/* -*- c++ -*- */ /* * Copyright 2013-2017 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include "arg_helpers.h" #include "bladerf_source_c.h" #include "osmosdr/source.h" using namespace boost::assign; /****************************************************************************** * Functions ******************************************************************************/ /* * Create a new instance of bladerf_source_c and return * a boost shared_ptr. This is effectively the public constructor. */ bladerf_source_c_sptr make_bladerf_source_c(const std::string &args) { return gnuradio::get_initial_sptr(new bladerf_source_c(args)); } /****************************************************************************** * Private methods ******************************************************************************/ /* * The private constructor */ bladerf_source_c::bladerf_source_c(const std::string &args) : gr::sync_block( "bladerf_source_c", gr::io_signature::make(0, 0, 0), args_to_io_signature(args)), _16icbuf(NULL), _32fcbuf(NULL), _running(false), _agcmode(BLADERF_GAIN_DEFAULT) { int status; dict_t dict = params_to_dict(args); /* Perform src/sink agnostic initializations */ init(dict, BLADERF_RX); /* Handle setting of sampling mode */ if (dict.count("sampling")) { bladerf_sampling sampling = BLADERF_SAMPLING_UNKNOWN; if (dict["sampling"] == "internal") { sampling = BLADERF_SAMPLING_INTERNAL; } else if (dict["sampling"] == "external") { sampling = BLADERF_SAMPLING_EXTERNAL; } else { BLADERF_WARNING("Invalid sampling mode: " + dict["sampling"]); } if (sampling != BLADERF_SAMPLING_UNKNOWN) { status = bladerf_set_sampling(_dev.get(), sampling); if (status != 0) { BLADERF_WARNING("Problem while setting sampling mode: " << bladerf_strerror(status)); } } } /* Bias tee */ if (dict.count("biastee")) { set_biastee_mode(dict["biastee"]); } /* Loopback */ set_loopback_mode(dict.count("loopback") ? dict["loopback"] : "none"); /* RX Mux */ set_rx_mux_mode(dict.count("rxmux") ? dict["rxmux"] : "baseband"); /* AGC mode */ if (dict.count("agc_mode")) { set_agc_mode(dict["agc_mode"]); } /* Specify initial gain mode */ if (dict.count("agc")) { for (size_t i = 0; i < get_max_channels(); ++i) { set_gain_mode(boost::lexical_cast(dict["agc"]), BLADERF_CHANNEL_RX(i)); BLADERF_INFO(boost::str(boost::format("%s gain mode set to '%s'") % channel2str(BLADERF_CHANNEL_RX(i)) % get_gain_mode(BLADERF_CHANNEL_RX(i)))); } } /* Warn user about using an old FPGA version, as we no longer strip off the * markers that were pressent in the pre-v0.0.1 FPGA */ { struct bladerf_version fpga_version; if (bladerf_fpga_version(_dev.get(), &fpga_version) != 0) { BLADERF_WARNING("Failed to get FPGA version"); } else if (fpga_version.major <= 0 && fpga_version.minor <= 0 && fpga_version.patch < 1) { BLADERF_WARNING("Warning: FPGA version v0.0.1 or later is required. " "Using an earlier FPGA version will result in " "misinterpeted samples."); } } /* Initialize channel <-> antenna map */ for (std::string ant : get_antennas()) { _chanmap[str2channel(ant)] = -1; } /* Bounds-checking output signature depending on our underlying hardware */ if (get_num_channels() > get_max_channels()) { BLADERF_WARNING("Warning: number of channels specified on command line (" << get_num_channels() << ") is greater than the maximum " "number supported by this device (" << get_max_channels() << "). Resetting to " << get_max_channels() << "."); set_output_signature(gr::io_signature::make(get_max_channels(), get_max_channels(), sizeof(gr_complex))); } /* Set up constraints */ int const alignment_multiple = volk_get_alignment() / sizeof(gr_complex); set_alignment(std::max(1,alignment_multiple)); set_max_noutput_items(_samples_per_buffer); set_output_multiple(get_num_channels()); /* Set channel layout */ _layout = (get_num_channels() > 1) ? BLADERF_RX_X2 : BLADERF_RX_X1; /* Initial wiring of antennas to channels */ for (size_t ch = 0; ch < get_num_channels(); ++ch) { set_channel_enable(BLADERF_CHANNEL_RX(ch), true); _chanmap[BLADERF_CHANNEL_RX(ch)] = ch; } BLADERF_DEBUG("initialization complete"); } bool bladerf_source_c::is_antenna_valid(const