/* -*- c++ -*- */ /* * Copyright 2013 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include #include #include "arg_helpers.h" #include "bladerf_sink_c.h" //#define DEBUG_BLADERF_SINK #ifdef DEBUG_BLADERF_SINK # define DBG(input) std::cerr << _pfx << input << std::endl #else # define DBG(input) #endif using namespace boost::assign; /* * Create a new instance of bladerf_sink_c and return * a boost shared_ptr. This is effectively the public constructor. */ bladerf_sink_c_sptr make_bladerf_sink_c (const std::string &args) { return gnuradio::get_initial_sptr(new bladerf_sink_c (args)); } /* * Specify constraints on number of input and output streams. * This info is used to construct the input and output signatures * (2nd & 3rd args to gr_block's constructor). The input and * output signatures are used by the runtime system to * check that a valid number and type of inputs and outputs * are connected to this block. In this case, we accept either * 1 or 2 inputs. */ static const int MIN_IN = 1; // mininum number of input streams static const int MAX_IN = 2; // maximum number of input streams static const int MIN_OUT = 0; // minimum number of output streams static const int MAX_OUT = 0; // maximum number of output streams /* * The private constructor */ bladerf_sink_c::bladerf_sink_c (const std::string &args) : gr::sync_block ("bladerf_sink_c", gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)), gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))) { dict_t dict = params_to_dict(args); /* Perform src/sink agnostic initializations */ init(dict, BLADERF_MODULE_TX); } bool bladerf_sink_c::start() { _in_burst = false; return bladerf_common::start(BLADERF_MODULE_TX); } bool bladerf_sink_c::stop() { return bladerf_common::stop(BLADERF_MODULE_TX); } #define INVALID_IDX -1 int bladerf_sink_c::transmit_with_tags(int noutput_items) { int count = 0; int status = 0; // For a long burst, we may be transmitting the burst contents over // multiple work calls, so we'll just be sending the entire buffer // Therefore, we initialize our indicies for this case. int start_idx = 0; int end_idx = (noutput_items - 1); struct bladerf_metadata meta; std::vector tags; int16_t zeros[8] = { 0 }; memset(&meta, 0, sizeof(meta)); DBG("transmit_with_tags(" << noutput_items << ")"); // Important Note: We assume that these tags are ordered by their offsets. // This is true for GNU Radio 3.7.7.x, since the GR runtime libs store // these in a multimap. // // If you're using an earlier GNU Radio version, you may have to sort // the tags vector. get_tags_in_window(tags, 0, 0, noutput_items); if (tags.size() == 0) { if (_in_burst) { DBG("TX'ing " << noutput_items << " samples in within a burst..."); return bladerf_sync_tx(_dev.get(), static_cast(_conv_buf), noutput_items, &meta, _stream_timeout_ms); } else { std::cerr << _pfx << "Dropping " << noutput_items << " samples not in a burst." << std::endl; } } BOOST_FOREACH( gr::tag_t tag, tags) { // Upon seeing an SOB tag, update our offset. We'll TX the start of the // burst when we see an EOB or at the end of this function - whichever // occurs first. if (pmt::symbol_to_string(tag.key) == "tx_sob") { if (_in_burst) { std::cerr << ("Got SOB while already within a burst"); return BLADERF_ERR_INVAL; } else { start_idx = static_cast(tag.offset - nitems_read(0)); DBG("Got SOB " << start_idx << " samples into work payload"); meta.flags |= (BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START); _in_burst = true; } } else if (pmt::symbol_to_string(tag.key) == "tx_eob") { if (!