/* -*- c++ -*- */ /* * Copyright 2013-2017 Nuand LLC * Copyright 2013 Dimitri Stolnikov * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ /* * config.h is generated by configure. It contains the results * of probing for features, options etc. It should be the first * file included in your .cc file. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include #include #include #include #include "arg_helpers.h" #include "bladerf_source_c.h" #include "osmosdr/source.h" using namespace boost::assign; /* * Create a new instance of bladerf_source_c and return * a boost shared_ptr. This is effectively the public constructor. */ bladerf_source_c_sptr make_bladerf_source_c (const std::string &args) { return gnuradio::get_initial_sptr(new bladerf_source_c (args)); } /* * Specify constraints on number of input and output streams. * This info is used to construct the input and output signatures * (2nd & 3rd args to gr_block's constructor). The input and * output signatures are used by the runtime system to * check that a valid number and type of inputs and outputs * are connected to this block. In this case, we accept either * 1 or 2 outputs. */ static const int MIN_IN = 0; // mininum number of input streams static const int MAX_IN = 0; // maximum number of input streams static const int MIN_OUT = 1; // minimum number of output streams static const int MAX_OUT = 2; // maximum number of output streams /* * The private constructor */ bladerf_source_c::bladerf_source_c (const std::string &args) : gr::sync_block ("bladerf_source_c", gr::io_signature::make (MIN_IN, MAX_IN, sizeof (gr_complex)), gr::io_signature::make (MIN_OUT, MAX_OUT, sizeof (gr_complex))) { int ret; std::string device_name; struct bladerf_version fpga_version; dict_t dict = params_to_dict(args); init(dict, BLADERF_MODULE_RX); if (dict.count("sampling")) { std::string sampling = dict["sampling"]; std::cerr << _pfx << "Setting bladerf sampling to " << sampling << std::endl; if( sampling == "internal") { ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_INTERNAL ); if ( ret != 0 ) std::cerr << _pfx << "Problem while setting sampling mode:" << bladerf_strerror(ret) << std::endl; } else if( sampling == "external" ) { ret = bladerf_set_sampling( _dev.get(), BLADERF_SAMPLING_EXTERNAL ); if ( ret != 0 ) std::cerr << _pfx << "Problem while setting sampling mode:" << bladerf_strerror(ret) << std::endl; } else { std::cerr << _pfx << "Invalid sampling mode " << sampling << std::endl; } } /* Warn user about using an old FPGA version, as we no longer strip off the * markers that were pressent in the pre-v0.0.1 FPGA */ if (bladerf_fpga_version( _dev.get(), &fpga_version ) != 0) { std::cerr << _pfx << "Failed to get FPGA version" << std::endl; } else if ( fpga_version.major <= 0 && fpga_version.minor <= 0 && fpga_version.patch < 1 ) { std::cerr << _pfx << "Warning: FPGA version v0.0.1 or later is required. " << "Using an earlier FPGA version will result in misinterpeted samples. " << std::endl; } } bool bladerf_source_c::start() { return bladerf_common::start(BLADERF_MODULE_RX); } bool bladerf_source_c::stop() { return bladerf_common::stop(BLADERF_MODULE_RX); } int bladerf_source_c::work( int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items ) { int ret; const float scaling = 2048.0f; gr_complex *out = static_cast(output_items[0]); struct bladerf_metadata meta; struct bladerf_metadata *meta_ptr = NULL; if (noutput_items > _conv_buf_size) { void *tmp; _conv_buf_size = noutput_items; tmp = realloc(_conv_buf, _conv_buf_size * 2 * sizeof(int16_t)); if (tmp == NULL) { throw std::runtime_error( std::string(__FUNCTION__) + "Failed to realloc _conv_buf" ); } _conv_buf = static_cast(tmp); } if (_use_metadata) { memset(&meta, 0, sizeof(meta)); meta.flags = BLADERF_META_FLAG_RX_NOW; meta_ptr = &meta; } /* Grab all the samples into the temporary buffer */ ret = bladerf_sync_rx(_dev.get(), static_cast(_conv_buf), noutput_items, meta_ptr, _stream_timeout_ms); if ( ret != 0 ) { std::cerr << _pfx << "bladerf_sync_rx error: " << bladerf_strerror(ret) << std::endl; _consecutive_failures++; if ( _consecutive_failures >= MAX_CONSECUTIVE_FAILURES ) { std::cerr << _pfx << "Consecutive error limit hit. Shutting down." << std::endl; return WORK_DONE; } } else { _consecutive_failures = 0; } /* Convert them from fixed to floating point */ volk_16i_s32f_convert_32f((float*)out, _conv_buf, scaling, 2*noutput_items); return noutput_items; } std::vector bladerf_source_c::get_devices() { return bladerf_common::devices(); } size_t bladerf_source_c::get_num_channels() { return bladerf_common::get_num_channels(BLADERF_MODULE_RX); } osmosdr::meta_range_t bladerf_source_c::get_sample_rates() { return sample_rates(); } double bladerf_source_c::set_sample_rate( double rate ) { return bladerf_common::set_sample_rate( BLADERF_MODULE_RX, rate); } double bladerf_source_c::get_sample_rate() { return bladerf_common::get_sample_rate( BLADERF_MODULE_RX ); } osmosdr::freq_range_t bladerf_source_c::get_freq_range(size_t chan) { return bladerf_common::get_freq_range(chan); } double bladerf_source_c::set_center_freq(double freq, size_t chan) { return