdr() { std::vector < unit_t > units; #ifdef USE_ASIO boost::system::error_code ec; boost::asio::io_service ios; udp::socket socket(ios); deadline_timer timer(ios); timer.expires_at(boost::posix_time::pos_infin); socket.open(udp::v4(), ec); if ( ec ) return units; socket.bind(udp::endpoint(udp::v4(), DISCOVER_CLIENT_PORT), ec); if ( ec ) return units; socket.set_option(udp::socket::reuse_address(true)); socket.set_option(boost::asio::socket_base::broadcast(true)); #else int sock; if ( (sock = socket(AF_INET, SOCK_DGRAM, 0)) < 0 ) return units; int sockoptval = 1; setsockopt(sock, SOL_SOCKET, SO_REUSEADDR, &sockoptval, sizeof(int)); sockoptval = 1; setsockopt(sock, SOL_SOCKET, SO_BROADCAST, &sockoptval, sizeof(int)); struct sockaddr_in host_sa; /* local address */ struct sockaddr_in peer_sa; /* remote address */ /* fill in the server's address and data */ memset((char*)&peer_sa, 0, sizeof(peer_sa)); peer_sa.sin_family = AF_INET; peer_sa.sin_addr.s_addr = htonl(INADDR_BROADCAST); peer_sa.sin_port = htons(DISCOVER_SERVER_PORT); /* fill in the hosts's address and data */ memset(&host_sa, 0, sizeof(host_sa)); host_sa.sin_family = AF_INET; host_sa.sin_addr.s_addr = htonl(INADDR_ANY); host_sa.sin_port = htons(DISCOVER_CLIENT_PORT); if ( bind(sock, (struct sockaddr *)&host_sa, sizeof(host_sa)) < 0 ) { close(sock); return units; } struct timeval tv; tv.tv_sec = 0; tv.tv_usec = 100000; if ( setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)) < 0 ) { close(sock); return units; } #endif discover_common_msg_t tx_msg; memset( (void *)&tx_msg, 0, sizeof(discover_common_msg_t) ); tx_msg.length[0] = sizeof(discover_common_msg_t); tx_msg.length[1] = sizeof(discover_common_msg_t) >> 8; tx_msg.key[0] = KEY0; tx_msg.key[1] = KEY1; tx_msg.op = MSG_REQ; #ifdef USE_ASIO udp::endpoint ep(boost::asio::ip::address_v4::broadcast(), DISCOVER_SERVER_PORT); socket.send_to(boost::asio::buffer(&tx_msg, sizeof(tx_msg)), ep); #else sendto(sock, &tx_msg, sizeof(tx_msg), 0, (struct sockaddr *)&peer_sa, sizeof(peer_sa)); #endif while ( true ) { std::size_t rx_bytes = 0; unsigned char data[1024*2]; #ifdef USE_ASIO // Set up the variables that receive the result of the asynchronous // operation. The error code is set to would_block to signal that the // operation is incomplete. Asio guarantees that its asynchronous // operations will never fail with would_block, so any other value in // ec indicates completion. ec = boost::asio::error::would_block; // Start the asynchronous receive operation. The handle_receive function // used as a callback will update the ec and rx_bytes variables. socket.async_receive( boost::asio::buffer(data, sizeof(data)), boost::bind(handle_receive, _1, _2, &ec, &rx_bytes) ); // Set a deadline for the asynchronous operation. timer.expires_from_now( boost::posix_time::milliseconds(10) ); // Start an asynchronous wait on the timer. The handle_timer function // used as a callback will update the ec variable. timer.async_wait( boost::bind(handle_timer, _1, &ec) ); // Reset the io_service in preparation for a subsequent run_one() invocation. ios.reset(); // Block until at least one asynchronous operation has completed. do ios.run_one(); while ( ec == boost::asio::error::would_block ); if ( boost::asio::error::timed_out == ec ) /* timer was first to complete */ { // Please note that cancel() has portability issues on some versions of // Microsoft Windows, and it may be necessary to use close() instead. // Consult the documentation for cancel() for further information. socket.cancel(); break; } else /* socket was first to complete */ { timer.cancel(); } #else socklen_t addrlen = sizeof(peer_sa); /* length of addresses */ int nbytes = recvfrom(sock, data, sizeof(data), 0, (struct sockaddr *)&peer_sa, &addrlen); if ( nbytes <= 0 ) break; rx_bytes = nbytes; #endif if ( rx_bytes >= sizeof(discover_common_msg_t) ) { discover_common_msg_t *rx_msg = (discover_common_msg_t *)data; if ( KEY0 == rx_msg->key[0] && KEY1 == rx_msg->key[1] && MSG_RESP == rx_msg->op ) { void *temp = rx_msg->port; uint16_t port = *((uint16_t *)temp); std::string addr = str(boost::format("%d.