_in_burst) { std::cerr << _pfx << "Got EOB while not in burst" << std::endl; return BLADERF_ERR_INVAL; } // Upon seeing an EOB, transmit what we have and reset our state end_idx = static_cast(tag.offset - nitems_read(0)); DBG("Got EOB " << end_idx << " samples into work payload"); if ( (start_idx == INVALID_IDX) || (start_idx > end_idx) ) { DBG("Buffer indicies are in an invalid state!"); return BLADERF_ERR_INVAL; } count = end_idx - start_idx + 1; DBG("TXing @ EOB [" << start_idx << ":" << end_idx << "]"); status = bladerf_sync_tx(_dev.get(), static_cast(&_conv_buf[2*start_idx]), count, &meta, _stream_timeout_ms); if (status != 0) { return status; } /* TODO: libbladeRF should now take care of this for us, * as of the libbladeRF version that includes the * TX_UPDATE_TIMESTAMP flag. Verify this potentially remove this. * (The meta.flags changes would then be applied to the previous * bladerf_sync_tx() call.) */ DBG("TXing Zeros with burst end flag"); meta.flags &= ~(BLADERF_META_FLAG_TX_NOW | BLADERF_META_FLAG_TX_BURST_START); meta.flags |= BLADERF_META_FLAG_TX_BURST_END; status = bladerf_sync_tx(_dev.get(), static_cast(zeros), 4, &meta, _stream_timeout_ms); /* Reset our state */ start_idx = INVALID_IDX; end_idx = (noutput_items - 1); meta.flags = 0; _in_burst = false; if (status != 0) { DBG("Failed to send zero samples to flush EOB"); return status; } } } // We had a start of burst with no end yet - transmit those samples if (_in_burst) { count = end_idx - start_idx + 1; DBG("TXing SOB [" << start_idx << ":" << end_idx << "]"); status = bladerf_sync_tx(_dev.get(), static_cast(&_conv_buf[2*start_idx]), count, &meta, _stream_timeout_ms); } return status; } int bladerf_sink_c::work( int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items ) { const gr_complex *in = (const gr_complex *) input_items[0]; const float scaling = 2000.0f; int ret; if (noutput_items > _conv_buf_size) { void *tmp; _conv_buf_size = noutput_items; tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t)); if (tmp == NULL) { throw std::runtime_error( std::string(__FUNCTION__) + "Failed to realloc _conv_buf" ); } else { DBG("Resized _conv_buf to " << _conv_buf_size << " samples"); } _conv_buf = static_cast(tmp); } /* Convert floating point samples into fixed point */ volk_32f_s32f_convert_16i(_conv_buf, (float*)in, scaling, 2 * noutput_items); if (_use_metadata) { ret = transmit_with_tags(noutput_items); } else { ret = bladerf_sync_tx(_dev.get(), static_cast(_conv_buf), noutput_items, NULL, _stream_timeout_ms); } if ( ret != 0 ) { std::cerr << _pfx << "bladerf_sync_tx error: " << bladerf_strerror(ret) << std::endl; _consecutive_failures++; if ( _consecutive_failures >= MAX_CONSECUTIVE_FAILURES ) { noutput_items = WORK_DONE; std::cerr << _pfx << "Consecutive error limit hit. Shutting down." << std::endl; } } else { _consecutive_failures = 0; } return noutput_items; } std::vector bladerf_sink_c::get_devices() { return bladerf_common::devices(); } size_t bladerf_sink_c::get_num_channels() { return bladerf_common::get_num_channels(BLADERF_MODULE_TX); } osmosdr::meta_range_t bladerf_sink_c::get_sample_rates() { return sample_rates(); } double bladerf_sink_c::set_sample_rate(double rate) { return bladerf_common::set_sample_rate(BLADERF_MODULE_TX, rate); } double bladerf_sink_c::get_sample_rate() { return bladerf_common::get_sample_rate(BLADERF_MODULE_TX); } osmosdr::freq_range_t bladerf_sink_c::get_freq_range(size_t chan) { return bladerf_common::get_freq_range(chan); } double bladerf_sink_c::set_center_freq(double freq, size_t chan) { return bladerf_common::set_center_freq(freq, chan); } double bladerf_sink_c::get_center_freq(size_t chan) { return bladerf_common::get_center_freq(chan); } double bladerf_sink_c::set_freq_corr( double