/* -*- c++ -*- */ /* * Copyright 2016,2017 Sergey Kostanbaev * * GNU Radio is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3, or (at your option) * any later version. * * GNU Radio is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Radio; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include "xtrx_sink_c.h" #include "arg_helpers.h" static const int max_burstsz = 4096; using namespace boost::assign; xtrx_sink_c_sptr make_xtrx_sink_c(const std::string &args) { return gnuradio::get_initial_sptr(new xtrx_sink_c(args)); } static size_t parse_nchan(const std::string &args) { size_t nchan = 1; dict_t dict = params_to_dict(args); if (dict.count("nchan")) nchan = boost::lexical_cast< size_t >( dict["nchan"] ); if (nchan < 1) nchan = 1; return nchan; } xtrx_sink_c::xtrx_sink_c(const std::string &args) : gr::sync_block("xtrx_sink_c", gr::io_signature::make(parse_nchan(args), parse_nchan(args), sizeof(gr_complex)), gr::io_signature::make(0, 0, 0)), _sample_flags(0), _rate(0), _master(0), _freq(0), _corr(0), _bandwidth(0), _dsp(0), _auto_gain(false), _otw(XTRX_WF_16), _mimo_mode(false), _gain_tx(0), _channels(parse_nchan(args)), _ts(8192), _swap_ab(false), _swap_iq(false), _tdd(false), _allow_dis(false), _dev("") { dict_t dict = params_to_dict(args); if (dict.count("master")) { _master = boost::lexical_cast< double >( dict["master"]); } std::cerr << args.c_str() << std::endl; int loglevel = 4; if (dict.count("loglevel")) { loglevel = boost::lexical_cast< int >( dict["loglevel"] ); } bool lmsreset = 0; if (dict.count("lmsreset")) { lmsreset = boost::lexical_cast< bool >( dict["lmsreset"] ); } if (dict.count("txdelay")) { _ts += 8192 * boost::lexical_cast< int >( dict["txdelay"] ); } if (dict.count("allowdis")) { _allow_dis = boost::lexical_cast< bool >( dict["allowdis"] ); } if (dict.count("swap_ab")) { _swap_ab = true; std::cerr << "xtrx_sink_c: swap AB channels"; } if (dict.count("swap_iq")) { _swap_iq = true; std::cerr << "xtrx_sink_c: swap IQ"; } if (dict.count("sfl")) { _sample_flags = boost::lexical_cast< unsigned >( dict["sfl"] ); } if (dict.count("tdd")) { _tdd = true; std::cerr << "xtrx_sink_c: TDD mode"; } if (dict.count("dsp")) { _dsp = boost::lexical_cast< double >( dict["dsp"] ); std::cerr << "xtrx_sink_c: DSP:" << _dsp; } if (dict.count("dev")) { _dev = dict["dev"]; std::cerr << "xtrx_sink_c: XTRX device: %s" << _dev.c_str(); } _xtrx = xtrx_obj::get(_dev.c_str(), loglevel, lmsreset); if (_xtrx->dev_count() * 2 == _channels) { _mimo_mode = true; } else if (_xtrx->dev_count() != _channels) { throw std::runtime_error("Number of requested channels != number of devices"); } if (dict.count("refclk")) { xtrx_set_ref_clk(_xtrx->dev(), boost::lexical_cast< unsigned >( dict["refclk"] ), XTRX_CLKSRC_INT); } if (dict.count("extclk")) { xtrx_set_ref_clk(_xtrx->dev(), boost::lexical_cast< unsigned >( dict["extclk"] ), XTRX_CLKSRC_EXT); } std::cerr << "xtrx_sink_c::xtrx_sink_c()" << std::endl; set_alignment(32); set_output_multiple(max_burstsz); } xtrx_sink_c::~xtrx_sink_c() { std::cerr << "xtrx_sink_c::~xtrx_sink_c()" << std::endl; } std::string xtrx_sink_c::name() { return "GrLibXTRX"; } size_t xtrx_sink_c::get_num_channels( void ) { return input_signature()->max_streams(); } osmosdr::meta_range_t xtrx_sink_c::get_sample_rates( void ) { osmosdr::meta_range_t range; range += osmosdr::range_t( 1000000, 160000000, 1 ); return range; } double xtrx_sink_c::set_sample_rate( double rate ) { std::cerr << "Set sample rate " << rate << std::endl; _rate = _xtrx->set_smaplerate(rate, _master, true, _sample_flags); return