std::string &antenna) { for (std::string ant : get_antennas()) { if (antenna == ant) { return true; } } return false; } /****************************************************************************** * Public methods ******************************************************************************/ std::string bladerf_source_c::name() { return "bladeRF receiver"; } std::vector bladerf_source_c::get_devices() { return bladerf_common::devices(); } size_t bladerf_source_c::get_max_channels() { return bladerf_common::get_max_channels(BLADERF_RX); } size_t bladerf_source_c::get_num_channels() { return output_signature()->max_streams(); } bool bladerf_source_c::start() { int status; BLADERF_DEBUG("starting source"); gr::thread::scoped_lock guard(d_mutex); status = bladerf_sync_config(_dev.get(), _layout, _format, _num_buffers, _samples_per_buffer, _num_transfers, _stream_timeout); if (status != 0) { BLADERF_THROW_STATUS(status, "bladerf_sync_config failed"); } for (size_t ch = 0; ch < get_max_channels(); ++ch) { bladerf_channel brfch = BLADERF_CHANNEL_RX(ch); status = bladerf_enable_module(_dev.get(), brfch, get_channel_enable(brfch)); if (status != 0) { BLADERF_THROW_STATUS(status, "bladerf_enable_module failed"); } } /* Allocate memory for conversions in work() */ size_t alignment = volk_get_alignment(); _16icbuf = reinterpret_cast(volk_malloc(2*_samples_per_buffer*sizeof(int16_t), alignment)); _32fcbuf = reinterpret_cast(volk_malloc(_samples_per_buffer*sizeof(gr_complex), alignment)); _running = true; return true; } bool bladerf_source_c::stop() { int status; BLADERF_DEBUG("stopping source"); gr::thread::scoped_lock guard(d_mutex); if (!_running) { BLADERF_WARNING("source already stopped, nothing to do here"); return true; } _running = false; for (size_t ch = 0; ch < get_max_channels(); ++ch) { bladerf_channel brfch = BLADERF_CHANNEL_RX(ch); if (get_channel_enable(brfch)) { status = bladerf_enable_module(_dev.get(), brfch, false); if (status != 0) { BLADERF_THROW_STATUS(status, "bladerf_enable_module failed"); } } } /* Deallocate conversion memory */ volk_free(_16icbuf); volk_free(_32fcbuf); _16icbuf = NULL; _32fcbuf = NULL; return true; } int bladerf_source_c::work(int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int status; struct bladerf_metadata meta; struct bladerf_metadata *meta_ptr = NULL; size_t nstreams = num_streams(_layout); gr::thread::scoped_lock guard(d_mutex); // if we aren't running, nothing to do here if (!_running) { return 0; } // set up metadata if (BLADERF_FORMAT_SC16_Q11_META == _format) { memset(&meta, 0, sizeof(meta)); meta.flags = BLADERF_META_FLAG_RX_NOW; meta_ptr = &meta; } // grab samples into temp buffer status = bladerf_sync_rx(_dev.get(), static_cast(_16icbuf), noutput_items, meta_ptr, _stream_timeout); if (status != 0) { BLADERF_WARNING(boost::str(boost::format("bladerf_sync_rx error: %s") % bladerf_strerror(status))); ++_failures; if (_failures >= MAX_CONSECUTIVE_FAILURES) { BLADERF_WARNING("Consecutive error limit hit. Shutting down."); return WORK_DONE; } } else { _failures = 0; } // convert from int16_t to float // output_items is gr_complex (2x float), so num_points is 2*noutput_items volk_16i_s32f_convert_32f(reinterpret_cast(_32fcbuf), _16icbuf, SCALING_FACTOR, 2*noutput_items); // copy the samples into output_items gr_complex **out = reinterpret_cast(&output_items[0]); if (nstreams > 1) { // we need to deinterleave the multiplex as we copy gr_complex const *deint_in = _32fcbuf; for (size_t i = 0; i < (noutput_items/nstreams); ++i) { for (size_t n = 0; n < nstreams; ++n) { memcpy(out[n]++, deint_in++, sizeof(gr_complex)); } } } else { // no deinterleaving to do: simply copy everything memcpy(out[0], _32fcbuf, sizeof(gr_complex) * noutput_items); } return noutput_items/(get_num_channels()); } osmosdr::meta_range_t bladerf_source_c::get_sample_rates() { return sample_rates(chan2channel(BLADERF_RX, 0)); } double bladerf_source_c::set_sample_rate(double rate) { return bladerf_common::set_sample_rate(rate, chan2channel(BLADERF_RX, 0)); } double bladerf_source_c::get_sample_rate() { return bladerf_common::get_sample_rate(chan2channel(BLADERF_RX, 