ppm, size_t chan ) { /* TODO: Write the VCTCXO with a correction value (also changes RX ppm value!) */ return get_freq_corr( chan ); } double bladerf_sink_c::get_freq_corr( size_t chan ) { /* TODO: Return back the frequency correction in ppm */ return 0; } std::vector bladerf_sink_c::get_gain_names( size_t chan ) { return bladerf_common::get_gain_names(chan); } osmosdr::gain_range_t bladerf_sink_c::get_gain_range( size_t chan ) { return bladerf_common::get_gain_range(chan); } osmosdr::gain_range_t bladerf_sink_c::get_gain_range( const std::string & name, size_t chan ) { return bladerf_common::get_gain_range(name, chan); } bool bladerf_sink_c::set_gain_mode( bool automatic, size_t chan ) { return bladerf_common::set_gain_mode(automatic, chan); } bool bladerf_sink_c::get_gain_mode( size_t chan ) { return bladerf_common::get_gain_mode(chan); } double bladerf_sink_c::set_gain( double gain, size_t chan ) { return bladerf_common::set_gain(gain, chan); } double bladerf_sink_c::set_gain( double gain, const std::string & name, size_t chan) { return bladerf_common::set_gain(gain, name, chan); } double bladerf_sink_c::get_gain( size_t chan ) { return bladerf_common::get_gain(chan); } double bladerf_sink_c::get_gain( const std::string & name, size_t chan ) { return bladerf_common::get_gain(name, chan); } double bladerf_sink_c::set_bb_gain( double gain, size_t chan ) { return bladerf_common::set_bb_gain(gain, chan); } std::vector< std::string > bladerf_sink_c::get_antennas( size_t chan ) { std::vector< std::string > antennas; antennas += "TX0"; if (BLADERF_REV_2 == get_board_type(_dev.get())) { antennas += "TX1"; } return antennas; } std::string bladerf_sink_c::set_antenna( const std::string & antenna, size_t chan ) { return get_antenna( chan ); } std::string bladerf_sink_c::get_antenna( size_t chan ) { /* We only have a single transmit antenna here */ return "TX0"; } void bladerf_sink_c::set_dc_offset( const std::complex &offset, size_t chan ) { int ret = 0; ret = bladerf_common::set_dc_offset(BLADERF_MODULE_TX, offset, chan); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set dc offset: " + std::string(bladerf_strerror(ret)) ); } } void bladerf_sink_c::set_iq_balance( const std::complex &balance, size_t chan ) { int ret = 0; ret = bladerf_common::set_iq_balance(BLADERF_MODULE_TX, balance, chan); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set iq balance: " + std::string(bladerf_strerror(ret)) ); } } double bladerf_sink_c::set_bandwidth( double bandwidth, size_t chan ) { int ret; uint32_t actual; if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */ bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */ ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_TX, (uint32_t)bandwidth, &actual ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set bandwidth:" + std::string(bladerf_strerror(ret)) ); } return get_bandwidth(); } double bladerf_sink_c::get_bandwidth( size_t chan ) { uint32_t bandwidth; int ret; ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_TX, &bandwidth ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not get bandwidth: " + std::string(bladerf_strerror(ret)) ); } return (double)bandwidth; } osmosdr::freq_range_t bladerf_sink_c::get_bandwidth_range( size_t chan ) { return filter_bandwidths(); } void bladerf_sink_c::set_clock_source(const std::string &source, const size_t mboard) { bladerf_common::set_clock_source(source, mboard); } std::string bladerf_sink_c::get_clock_source(const size_t mboard) { return bladerf_common::get_clock_source(mboard); } std::vector bladerf_sink_c::get_clock_sources(const size_t mboard) { return bladerf_common::get_clock_sources(mboard); }