#!/usr/bin/env python # # Copyright 2005,2007,2011 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import osmosdr from gnuradio import gr, eng_notation from gnuradio import blocks from gnuradio import audio from gnuradio import filter from gnuradio import fft from gnuradio.eng_option import eng_option from optparse import OptionParser import sys import math import struct import threading from datetime import datetime sys.stderr.write("Warning: this may have issues on some machines+Python version combinations to seg fault due to the callback in bin_statitics.\n\n") class ThreadClass(threading.Thread): def run(self): return class tune(gr.feval_dd): """ This class allows C++ code to callback into python. """ def __init__(self, tb): gr.feval_dd.__init__(self) self.tb = tb def eval(self, ignore): """ This method is called from blocks.bin_statistics_f when it wants to change the center frequency. This method tunes the front end to the new center frequency, and returns the new frequency as its result. """ try: # We use this try block so that if something goes wrong # from here down, at least we'll have a prayer of knowing # what went wrong. Without this, you get a very # mysterious: # # terminate called after throwing an instance of # 'Swig::DirectorMethodException' Aborted # # message on stderr. Not exactly helpful ;) new_freq = self.tb.set_next_freq() # wait until msgq is empty before continuing while(self.tb.msgq.full_p()): #print "msgq full, holding.." time.sleep(0.1) return new_freq except Exception, e: print "tune: Exception: ", e class parse_msg(object): def __init__(self, msg): self.center_freq = msg.arg1() self.vlen = int(msg.arg2()) assert(msg.length() == self.vlen * gr.sizeof_float) # FIXME consider using NumPy array t = msg.to_string() self.raw_data = t self.data = struct.unpack('%df' % (self.vlen,), t) class my_top_block(gr.top_block): def __init__(self): gr.top_block.__init__(self) usage = "usage: %prog [options] min_freq max_freq" parser = OptionParser(option_class=eng_option, usage=usage) parser.add_option("-a", "--args", type="string", default="", help="Device args [default=%default]") parser.add_option("-A", "--antenna", type="string", default=None, help="Select antenna where appropriate") parser.add_option("-s", "--samp-rate", type="eng_float", default=None, help="Set sample rate (bandwidth), minimum by default") parser.add_option("-g", "--gain", type="eng_float", default=None, help="Set gain in dB (default is midpoint)") parser.add_option("", "--tune-delay", type="eng_float", default=0.25, metavar="SECS", help="Time to delay (in seconds) after changing frequency [default=%default]") parser.add_option("", "--dwell-delay", type="eng_float", default=0.25, metavar="SECS", help="Time to dwell (in seconds) at a given frequency [default=%default]") parser.add_option("-b", "--channel-bandwidth", type="eng_float", default=6.25e3, metavar="Hz", help="Channel bandwidth of fft bins in Hz [default=%default]") parser.add_option("-q", "--squelch-threshold", type="eng_float", default=None, metavar="dB", help="Squelch threshold in dB [default=%default]") parser.add_option("-F", "--fft-size", type="int", default=None, help="Specify number of FFT bins [default=samp_rate/channel_bw]") parser.add_option("", "--real-time", action="store_true", default=False, help="Attempt to enable real-time scheduling") (options, args) = parser.parse_args() if len(args) != 2: parser.print_help() sys.exit(1) self.channel_bandwidth = options.channel_bandwidth self.min_freq = eng_notation.str_to_num(args[0]) self.max_freq = eng_notation.str_to_num(args[1]) if self.min_freq > self.max_freq: # swap them self.min_freq, self.max_freq = self.max_freq, self.min_freq if not options.real_time: realtime = False else: # Attempt to enable realtime scheduling r = gr.enable_realtime_scheduling() if r == gr.RT_OK: realtime = True else: realtime = False print "Note: failed to enable realtime scheduling" # build graph self.u = osmosdr.source(options.args) try: self.u.get_sample_rates().start() except RuntimeError: print "Source has no sample rates (wrong device arguments?)