get_sample_rate(); } double xtrx_sink_c::get_sample_rate( void ) { return _rate; } osmosdr::freq_range_t xtrx_sink_c::get_freq_range( size_t chan ) { osmosdr::freq_range_t range; range += osmosdr::range_t( double(0.03e9), double(3.8e9), 1); // as far as we know return range; } double xtrx_sink_c::set_center_freq( double freq, size_t chan ) { boost::mutex::scoped_lock lock(_xtrx->mtx); _freq = freq; double corr_freq = (freq)*(1.0 + (_corr) * 0.000001); std::cerr << "TX Set freq " << freq << std::endl; xtrx_channel_t xchan = (xtrx_channel_t)(XTRX_CH_A << chan); int res = xtrx_tune_ex(_xtrx->dev(), (_tdd) ? XTRX_TUNE_TX_AND_RX_TDD : XTRX_TUNE_TX_FDD, xchan, corr_freq - _dsp, &_freq); if (res) { std::cerr << "Unable to deliver frequency " << corr_freq << std::endl; } res = xtrx_tune_ex(_xtrx->dev(), XTRX_TUNE_BB_TX, xchan, _dsp, NULL); return get_center_freq(chan); } double xtrx_sink_c::get_center_freq( size_t chan ) { return _freq + _dsp; } double xtrx_sink_c::set_freq_corr( double ppm, size_t chan ) { _corr = ppm; set_center_freq(_freq, chan); return get_freq_corr( chan ); } double xtrx_sink_c::get_freq_corr( size_t chan ) { return _corr; } static const std::vector s_lna_list = boost::assign::list_of("TX"); std::vector xtrx_sink_c::get_gain_names( size_t chan ) { return s_lna_list; } osmosdr::gain_range_t xtrx_sink_c::get_gain_range( size_t chan ) { return get_gain_range("TX", chan); } osmosdr::gain_range_t xtrx_sink_c::get_gain_range( const std::string & name, size_t chan ) { osmosdr::gain_range_t range; range += osmosdr::range_t( -31, 0, 1 ); return range; } bool xtrx_sink_c::set_gain_mode( bool automatic, size_t chan ) { _auto_gain = automatic; return get_gain_mode(chan); } bool xtrx_sink_c::get_gain_mode( size_t chan ) { return _auto_gain; } double xtrx_sink_c::set_gain( double gain, size_t chan ) { return set_gain(gain, "TX", chan); } double xtrx_sink_c::set_gain( double igain, const std::string & name, size_t chan ) { boost::mutex::scoped_lock lock(_xtrx->mtx); osmosdr::gain_range_t gains = xtrx_sink_c::get_gain_range( name, chan ); double gain = gains.clip(igain); double actual_gain; std::cerr << "Set TX gain: " << igain << std::endl; int res = xtrx_set_gain(_xtrx->dev(), (xtrx_channel_t)(XTRX_CH_A << chan), XTRX_TX_PAD_GAIN, gain, &actual_gain); if (res) { std::cerr << "Unable to set gain `" << name.c_str() << "`; err=" << res << std::endl; } _gain_tx = actual_gain; return actual_gain; } double xtrx_sink_c::get_gain( size_t chan ) { return get_gain("TX"); } double xtrx_sink_c::get_gain( const std::string & name, size_t chan ) { return _gain_tx; } double xtrx_sink_c::set_bandwidth( double bandwidth, size_t chan ) { boost::mutex::scoped_lock lock(_xtrx->mtx); std::cerr << "Set bandwidth " << bandwidth << " chan " << chan << std::endl; if (bandwidth <= 0.0) { bandwidth = get_sample_rate() * 0.75; if (bandwidth < 0.5e6) { bandwidth = 0.5e6; } } int res = xtrx_tune_tx_bandwidth(_xtrx->dev(), (xtrx_channel_t)(XTRX_CH_A << chan), bandwidth, &_bandwidth); if (res) { std::cerr << "Can't set bandwidth: " << res << std::endl; } return get_bandwidth(chan); } double xtrx_sink_c::get_bandwidth( size_t chan ) { return _bandwidth; } static const std::map s_ant_map = boost::assign::map_list_of ("AUTO", XTRX_TX_AUTO) ("B1", XTRX_TX_H) ("B2", XTRX_TX_W) ("TXH", XTRX_TX_H) ("TXW", XTRX_TX_W) ; static const std::map s_ant_map_r = boost::assign::map_list_of (XTRX_TX_H, "TXH") (XTRX_TX_W, "TXW") (XTRX_TX_AUTO, "AUTO") ; static xtrx_antenna_t get_ant_type(const