%d.%d.%d") % int(rx_msg->ipaddr[3]) % int(rx_msg->ipaddr[2]) % int(rx_msg->ipaddr[1]) % int(rx_msg->ipaddr[0])); unit_t unit; unit.name = rx_msg->name; unit.sn = rx_msg->sn; unit.addr = addr; unit.port = port; units.push_back( unit ); } } } #ifdef USE_ASIO socket.close(ec); #else close(sock); #endif return units; } std::vector netsdr_source_c::get_devices( bool fake ) { std::vector devices; std::vector < unit_t > units = discover_netsdr(); BOOST_FOREACH( unit_t u, units ) { // std::cerr << u.name << " " << u.sn << " " << u.addr << ":" << u.port // << std::endl; devices += str(boost::format("netsdr=%s:%d,label='RFSPACE %s SN %s'") % u.addr % u.port % u.name % u.sn); } if ( devices.empty() && fake ) devices += str(boost::format("netsdr=%s:%d,label='RFSPACE NetSDR Server'") % DEFAULT_HOST % DEFAULT_PORT); return devices; } size_t netsdr_source_c::get_num_channels() { return _nchan; } osmosdr::meta_range_t netsdr_source_c::get_sample_rates() { osmosdr::meta_range_t range; #define MAX_RATE 2e6 /* Calculate NetSDR sample rates */ for ( size_t i = 625; i >= 10; i-- ) { double rate = 80e6/(4.0*i); if ( rate > (MAX_RATE / _nchan) ) break; if ( floor(rate) == rate ) range += osmosdr::range_t( rate ); } return range; } double netsdr_source_c::set_sample_rate( double rate ) { unsigned char samprate[9] = { 0x09, 0x00, 0xB8, 0x00, 0x00, 0x20, 0xA1, 0x07, 0x00 }; uint32_t u32_rate = rate; samprate[sizeof(samprate)-4] = u32_rate >> 0; samprate[sizeof(samprate)-3] = u32_rate >> 8; samprate[sizeof(samprate)-2] = u32_rate >> 16; samprate[sizeof(samprate)-1] = u32_rate >> 24; std::vector< unsigned char > response; // TODO: implement settable sample rates // stop(); if ( _running ) { std::cerr << "Changing the NetSDR sample rate not possible in run mode" << std::endl; return get_sample_rate(); } if ( ! transaction( samprate, sizeof(samprate), response ) ) throw std::runtime_error("set_sample_rate failed"); // start(); u32_rate = 0; u32_rate |= response[sizeof(samprate)-4] << 0; u32_rate |= response[sizeof(samprate)-3] << 8; u32_rate |= response[sizeof(samprate)-2] << 16; u32_rate |= response[sizeof(samprate)-1] << 24; _sample_rate = u32_rate; if ( rate != _sample_rate ) std::cerr << "Current NetSDR sample rate is " << (uint32_t)_sample_rate << std::endl; return get_sample_rate(); } double netsdr_source_c::get_sample_rate() { return _sample_rate; } osmosdr::freq_range_t netsdr_source_c::get_freq_range( size_t chan ) { osmosdr::freq_range_t range; /* query freq range(s) of the radio */ /* 4.2.3 Receiver Frequency */ unsigned char frange[5] = { 0x05, 0x40, 0x20, 0x00, 0x00 }; apply_channel( frange, 4, chan ); std::vector< unsigned char > response; transaction( frange, sizeof(frange), response ); if ( response.size() >= sizeof(frange) + 1 ) { for ( size_t i = 0; i < response[sizeof(frange)]; i++ ) { uint32_t min = *((uint32_t *)&response[sizeof(frange)+1+i*15]); uint32_t max = *((uint32_t *)&response[sizeof(frange)+1+5+i*15]); //uint32_t vco = *((uint32_t *)&response[sizeof(frange)+1+10+i*15]); //std::cerr << min << " " << max << " " << vco << std::endl; range += osmosdr::range_t(min, max); /* must be monotonic */ } } if ( range.empty() ) range += osmosdr::range_t(0, 40e6); return range; } double netsdr_source_c::set_center_freq( double freq, size_t chan ) { uint32_t u32_freq = freq; /* 4.2.3 Receiver Frequency */ unsigned char tune[10] = { 0x0A, 0x00, 0x20, 0x00, 0x00, 0xb0, 0x19, 0x6d, 0x00, 0x00 }; apply_channel( tune, 4, chan ); tune[sizeof(tune)-5] = u32_freq >> 0; tune[sizeof(tune)-4] = u32_freq >> 8; tune[sizeof(tune)-3] = u32_freq >> 16; tune[sizeof(tune)-2] = u32_freq >> 24; tune[sizeof(tune)-1] = 0; transaction( tune, sizeof(tune) ); return get_center_freq( chan ); } double netsdr_source_c::get_center_freq( size_t chan ) { /* 4.2.3 Receiver Frequency */ unsigned char freq[10] = { 0x05, 0x20, 0x20, 0x00, 0x00 }; apply_channel( freq, 4, chan ); std::vector< unsigned char > response; if ( ! transaction( freq, sizeof(freq), response ) ) throw std::runtime_error("get_center_freq failed"); uint32_t frequency = 0; frequency |= response[response.size()-5] << 0; frequency |= response[response.size()-4] << 8; frequency |= response[response.size()-3] << 16; frequency |= response[response.size()-2] << 24; return frequency; } double netsdr_source_c::set_freq_corr( double ppm, size_t chan ) { return get_freq_corr( chan ); } double netsdr_source_c::get_freq_corr( size_t chan ) { return 0; } std::vector netsdr_source_c::get_gain_names( size_t chan ) { std::vector< std::string > names; names += "ATT"; return names; } osmosdr::gain_range_t netsdr_source_c::get_gain_range( size_t chan ) { return osmosdr::gain_range_t(-30, 0, 10); } osmosdr::gain_range_t netsdr_source_c::get_gain_range( const std::string & name, size_t chan ) { return get_gain_range( chan ); } bool netsdr_source_c::set_gain_mode( bool automatic, size_t chan ) { return false; } bool netsdr_source_c::get_gain_mode( size_t chan ) { return false; } double netsdr_source_c::set_gain( double gain, size_t chan ) { /* 4.2.6 RF Gain */ unsigned char atten[] = { 0x06, 0x00, 0x38, 0x00, 0x00, 0x00 }; apply_channel( atten, 4, chan ); if ( gain <= -30 ) atten[sizeof(atten)-1] = 0xE2; else if ( gain <= -20 ) atten[sizeof(atten)-1] = 0xEC; else if ( gain <= -10 ) atten[sizeof(atten)-1] = 0xF6; else /* 0 dB */ atten[sizeof(atten)-1] = 0x00; transaction( atten, sizeof(atten) ); return get_gain( chan ); } double netsdr_source_c::set_gain( double gain, const std::string & name, size_t chan ) { return set_gain( gain, chan ); } double netsdr_source_c::get_gain( size_t chan ) { /* 4.2.6 RF Gain */ unsigned char atten[] = { 0x05, 0x20, 0x38, 0x00, 0x00 }; apply_channel( atten, 4, chan ); std::vector< unsigned char > response; if ( ! transaction( atten, sizeof(atten), response ) ) throw std::runtime_error("get_gain failed"); return (char) response[response.size()-1]; } double netsdr_source_c::get_gain( const std::string & name, size_t chan ) { return get_gain( chan ); } std::vector< std::string > netsdr_source_c::get_antennas( size_t chan ) { std::vector< std::string > antennas; antennas += get_antenna( chan ); return antennas; } std::string netsdr_source_c::set_antenna( const std::string & antenna, size_t chan ) { return get_antenna( chan ); } std::string netsdr_source_c::get_antenna( size_t chan ) { /* We only have a single receive antenna here */ return "RX"; } #define BANDWIDTH 34e6 double netsdr_source_c::set_bandwidth( double bandwidth, size_t chan ) { /* 4.2.7 RF Filter Selection */ unsigned char filter[6] = { 0x06, 0x00, 0x44, 0x00, 0x00, 0x00 }; apply_channel( filter, 4, chan ); if ( 0.0f == bandwidth ) { _bandwidth = 0.0f; filter[sizeof(filter)-1] = 0x00; /* Select bandpass filter based on NCO frequency */ } else if ( BANDWIDTH == bandwidth ) { _bandwidth = BANDWIDTH; filter[sizeof(filter)-1] = 0x0B; /* Bypass bandpass filter, use only antialiasing */ } transaction( filter, sizeof(filter) ); return get_bandwidth(); } double netsdr_source_c::get_bandwidth( size_t chan ) { return _bandwidth; } osmosdr::freq_range_t netsdr_source_c::get_bandwidth_range( size_t chan ) { osmosdr::freq_range_t bandwidths; bandwidths += osmosdr::range_t( BANDWIDTH ); return bandwidths; }