0)); } osmosdr::freq_range_t bladerf_source_c::get_freq_range(size_t chan) { return bladerf_common::freq_range(chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::set_center_freq(double freq, size_t chan) { return bladerf_common::set_center_freq(freq, chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::get_center_freq(size_t chan) { return bladerf_common::get_center_freq(chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::set_freq_corr(double ppm, size_t chan) { /* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */ BLADERF_WARNING("Frequency correction is not implemented."); return get_freq_corr(chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::get_freq_corr(size_t chan) { /* TODO: Return back the frequency correction in ppm */ return 0; } std::vector bladerf_source_c::get_gain_names(size_t chan) { return bladerf_common::get_gain_names(chan2channel(BLADERF_RX, chan)); } osmosdr::gain_range_t bladerf_source_c::get_gain_range(size_t chan) { return bladerf_common::get_gain_range(chan2channel(BLADERF_RX, chan)); } osmosdr::gain_range_t bladerf_source_c::get_gain_range(const std::string &name, size_t chan) { return bladerf_common::get_gain_range(name, chan2channel(BLADERF_RX, chan)); } bool bladerf_source_c::set_gain_mode(bool automatic, size_t chan) { return bladerf_common::set_gain_mode(automatic, chan2channel(BLADERF_RX, chan), _agcmode); } bool bladerf_source_c::get_gain_mode(size_t chan) { return bladerf_common::get_gain_mode(chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::set_gain(double gain, size_t chan) { return bladerf_common::set_gain(gain, chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::set_gain(double gain, const std::string &name, size_t chan) { return bladerf_common::set_gain(gain, name, chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::get_gain(size_t chan) { return bladerf_common::get_gain(chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::get_gain(const std::string &name, size_t chan) { return bladerf_common::get_gain(name, chan2channel(BLADERF_RX, chan)); } std::vector bladerf_source_c::get_antennas(size_t chan) { return bladerf_common::get_antennas(BLADERF_RX); } std::string bladerf_source_c::set_antenna(const std::string &antenna, size_t chan) { bool _was_running = _running; if (_was_running) { stop(); } bladerf_common::set_antenna(BLADERF_RX, chan, antenna); if (_was_running) { start(); } return get_antenna(chan); } std::string bladerf_source_c::get_antenna(size_t chan) { return channel2str(chan2channel(BLADERF_RX, chan)); } void bladerf_source_c::set_dc_offset_mode(int mode, size_t chan) { if (osmosdr::source::DCOffsetOff == mode) { //_src->set_auto_dc_offset( false, chan ); /* reset to default for off-state */ set_dc_offset(std::complex(0.0, 0.0), chan); } else if (osmosdr::source::DCOffsetManual == mode) { /* disable auto mode, but keep correcting with last known values */ //_src->set_auto_dc_offset( false, chan ); } else if (osmosdr::source::DCOffsetAutomatic == mode) { //_src->set_auto_dc_offset( true, chan ); BLADERF_WARNING("Automatic DC correction mode is not implemented."); } } void bladerf_source_c::set_dc_offset(const std::complex &offset, size_t chan) { int status; status = bladerf_common::set_dc_offset(offset, chan2channel(BLADERF_RX, chan)); if (status != 0) { BLADERF_THROW_STATUS(status, "could not set dc offset"); } } void bladerf_source_c::set_iq_balance_mode(int mode, size_t chan) { if (osmosdr::source::IQBalanceOff == mode) { //_src->set_auto_iq_balance( false, chan ); /* reset to default for off-state */ set_iq_balance(std::complex(0.0, 0.0), chan); } else if (osmosdr::source::IQBalanceManual == mode) { /* disable auto mode, but keep correcting with last known values */ //_src->set_auto_iq_balance( false, chan ); } else if (osmosdr::source::IQBalanceAutomatic == mode) { //_src->set_auto_iq_balance( true, chan ); BLADERF_WARNING("Automatic IQ correction mode is not implemented."); } } void bladerf_source_c::set_iq_balance(const std::complex &balance, size_t chan) { int status; status = bladerf_common::set_iq_balance(balance, chan2channel(BLADERF_RX, chan)); if (status != 0) { BLADERF_THROW_STATUS(status, "could not set iq balance"); } } osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range(size_t chan) { return filter_bandwidths(chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::set_bandwidth(double bandwidth, size_t chan) { return bladerf_common::set_bandwidth(bandwidth, chan2channel(BLADERF_RX, chan)); } double bladerf_source_c::get_bandwidth(size_t chan) { return bladerf_common::get_bandwidth(chan2channel(BLADERF_RX, chan)); } std::vector bladerf_source_c::get_clock_sources(size_t mboard) { return bladerf_common::get_clock_sources(mboard); } void bladerf_source_c::set_clock_source(const std::string &source, size_t mboard) { bladerf_common::set_clock_source(source, mboard); } std::string bladerf_source_c::get_clock_source(size_t mboard) { return bladerf_common::get_clock_source(mboard); } void bladerf_source_c::set_biastee_mode(const std::string &mode) { int status; bool enable; if (mode == "on" || mode == "1" || mode == "rx") { enable = true; } else { enable = false; } status = bladerf_set_bias_tee(_dev.get(), BLADERF_CHANNEL_RX(0), enable); if (BLADERF_ERR_UNSUPPORTED == status) { // unsupported, but not worth crashing out BLADERF_WARNING("Bias-tee not supported by device"); } else if (status != 0) { BLADERF_THROW_STATUS(status, "Failed to set bias-tee"); } } void bladerf_source_c::set_loopback_mode(const std::string &loopback) { int status; bladerf_loopback mode; if (loopback == "bb_txlpf_rxvga2") { mode = BLADERF_LB_BB_TXLPF_RXVGA2; } else if (loopback == "bb_txlpf_rxlpf") { mode = BLADERF_LB_BB_TXLPF_RXLPF; } else if (loopback == "bb_txvga1_rxvga2") { mode = BLADERF_LB_BB_TXVGA1_RXVGA2; } else if (loopback == "bb_txvga1_rxlpf") { mode = BLADERF_LB_BB_TXVGA1_RXLPF; } else if (loopback == "rf_lna1") { mode = BLADERF_LB_RF_LNA1; } else if (loopback == "rf_lna2") { mode = BLADERF_LB_RF_LNA2; } else if (loopback == "rf_lna3") { mode = BLADERF_LB_RF_LNA3; } else if (loopback == "firmware") { mode = BLADERF_LB_FIRMWARE; } else if (loopback == "rfic_bist") { mode = BLADERF_LB_RFIC_BIST; } else if (loopback == "none") { mode = BLADERF_LB_NONE; } else { BLADERF_THROW("Unknown loopback mode: " + loopback); } status = bladerf_set_loopback(_dev.get(), mode); if (BLADERF_ERR_UNSUPPORTED == status) { // unsupported, but not worth crashing out BLADERF_WARNING("Loopback mode not supported by device: " + loopback); } else if (status != 0) { BLADERF_THROW_STATUS(status, "Failed to set loopback mode"); } } void bladerf_source_c::set_rx_mux_mode(const std::string &rxmux) { int status; bladerf_rx_mux mode; if (rxmux == "baseband") { mode = BLADERF_RX_MUX_BASEBAND; } else if (rxmux == "12bit") { mode = BLADERF_RX_MUX_12BIT_COUNTER; } else if (rxmux == "32bit") { mode = BLADERF_RX_MUX_32BIT_COUNTER; } else if (rxmux == "digital") { mode = BLADERF_RX_MUX_DIGITAL_LOOPBACK; } else { BLADERF_THROW("Unknown RX mux mode: " + rxmux); } status = bladerf_set_rx_mux(_dev.get(), mode); if (BLADERF_ERR_UNSUPPORTED == status) { // unsupported, but not worth crashing out BLADERF_WARNING("RX mux mode not supported by device: " + rxmux); } else if (status != 0) { BLADERF_THROW_STATUS(status, "Failed to set RX mux mode"); } } void bladerf_source_c::set_agc_mode(const std::string &agcmode) { #ifndef BLADERF_COMPATIBILITY int status; bladerf_gain_mode mode; bool ok = false; struct bladerf_gain_modes const *modes = NULL; /* Get the list of AGC modes */ status = bladerf_get_gain_modes(_dev.get(), BLADERF_CHANNEL_RX(0), &modes); if (status < 0) { BLADERF_THROW_STATUS(status, "failed to get gain modes"); } size_t count = status; /* Compare... */ for (size_t i = 0; i < count; ++i) { if (agcmode == std::string(modes[i].name)) { mode = modes[i].mode; ok = true; BLADERF_DEBUG("Setting gain mode to " << mode << " (" << agcmode << ")"); break; } } if (!ok) { BLADERF_WARNING("Unknown gain mode \"" << agcmode << "\""); return; } _agcmode = mode; for (size_t i = 0; i < get_num_channels(); ++i) { if (bladerf_common::get_gain_mode(BLADERF_CHANNEL_RX(i))) { /* Refresh this */ bladerf_common::set_gain_mode(true, BLADERF_CHANNEL_RX(i), _agcmode); } } #endif }