std::string& name) { std::map::const_iterator it; it = s_ant_map.find(name); if (it != s_ant_map.end()) { return it->second; } return XTRX_TX_AUTO; } static const std::vector s_ant_list = boost::assign::list_of ("AUTO")("TXH")("TXW") ; std::vector< std::string > xtrx_sink_c::get_antennas( size_t chan ) { return s_ant_list; } std::string xtrx_sink_c::set_antenna( const std::string & antenna, size_t chan ) { boost::mutex::scoped_lock lock(_xtrx->mtx); _ant = get_ant_type(antenna); std::cerr << "Set antenna " << antenna << std::endl; int res = xtrx_set_antenna_ex(_xtrx->dev(), (xtrx_channel_t)(XTRX_CH_A << chan), _ant); if (res) { std::cerr << "Can't set antenna: " << antenna << std::endl; } return get_antenna( chan ); } std::string xtrx_sink_c::get_antenna( size_t chan ) { return s_ant_map_r.find(_ant)->second; } void xtrx_sink_c::tag_process(int ninput_items) { std::sort(_tags.begin(), _tags.end(), gr::tag_t::offset_compare); const uint64_t samp0_count = this->nitems_read(0); uint64_t max_count = samp0_count + ninput_items; bool found_time_tag = false; for (const gr::tag_t &my_tag : _tags) { const uint64_t my_tag_count = my_tag.offset; const pmt::pmt_t &key = my_tag.key; const pmt::pmt_t &value = my_tag.value; if (my_tag_count >= max_count) { break; } else if(pmt::equal(key, TIME_KEY)) { //if (my_tag_count != samp0_count) { // max_count = my_tag_count; // break; //} found_time_tag = true; //_metadata.has_time_spec = true; //_metadata.time_spec = ::uhd::time_spec_t // (pmt::to_uint64(pmt::tuple_ref(value, 0)), // pmt::to_double(pmt::tuple_ref(value, 1))); uint64_t seconds = pmt::to_uint64(pmt::tuple_ref(value, 0)); double fractional = pmt::to_double(pmt::tuple_ref(value, 1)); std::cerr << "TX_TIME: " << seconds << ":" << fractional << std::endl; } } // end for if (found_time_tag) { //_metadata.has_time_spec = true; } } int xtrx_sink_c::work (int noutput_items, gr_vector_const_void_star &input_items, gr_vector_void_star &output_items) { int ninput_items = noutput_items; const uint64_t samp0_count = nitems_read(0); get_tags_in_range(_tags, 0, samp0_count, samp0_count + ninput_items); if (!_tags.empty()) tag_process(ninput_items); xtrx_send_ex_info_t nfo; nfo.samples = noutput_items; nfo.buffer_count = input_items.size(); nfo.buffers = &input_items[0]; nfo.flags = XTRX_TX_DONT_BUFFER; if (!_allow_dis) nfo.flags |= XTRX_TX_NO_DISCARD; nfo.ts = _ts; nfo.timeout = 0; int res = xtrx_send_sync_ex(_xtrx->dev(), &nfo); if (res) { std::cerr << "Err: " << res << std::endl; std::stringstream message; message << "xtrx_send_burst_sync error: " << -res; throw std::runtime_error( message.str() ); } _ts += noutput_items; for (unsigned i = 0; i < input_items.size(); i++) { consume(i, noutput_items); } return 0; } bool xtrx_sink_c::start() { boost::mutex::scoped_lock lock(_xtrx->mtx); xtrx_run_params_t params; xtrx_run_params_init(¶ms); params.dir = XTRX_TX; if (!_mimo_mode) params.tx.flags |= XTRX_RSP_SISO_MODE; if (_swap_ab) params.tx.flags |= XTRX_RSP_SWAP_AB; if (_swap_iq) params.tx.flags |= XTRX_RSP_SWAP_IQ; params.tx.hfmt = XTRX_IQ_FLOAT32; params.tx.wfmt = _otw; params.tx.chs = XTRX_CH_AB; params.tx.paketsize = 0; params.rx_stream_start = 256*1024; int res = xtrx_run_ex(_xtrx->dev(), ¶ms); if (res) { std::cerr << "Got error: " << res << std::endl; } return res == 0; } bool xtrx_sink_c::stop() { boost::mutex::scoped_lock lock(_xtrx->mtx); //TODO: std::cerr << "xtrx_sink_c::stop()" << std::endl; int res = xtrx_stop(_xtrx->dev(), XTRX_TX); if (res) { std::cerr << "Got error: " << res << std::endl; } return res == 0; }