/* -*- c++ -*- */ /* * Copyright 2013 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include "bladerf_common.h" #define NUM_BUFFERS 32 #define NUM_SAMPLES_PER_BUFFER (4 * 1024) using namespace boost::assign; boost::mutex bladerf_common::_devs_mutex; std::list > bladerf_common::_devs; bladerf_common::bladerf_common() : _is_running(false) {} bladerf_common::~bladerf_common() {} bladerf_sptr bladerf_common:: get_cached_device(struct bladerf_devinfo devinfo) { /* Lock to _devs must be aquired by caller */ BOOST_FOREACH( boost::weak_ptr dev, _devs ) { struct bladerf_devinfo other_devinfo; int rv = bladerf_get_devinfo(bladerf_sptr(dev).get(), &other_devinfo); if (rv < 0) throw std::runtime_error(std::string(__FUNCTION__) + " " + "Failed to get devinfo for cached device."); if (bladerf_devinfo_matches(&devinfo, &other_devinfo)) { return bladerf_sptr(dev); } } return bladerf_sptr(); } void bladerf_common::close(void* dev) { boost::unique_lock lock(_devs_mutex); std::list >::iterator it; for (it = _devs.begin(); it != _devs.end(); ++it) if ( (*it).expired() == 0 ) _devs.erase(it); bladerf_close((struct bladerf *)dev); } bladerf_sptr bladerf_common::open(const std::string &device_name) { int rv; struct bladerf *raw_dev; struct bladerf_devinfo devinfo; boost::unique_lock lock(_devs_mutex); rv = bladerf_get_devinfo_from_str(device_name.c_str(), &devinfo); if (rv < 0) throw std::runtime_error(std::string(__FUNCTION__) + " " + "Failed to get devinfo for '" + device_name + "'"); bladerf_sptr cached_dev = get_cached_device(devinfo); if (cached_dev) return cached_dev; rv = bladerf_open_with_devinfo(&raw_dev, &devinfo); if (rv < 0) throw std::runtime_error(std::string(__FUNCTION__) + " " + "Failed to open device for '" + device_name + "'"); bladerf_sptr dev = bladerf_sptr(raw_dev, bladerf_common::close); _devs.push_back(boost::weak_ptr(dev)); return dev; } void bladerf_common::init(dict_t &dict, const char *type) { int ret; unsigned int device_number = 0; std::string device_name; struct bladerf_version ver; char serial[BLADERF_SERIAL_LENGTH]; _pfx = std::string("[bladeRF ") + std::string(type) + std::string("] "); if (dict.count("bladerf")) { std::string value = dict["bladerf"]; if ( value.length() ) { try { device_number = boost::lexical_cast< unsigned int >( value ); } catch ( std::exception &ex ) { throw std::runtime_error( _pfx + "Failed to use '" + value + "' as device number: " + ex.what()); } } } device_name = boost::str(boost::format( "libusb:instance=%d" ) % device_number); try { _dev = open(device_name); } catch(...) { throw std::runtime_error( _pfx + "Failed to open bladeRF device " + device_name ); } /* Load an FPGA */ if ( dict.count("fpga") ) { if ( dict.count("fpga-reload") == 0 && bladerf_is_fpga_configured( _dev.get() ) == 1 ) { std::cerr << _pfx << "FPGA is already loaded. Set fpga-reload=1 " << "to force a reload." << std::endl; } else { std::string fpga = dict["fpga"]; std::cerr << _pfx << "Loading FPGA bitstream " << fpga << "..." << std::endl; ret = bladerf_load_fpga( _dev.get(), fpga.c_str() ); if ( ret != 0 ) std::cerr << _pfx << "bladerf_load_fpga has failed with " << ret << std::endl; else std::cerr << _pfx << "The FPGA bitstream has been successfully loaded." << std::endl; } } if ( bladerf_is_fpga_configured( _dev.get() ) != 1 ) { std::ostringstream oss; oss << _pfx << "The FPGA is not configured! " << "Provide device argument fpga=/path/to/the/bitstream.rbf to load it."; throw std::runtime_error( oss.str() ); } /* Show some info about the device we've opened */ std::cerr << _pfx << "Using nuand LLC bladeRF #" << device_number; if ( bladerf_get_serial( _dev.get(), serial ) == 0 ) std::cerr << " SN " << serial; if ( bladerf_fw_version( _dev.get(), &ver ) == 0 ) std::cerr << " FW v" << ver.major << "." << ver.minor << "." << ver.patch; if ( bladerf_fpga_version( _dev.get(), &ver ) == 0 ) std::cerr << " FPGA v" << ver.major << "." << ver.minor << "." << ver.patch; std::cerr << std::endl; /* Initialize buffer and sample configuration */ _num_buffers = 0; if (dict.count("buffers")) { _num_buffers = boost::lexical_cast< size_t >( dict["buffers"] ); } _samples_per_buffer = 0; if (dict.count("buflen")) { _samples_per_buffer = boost::lexical_cast< size_t >( dict["buflen"] ); } _num_transfers = 0; if (dict.count("transfers")) { _num_transfers = boost::lexical_cast< size_t >( dict["transfers"] ); } /* Require value to be >= 2 so we can ensure we have twice as many * buffers as transfers */ if (_num_buffers <= 1) { _num_buffers = NUM_BUFFERS; } if (0 == _samples_per_buffer) { _samples_per_buffer = NUM_SAMPLES_PER_BUFFER; } else { if (_samples_per_buffer < 1024 || _samples_per_buffer % 1024 != 0) { /* 0 likely implies the user did not specify this, so don't warn */ if (_samples_per_buffer != 0 ) { std::cerr << _pfx << "Invalid \"buflen\" value. " << "A multiple of 1024 is required. Defaulting to " << NUM_SAMPLES_PER_BUFFER << std::endl; } _samples_per_buffer = NUM_SAMPLES_PER_BUFFER; } } if (_num_transfers == 0 || _num_transfers > (_num_buffers / 2)) { _num_transfers = _num_buffers / 2; } } osmosdr::freq_range_t bladerf_common::freq_range() { /* assuming the same for RX & TX */ return osmosdr::freq_range_t( 300e6, 3.8e9 ); } osmosdr::meta_range_t bladerf_common::sample_rates() { osmosdr::meta_range_t sample_rates; /* assuming the same for RX & TX */ sample_rates += osmosdr::range_t( 160e3, 200e3, 40e3 ); sample_rates += osmosdr::range_t( 300e3, 900e3, 100e3 ); sample_rates += osmosdr::range_t( 1e6, 40e6, 1e6 ); return sample_rates; } osmosdr::freq_range_t bladerf_common::filter_bandwidths() { /* the same for RX & TX according to the datasheet */ osmosdr::freq_range_t bandwidths; std::vector half_bandwidths; /* in MHz */ half_bandwidths += \ 0.75, 0.875, 1.25, 1.375, 1.5, 1.92, 2.5, 2.75, 3, 3.5, 4.375, 5, 6, 7, 10, 14; BOOST_FOREACH( double half_bw, half_bandwidths ) bandwidths += osmosdr::range_t( half_bw * 2e6 ); return bandwidths; } std::vector< std::string > bladerf_common::devices() { struct bladerf_devinfo *devices; ssize_t n_devices; std::vector< std::string > ret; n_devices = bladerf_get_device_list(&devices); if (n_devices > 0) { for (ssize_t i = 0; i < n_devices; i++) { std::stringstream s; std::string serial(devices[i].serial); s << "bladerf=" << devices[i].instance << "," << "label='nuand bladeRF"; if ( serial.length() ) s << " SN " << serial; s << "'"; ret.push_back(s.str()); } bladerf_free_device_list(devices); } return ret; } bool bladerf_common::is_running() { boost::shared_lock lock(_state_lock); return _is_running; } void bladerf_common::set_running( bool is_running ) { boost::unique_lock lock(_state_lock); _is_running = is_running; }