bladerf_common::set_center_freq(freq, chan); } double bladerf_source_c::get_center_freq(size_t chan) { return bladerf_common::get_center_freq(chan); } double bladerf_source_c::set_freq_corr( double ppm, size_t chan ) { /* TODO: Write the VCTCXO with a correction value (also changes TX ppm value!) */ return get_freq_corr( chan ); } double bladerf_source_c::get_freq_corr( size_t chan ) { /* TODO: Return back the frequency correction in ppm */ return 0; } std::vector bladerf_source_c::get_gain_names( size_t chan ) { return bladerf_common::get_gain_names(chan); } osmosdr::gain_range_t bladerf_source_c::get_gain_range( size_t chan ) { return bladerf_common::get_gain_range(chan); } osmosdr::gain_range_t bladerf_source_c::get_gain_range( const std::string & name, size_t chan ) { return bladerf_common::get_gain_range(name, chan); } bool bladerf_source_c::set_gain_mode( bool automatic, size_t chan ) { return bladerf_common::set_gain_mode(automatic, chan); } bool bladerf_source_c::get_gain_mode( size_t chan ) { return bladerf_common::get_gain_mode(chan); } double bladerf_source_c::set_gain( double gain, size_t chan ) { return bladerf_common::set_gain(gain, chan); } double bladerf_source_c::set_gain( double gain, const std::string & name, size_t chan) { return bladerf_common::set_gain(gain, name, chan); } double bladerf_source_c::get_gain( size_t chan ) { return bladerf_common::get_gain(chan); } double bladerf_source_c::get_gain( const std::string & name, size_t chan ) { return bladerf_common::get_gain(name, chan); } double bladerf_source_c::set_bb_gain( double gain, size_t chan ) { return bladerf_common::set_bb_gain(gain, chan); } std::vector< std::string > bladerf_source_c::get_antennas( size_t chan ) { std::vector< std::string > antennas; antennas += "RX0"; if (BLADERF_REV_2 == get_board_type(_dev.get())) { antennas += "RX1"; } return antennas; } std::string bladerf_source_c::set_antenna( const std::string & antenna, size_t chan ) { return get_antenna( chan ); } std::string bladerf_source_c::get_antenna( size_t chan ) { /* We only have a single receive antenna here */ return "RX0"; } void bladerf_source_c::set_dc_offset_mode( int mode, size_t chan ) { if ( osmosdr::source::DCOffsetOff == mode ) { //_src->set_auto_dc_offset( false, chan ); set_dc_offset( std::complex(0.0, 0.0), chan ); /* reset to default for off-state */ } else if ( osmosdr::source::DCOffsetManual == mode ) { //_src->set_auto_dc_offset( false, chan ); /* disable auto mode, but keep correcting with last known values */ } else if ( osmosdr::source::DCOffsetAutomatic == mode ) { //_src->set_auto_dc_offset( true, chan ); std::cerr << "Automatic DC correction mode is not implemented." << std::endl; } } void bladerf_source_c::set_dc_offset( const std::complex &offset, size_t chan ) { int ret = 0; ret = bladerf_common::set_dc_offset(BLADERF_MODULE_RX, offset, chan); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set dc offset: " + std::string(bladerf_strerror(ret)) ); } } void bladerf_source_c::set_iq_balance_mode( int mode, size_t chan ) { if ( osmosdr::source::IQBalanceOff == mode ) { //_src->set_auto_iq_balance( false, chan ); set_iq_balance( std::complex(0.0, 0.0), chan ); /* reset to default for off-state */ } else if ( osmosdr::source::IQBalanceManual == mode ) { //_src->set_auto_iq_balance( false, chan ); /* disable auto mode, but keep correcting with last known values */ } else if ( osmosdr::source::IQBalanceAutomatic == mode ) { //_src->set_auto_iq_balance( true, chan ); std::cerr << "Automatic IQ correction mode is not implemented." << std::endl; } } void bladerf_source_c::set_iq_balance( const std::complex &balance, size_t chan ) { int ret = 0; ret = bladerf_common::set_iq_balance(BLADERF_MODULE_RX, balance, chan); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set iq balance: " + std::string(bladerf_strerror(ret)) ); } } double bladerf_source_c::set_bandwidth( double bandwidth, size_t chan ) { int ret; uint32_t actual; if ( bandwidth == 0.0 ) /* bandwidth of 0 means automatic filter selection */ bandwidth = get_sample_rate() * 0.75; /* select narrower filters to prevent aliasing */ ret = bladerf_set_bandwidth( _dev.get(), BLADERF_MODULE_RX, (uint32_t)bandwidth, &actual ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not set bandwidth: " + std::string(bladerf_strerror(ret)) ); } return get_bandwidth(); } double bladerf_source_c::get_bandwidth( size_t chan ) { uint32_t bandwidth; int ret; ret = bladerf_get_bandwidth( _dev.get(), BLADERF_MODULE_RX, &bandwidth ); if( ret ) { throw std::runtime_error( std::string(__FUNCTION__) + " " + "could not get bandwidth:" + std::string(bladerf_strerror(ret)) ); } return (double)bandwidth; } osmosdr::freq_range_t bladerf_source_c::get_bandwidth_range( size_t chan ) { return filter_bandwidths(); } void bladerf_source_c::set_clock_source(const std::string &source, const size_t mboard) { bladerf_common::set_clock_source(source, mboard); } std::string bladerf_source_c::get_clock_source(const size_t mboard) { return bladerf_common::get_clock_source(mboard); } std::vector bladerf_source_c::get_clock_sources(const size_t mboard) { return bladerf_common::get_clock_sources(mboard); }