." sys.exit(1) # Set the antenna if(options.antenna): self.u.set_antenna(options.antenna, 0) if options.samp_rate is None: options.samp_rate = self.u.get_sample_rates().start() self.u.set_sample_rate(options.samp_rate) self.usrp_rate = usrp_rate = self.u.get_sample_rate() if options.fft_size is None: self.fft_size = int(self.usrp_rate/self.channel_bandwidth) else: self.fft_size = options.fft_size self.squelch_threshold = options.squelch_threshold s2v = blocks.stream_to_vector(gr.sizeof_gr_complex, self.fft_size) mywindow = filter.window.blackmanharris(self.fft_size) ffter = fft.fft_vcc(self.fft_size, True, mywindow, True) power = 0 for tap in mywindow: power += tap*tap c2mag = blocks.complex_to_mag_squared(self.fft_size) # FIXME the log10 primitive is dog slow #log = blocks.nlog10_ff(10, self.fft_size, # -20*math.log10(self.fft_size)-10*math.log10(power/self.fft_size)) # Set the freq_step to 75% of the actual data throughput. # This allows us to discard the bins on both ends of the spectrum. self.freq_step = self.nearest_freq((0.75 * self.usrp_rate), self.channel_bandwidth) self.min_center_freq = self.min_freq + (self.freq_step/2) nsteps = math.ceil((self.max_freq - self.min_freq) / self.freq_step) self.max_center_freq = self.min_center_freq + (nsteps * self.freq_step) self.next_freq = self.min_center_freq tune_delay = max(0, int(round(options.tune_delay * usrp_rate / self.fft_size))) # in fft_frames dwell_delay = max(1, int(round(options.dwell_delay * usrp_rate / self.fft_size))) # in fft_frames self.msgq = gr.msg_queue(1) self._tune_callback = tune(self) # hang on to this to keep it from being GC'd stats = blocks.bin_statistics_f(self.fft_size, self.msgq, self._tune_callback, tune_delay, dwell_delay) # FIXME leave out the log10 until we speed it up #self.connect(self.u, s2v, ffter, c2mag, log, stats) self.connect(self.u, s2v, ffter, c2mag, stats) if options.gain is None: # if no gain was specified, use the mid-point in dB g = self.u.get_gain_range() options.gain = float(g.start()+g.stop())/2.0 self.set_gain(options.gain) print "gain =", options.gain def set_next_freq(self): target_freq = self.next_freq self.next_freq = self.next_freq + self.freq_step if self.next_freq >= self.max_center_freq: self.next_freq = self.min_center_freq if not self.set_freq(target_freq): print "Failed to set frequency to", target_freq sys.exit(1) return target_freq def set_freq(self, target_freq): """ Set the center frequency we're interested in. @param target_freq: frequency in Hz @rypte: bool """ r = self.u.set_center_freq(target_freq) if r: return True return False def set_gain(self, gain): self.u.set_gain(gain) def nearest_freq(self, freq, channel_bandwidth): freq = round(freq / channel_bandwidth, 0) * channel_bandwidth return freq def main_loop(tb): def bin_freq(i_bin, center_freq): #hz_per_bin = tb.usrp_rate / tb.fft_size freq = center_freq - (tb.usrp_rate / 2) + (tb.channel_bandwidth * i_bin) #print "freq original:",freq #freq = nearest_freq(freq, tb.channel_bandwidth) #print "freq rounded:",freq return freq bin_start = int(tb.fft_size * ((1 - 0.75) / 2)) bin_stop = int(tb.fft_size - bin_start) while 1: # Get the next message sent from the C++ code (blocking call). # It contains the center frequency and the mag squared of the fft m = parse_msg(tb.msgq.delete_head()) # m.center_freq is the center frequency at the time of capture # m.data are the mag_squared of the fft output # m.raw_data is a string that contains the binary floats. # You could write this as binary to a file. for i_bin in range(bin_start, bin_stop): center_freq = m.center_freq freq = bin_freq(i_bin, center_freq) #noise_floor_db = -174 + 10*math.log10(tb.channel_bandwidth) noise_floor_db = 10*math.log10(min(m.data)/tb.usrp_rate) power_db = 10*math.log10(m.data[i_bin]/tb.usrp_rate) - noise_floor_db if (power_db > tb.squelch_threshold) and (freq >= tb.min_freq) and (freq <= tb.max_freq): print datetime.now(), "center_freq", center_freq, "freq", freq, "power_db", power_db, "noise_floor_db", noise_floor_db if __name__ == '__main__': t = ThreadClass() t.start() tb = my_top_block() try: tb.start() main_loop(tb) except KeyboardInterrupt: pass